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Motivation

High-resolution numerical modelling and satellite observations
suggest ocean turbulence is in a surface quasi-geostrophic regime
near the surface.

Surface vorticity

vertical PV flux (neither advective nor diffusive), the
forward cascade occurs at every depth. This is consistent
with the fact that PV obeys a tracer advection equation.
The enstrophy forcing is sharply peaked at the basin scale
because of the forcing procedure. Dissipation and forcing
scales are well separated at this resolution (kD 5 512).
Consequently, there are almost two decades of quasi-
inviscid dynamics (and more than two for kD 5 1024).

d. Vorticity

Surface vorticity snapshots dramatically differ between
the two regimes (Fig. 5). The Charney case is finer grained
with lot of submesoscale structures. In comparison, the
Phillips case looks smoother. In the Charney case, high
values of vorticity tend to be in the fronts rather than in
the eddies. As the resolution increases, the vorticity ex-
trema increase in filaments because nothing prevents it.
This is not surprising as the ageostrophic circulation has

been shown to be important in the balance of filaments
(McWilliams et al. 2009). This is confirmed by the prob-
ability density function (PDF) of vorticity at the surface
(Fig. 6). It has a marked exponential-law behavior for
both side of the PDF: P(z) ; l exp(2ljzj), with l a pa-
rameter that depends on depth and the regime. The
Phillips case exhibits a steeper PDF than Charney’s case
(as can be anticipated from vorticity snapshots in Fig. 5),
and this difference becomes more dramatic as the reso-
lution increases. The PDF of the Phillips case shows al-
most no dependency on the resolution, but the one for the
Charney case shows no sign of convergence near the
surface. In fact, l almost linearly scales with resolution
(l ; Dx), and extrapolating this tendency for infinite
resolution would yield a flat PDF for vorticity at surface.
Clearly near-surface submesoscale processes escape a QG
description. The Charney case does resemble equivalent
PE simulations (Klein et al. 2008). The stirring is very

FIG. 5. Surface vorticity snapshot (z/f ) at the statistical steady state for (left) the Charney case and (right) the
Phillips case.
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Baroclinic instability with by 6= 0 (left) and with by = 0 (right)
(Roullet et al, JPO, 2012)
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Interior and surface motion

Recall quasi-geostrophic model:

@tq + @( , q) = 0, and @tb + @( , b) = 0 at z = z±,

with the inversion

@xx + @yy + @z

✓
f 2

N2

@z 

◆
= q and @z = b/f at z = z±.

Three dynamical variables:

potential vorticity q(x , y , z , t),

surface and bottom buoyancy b(x , y , z±, t).

Simplified models:

QG turbulence: b(x , y , z±, t) = const.,

SQG turbulence: q = 0.
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Interior and surface motion

Predictions: QG SQG
energy spectrum k�3 k�5/3

SSH spectrum k�5 k�11/3

Rossby number k0 k2/3

locity spectrum, suggesting that the energy there is
principally captured by this mode.

To quantify the degree of ageostrophy of the flow in
the upper layers (where the Rossby number is large)
and to further clarify the importance of ageostrophic
divergent motions, we have compared the surface ve-
locity spectrum directly calculated from u and ! with
that estimated from the SSH (using uh " #(g/f0)k $
!%, where % is the SSH and k is the vertical unit vec-
tor). There is an unexpected and remarkable coinci-
dence between both spectra (see Fig. 5a) over the

whole spectral range. This confirms the geostrophic
equilibrium mentioned before when examining the gra-
dient wind balance, that is, the velocity field near the
surface almost equilibrates the pressure field. Then we
have estimated the ageostrophic divergent part as the
difference between the observed surface horizontal ve-
locity field and its geostrophic part estimated from the
SSH. Its spectrum (red curve on Fig. 6) involves a peak
around k " 30 (100 km). The corresponding spectral
amplitudes are, however, much smaller than those for
the geostrophic part, except in the small-scale range: in

FIG. 5. Velocity spectra estimated from u and ! (red curve) at (a) z " #2 m, (b) #150 m, (c) #400 m, and (d) #800 m. The black
curve in (a) and (b) is the surface velocity spectrum estimated from the SSH. The blue curve in (c) and (d) is the velocity spectrum
estimated from the barotropic velocity. The green curve in each panel is the density spectrum. Surface density spectrum is scaled by
a factor of g2/(N 2

0&
2
0) " 7.1 using N0 /f0 " 37 to match the surface velocity spectrum (see text). Other density spectra are scaled to match

the velocity spectra at k " 15. The horizontal axis displays the nondimensional wavenumber k. The value k " 10 corresponds to a
wavelength of 300 km. Units on the vertical axis are m3 s#2.
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Fig 5 live 4/C

Spectra in primitive equation simulations (Klein et al, JPO, 2009)
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Interior and surface motion

Observed SSH: SQG k�11/3 spectrum in energetic regions.

slope estimations. Interpretation and implications of
these results are given in the next section.

3. Implications of the SSH wavenumber spectra
with a k!11/3 slope

Recent theoretical and high-resolution numerical
studies (that couple both the ocean interior and surface

dynamics) have also pointed out the dominance of
SQG in the upper layers. Lapeyre and Klein (2006a),
using the invertibility principle of potential vorticity,
show that the ocean dynamics can be decomposed in
terms of a QG solution (forced by the potential vortic-
ity in the interior) and an SQG solution (forced by the
near-surface density). They demonstrate the domi-
nance of the SQG dynamics in the upper-oceanic layers

FIG. 1. Along-track altimeter wavenumber spectrum for
TOPEX/Poseidon, Jason-1, Envisat, and Geosat Follow-On for
(a) the Gulf Stream area, (b) the Kuroshio area, and (c) the
Agulhas area. (a)–(c) Spectral slopes were estimated in the 100–
300-km spectral band. A k!11/3 slope is also shown (dashed line).
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Le Traon et al
(JPO, 2009)

spectrum at these wavelengths is caused by the effect of
the instrument noise. To our surprise, the effect of the
instrument noise is substantial even in a region of high
eddy energy with steep spectral slope as illustrated by
this case.
Using the method of Xu and Fu (2011) we remapped

the global SSH spectral slope after removing the noise
and compared it with the original calculation (Fig. 3). As
in Xu and Fu (2011), the areas poleward of 608S and
608N are excluded from the study to avoid the ice in-
fluence on the SSH measurements. The wavelength
range of 70–250 km was selected for computing the
spectral slope. Despite the differences in the values of
spectral slope, the geographic patterns of the two maps
are similar to each other even in some details. After
removing the noise, the spectral slopes have generally
become steeper than the previous estimates, especially
in regions of low eddy energy away from the major
ocean currents. The most important new result is that
the spectral slopes are generally steeper than k22 pole-
ward of the 208 latitudes. The previous results in some
high-latitude regions such as the northeast Pacific and
southeast Pacific show spectral slopes flatter than k22,
implying ‘‘blue’’ spectra in geostrophic velocity, which
are unphysical. These features have been removed in
the new map. Spectral slopes flatter than k22 are present
only in low-latitude regions at places where ageostrophic
effects may become important.
In the high eddy energy regions associated with

the major ocean currents, the slopes become slightly
steeper. These regions include the core regions of the
Gulf Stream, the Kuroshio Extension and the Antarctic
Circumpolar Current (ACC) systems, the Brazil–Malvinas

Confluence, and the Agulhas Current. The steepest
spectral slope of the global ocean is 24.5 6 0.12 (see
error estimation method in Xu and Fu 2011), which is
significantly flatter than the k25 power law predicted by
the original geostrophic turbulence theory (Charney
1971), suggesting that the observed SSH spectral slopes
are flatter than the prediction of the geostrophic turbu-
lence theory everywhere in the ocean.
Recent theoretical work has suggested the rele-

vance of the surface quasigeostrophic (SQG) theory for
interpreting altimeter observations (Held et al. 1995;
Capet et al. 2008; Le Traon et al. 2008). This theory
predicts k211/3 power law for SSH spectrum. To explore
the consistency of the observed spectral slopes with the
SQG theory, Fig. 4 exhibits the distribution of four
categories of regions according the spectral slopes. The
type-1 regions are the areas where the spectral slopes are
indistinguishable from 211/3 within the 95% confidence

FIG. 2. The wavenumber spectrum from Jason-1 altimeter ob-
servations before (black) and after (blue) removing the noise. The
spectra were calculated from the data within a box 108 3 108 box
centered at (2528N, 2408E). The red lines are linear fits in the
wavelength range of 70–250 km. The values of spectral slope are
noted.

FIG. 3. The global distribution of the spectral slopes of SSH
wavenumber spectrum in the wavelength band of 70–250 km esti-
mated from the Jason-1 altimeter measurements (a) before and (b)
after removing the noise. The sign of the slopes was reversed to
make the values positive.

DECEMBER 2012 XU AND FU 2231

Xu and Fu (JPO,
2011, 2012)
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Interior and surface motion

Vertical structure of SQG motion:

q̂ = 0 ) @z

✓
f 2

N2

@z  ̂

◆
� 2 ̂ = 0 )  ̂ / e

Nz/f

for Fourier mode (k , l) with 2 = k2 + l2.

Exponential decay from surface,

non-zero surface buoyancy b(z±) = f @z  ̂(z±) 6= 0.

A di�culty:

Vertical structure of SQG motion is poorly represented by standard
basis of barotropic + baroclinic modes.
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Modal expansion

Standard basis

Standard basis of baroclinic modes:
Eigenfunctions of

✓
f 2

N2

 0
n

◆0
= ��2n n, with  0

n = 0 at z = 0, �H.

For constant N:  n ⇠ cos(n⇡z/H), n = 0, 1, · · · .

Advantages:

orthogonal basis,
R
0

�H  n m dz /
R
0

�H r n ·r m dz / �mn,

diagonalise energy,

describes (interior) QG dynamics with a few modes,

mode structure independent of .

Heavily used: projection of data, basis for simplified models. . .
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Modal expansion

Standard basis

Di�culty:

basis unsuitable to describe SQG-like motion since
f  0

n = b = 0 at z = 0,�H,

non-uniform convergence for surface modes
e

Nz/f =
P

n An cos(n⇡z/H),

many modes needed to represent motion with surface activity.

Need to find an alternative, ‘surface-aware’ basis.

Some attempts:

Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add
SQG mode e

�Nz/f to standard basis,

Scott & Furnival (JPO, 2012): add barotropic mode to
‘Dirichlet basis’ satisfying  n = 0 at z = 0.

But, non-orthogonal, overcomplete bases.
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New bases

We derive new surface-aware, orthogonal bases.

Ideas:

Think of Q = (q, b+, b�) not  as the dynamical variable to
be expanded,

Recall linear algebra: a unique basis diagonalises 2 quadratic
forms xTAx and xTBx (solve Ax = �Bx),

Choose as quadratic form conserved quantities: energy and
‘generalised enstrophy’,

Z
0

�H
|r |2 dz and

Z
0

�H
q2 dz + ↵

+

(b+)2 + ↵�(b
�)2.

Family of bases parameterised by ↵±.
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New bases

Basis vectors: eigenfunctions of

✓
f 2
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 0
n

◆0
= ��2n n, with

f 2

N2H
 0
n = ±�

2

n + 2

↵±
 n at z = 0, �H.

Limiting cases:

↵± ! 1: reduces to standard baroclinic basis for n = O(1),

↵± ! 0: ‘Dirichlet basis’ with  n = 0 at z = 0, �H
+ 2 SQG modes (q = 0) and imaginary �n.
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New bases

Application

3 QG simulations of
baroclinic instability:
(1) interior BC1,
(2) surface Eady,
(3) mixed Ocean.
↵� ! 1

Figure 4: Energy spectra for the BC1 (left), Eady (middle) and Ocean (right) simulations. Top

panels: spectra for selected vertical levels (see legend). Middle: spectra from fields projected onto

standard vertical modes (modes 1, 2 and 3–10 are shown). Bottom: spectra from fields projected

onto new modes, with ↵+ = ↵� = 10

6
for the BC1 case, ↵+ = ↵� = 10

�4
for the Eady case and

↵+ = 2, ↵� = 10

6
for the Ocean case.
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New bases

Choosing ↵
+

: maximise energy content of first 2 modes
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Conclusion

E↵ects of surface buoyancy gradients cannot be ignored in
ocean turbulence,

Eddies have rich, surface-intensified vertical structure that is
not well-represented by standard vertical modes,

New bases presented can capture most energy in such flows
with a small truncation set,

New bases can be very simple:

 
0

/ cosh [N(z + H)/f ] ,  n / sin [(n � 1/2)⇡z/H)] .

New bases depend on : coupling of horizontal and vertical
structures.


	Introduction
	Surface motion

	Modal expansion
	Standard basis

	Modal expansion
	Standard basis

	New bases
	Ideas

	Conclusion
	Conclusion


