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High-resolution numerical modelling and satellite observations

suggest ocean turbulence is in a surface quasi-geostrophic regime
near the surface.

Surface vorticity
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Baroclinic instability with b, # 0 (left) and with b, = 0 (right)
(Roullet et al, JPO, 2012)



Interior and surface motion
Recall quasi-geostrophic model:

atq + 8("/}7 q) = Oa

and 9;b+0(,b) =0 at z=z",
with the inversion

f‘2
O + Oy + 0, (mazzp> =gq and 9,00 =b/f at z=2z"
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Interior and surface motion

Recall quasi-geostrophic model:
0:q+0(1,q) =0, and 9:b+9(¢),b)=0 at z=2z",

with the inversion

2
Dxx + Oyy1h + 0, (I';zazw> —q and 0,9 =b/f at z=z".

Three dynamical variables:
e potential vorticity q(x, y, z, t),
e surface and bottom buoyancy b(x,y,z %, t).

Simplified models:
e QG turbulence: b(x,y,z*,t) = const.,
@ SQG turbulence: g = 0.
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Interior and surface motion

Predictions: QG

Modal expansion New bases
SQG
energy spectrum k3 k=°/3
SSH spectrum k> Kk 11/3
Rossby number k0 k2/3
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Spectra in primitive equation simulations (Klein et al, JPO, 2009)

Conclusion
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Interior and surface motion

Observed SSH: SQG k~11/3 spectrum in energetic regions.

(a) Gulf Stream
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Interior and surface motion

Vertical structure of SQG motion:
2 _ . A N
G=0 = 0, <N2321/)> — k=0 = ¢ oceN/f
for Fourier mode (k, /) with k% = k? + /2.
@ Exponential decay from surface,
e non-zero surface buoyancy b(z+) = fd,4)(z*) # 0.
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Interior and surface motion

Vertical structure of SQG motion:
2 _ . A N
G=0 = 0, <N2321/)> — k=0 = ¢ oceN/f
for Fourier mode (k, /) with k% = k? + /2.
@ Exponential decay from surface,
e non-zero surface buoyancy b(z+) = fd,4)(z*) # 0.

A difficulty:

Vertical structure of SQG motion is poorly represented by standard
basis of barotropic + baroclinic modes.
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Modal expansion
Standard basis

Standard basis of baroclinic modes:
Eigenfunctions of

2\
</\/2¢/”> = —)\2¢,, with ¢, =0at z=0, —H.

For constant N: v, ~ cos(nrz/H), n=0,1,---
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Modal expansion
Standard basis

Standard basis of baroclinic modes:
Eigenfunctions of

2\
(pr;) = )29, with ¢, =0at z=0, —H.

For constant N: v, ~ cos(nrz/H), n=0,1,---

Advantages:
@ orthogonal basis, fEH Ypthm dz o fEH Vi, - Vi dz o< S,
@ diagonalise energy,
@ describes (interior) QG dynamics with a few modes,

@ mode structure independent of k.

Heavily used: projection of data, basis for simplified models. . .
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Modal expansion
Standard basis
Difficulty:
@ basis unsuitable to describe SQG-like motion since
fiyf =b=0atz=0,—H,
@ non-uniform convergence for surface modes
eNrz/f = S~ A, cos(nmz/H),

Conclusion
o

@ many modes needed to represent motion with surface activity.
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Modal expansion
Standard basis
Difficulty:
@ basis unsuitable to describe SQG-like motion since
fiyf =b=0atz=0,—H,
@ non-uniform convergence for surface modes
eNrz/f = S~ A, cos(nmz/H),

Conclusion
o

@ many modes needed to represent motion with surface activity.

Need to find an alternative, ‘surface-aware’ basis.
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Modal expansion
Standard basis

Difficulty:
@ basis unsuitable to describe SQG-like motion since
fiyf =b=0atz=0,—H,
@ non-uniform convergence for surface modes
eNrz/f = S~ A, cos(nmz/H),

@ many modes needed to represent motion with surface activity.

Need to find an alternative, ‘surface-aware’ basis. J

Some attempts:

e Tulloch & Smith (JAS, 2009), Lapeyre (JPO, 2009): add
SQG mode e N%2/f to standard basis,

@ Scott & Furnival (JPO, 2012): add barotropic mode to
‘Dirichlet basis' satisfying 1), = 0 at z = 0.

But, non-orthogonal, overcomplete bases.



We derive new surface-aware, orthogonal bases.

Ideas:

@ Think of @ = (g,b™, b~ ) not 1 as the dynamical variable to
be expanded,

@ Recall linear algebra: a unique basis diagonalises 2 quadratic
forms x* Ax and xT Bx (solve Ax = \Bx),

@ Choose as quadratic form conserved quantities: energy and
‘generalised enstrophy’,

.0 0
/ (V|2 dz and/ q?dz +a(bT)? +a_(b)>.
J—H J—H

Family of bases parameterised by a..
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New bases

We derive new surface-aware, orthogonal bases.

Ideas:

@ Think of @ = (g, b", b~ ) not 1 as the dynamical variable to
be expanded,



Introduction Modal expansion Modal expansion New bases Conclusion
0000 oo @000 o

New bases

We derive new surface-aware, orthogonal bases.

Ideas:

@ Think of @ = (g, b", b~ ) not 1 as the dynamical variable to
be expanded,

@ Recall linear algebra: a unique basis diagonalises 2 quadratic
forms xTAx and xTBx (solve Ax = \Bx),
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New bases

We derive new surface-aware, orthogonal bases.
Ideas:

@ Think of @ = (g, b", b~ ) not 1 as the dynamical variable to
be expanded,

@ Recall linear algebra: a unique basis diagonalises 2 quadratic
forms xTAx and xTBx (solve Ax = \Bx),

@ Choose as quadratic form conserved quantities: energy and
‘generalised enstrophy’,

0 0
/ V|? dz and/ °dz+ a (b7 +a_(b7)2
H —H
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New bases

We derive new surface-aware, orthogonal bases.
Ideas:

@ Think of @ = (g, b", b~ ) not 1 as the dynamical variable to
be expanded,

@ Recall linear algebra: a unique basis diagonalises 2 quadratic
forms xTAx and xTBx (solve Ax = \Bx),

@ Choose as quadratic form conserved quantities: energy and
‘generalised enstrophy’,

0 0
/ V|? dz and/ °dz+ a (b7 +a_(b7)2
H —H

Family of bases parameterised by .
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New bases

Basis vectors: eigenfunctions of

f2 / ' 2 - )\% + /{xz
<IV2’(/}n> - _)\n'(/}m with N2H1/n - Tq/)n at z = 07 -
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New bases

Basis vectors: eigenfunctions of

/
(;;22#}:1) = —Ajthn, with Wﬂn = /\%Oj_f?/)n at z=0, —
Limiting cases:
o — 00: reduces to standard baroclinic basis for n = O(1),
a+ — 0: 'Dirichlet basis’ with ), =0at z=0, —H
+ 2 SQG modes (g = 0) and imaginary \,.
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Application

Modal expansion

3 QG simulations of
baroclinic instability:
(1) interior BCL,

(2) surface Eady,

(3) mixed Ocean.
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Modal expansion New bases
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New bases

Choosing «;: maximise energy content of first 2

(E+E B, vs. &

modes

] T
0.9 >
HEE
D
__‘—/‘
o7l _~ B ;
0.6
05+
04 3 N
—BC1
Eady
Ocean

o)

1

n
it
)
»
i)



Introduction Modal expansion Modal expansion New bases Conclusion
0000 oo 0000 .

Conclusion

o Effects of surface buoyancy gradients cannot be ignored in
ocean turbulence,

@ Eddies have rich, surface-intensified vertical structure that is
not well-represented by standard vertical modes,

@ New bases presented can capture most energy in such flows
with a small truncation set,

@ New bases can be very simple:

1o x cosh [Nk(z + H)/f], nocsin[(n—1/2)rz/H)].

@ New bases depend on «: coupling of horizontal and vertical
structures.
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