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The oceanic submesoscale (100m-10 km horizontal scales)
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LatMix 2011, site I (aka The Big Nothing)
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What are the dynamical mechanisms responsible
for observed submesoscale lateral dispersion?

« Hypothesis I:

Inhomogeneous internal wave mixing creates potential
vorticity anomalies that are responsible for significant
submesoscale isopycnal mixing.

« Hypothesis IT:
Mesoscale straining leads to a cascade of both tracer and PV

variance to submesoscales that is responsible for significant
submesoscale isopycnal mixing.

« Hypothesis ITT

Non-QG submesoscale instabilities feed a forward
cascade of energy, scalar and tracer variance which
enhances both isopycnal and diapycnal mixing.
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LatMix |: Low to Intermediate Strain
(June 1 - June 21, 2011)

MOAA N9 AVHRR SST(C), 04 Jun-2011 13:13:00 UTC

1 1 A + . 3 l
: - .‘2,.\5;}?\; i _-,"_:'.;.‘.-‘I‘v ’ 23
i 1
?é{v"‘:{.‘ -
%] 27
Study Site] - . 25

".—v&l NG .’Q: :

Relative locations of Exp 1 surveys
322

101

Stretched Pressure (dBar)

P @
(=] 0
T T

S
(3]

32.151

-
o
T

N
o
T

32.1r

32.051

7

Latitude (°E)
e
O
n

(98]

_

o
-

31751

31.7

25 . , ,
0 (kg/m?) 732 731 -73 729

Longitude (°N)

-72.8




Submesoscale mixing processes in stratified ocean interior
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Analytic study of wave-induced dispersion in a
rotating Boussinesq flow (Holmes-Cerfon et al., 2011)

« Holmes-Cerfon et al. (JFM, 2011)

one-particle diffusivity (Taylor, 1921) to infer
effective diffusivity in a field of random internal
waves.

* For a Garrett-Munk spectrum, effective
diffusivity D scales as,

N2f My 4
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Hypothesis I of the Lateral Mixing DRI:
Inhomogeneous internal wave mixing creates potential vorticity anomalies
that are responsible for significant submesoscale isopycnal mixing.

What we know from observations...

Instabilities lead to wave breaking and create intermittent mixed turbulent
patches in space and time that exhibit high dissipation.

What we speculate from observations of submesoscale
dispersion..

Mixed patches adjust geostrophically to form small-scale vortices which
can stir tracers efficiently along isopycnal surfaces.

What we don’ t know...

How prevalent is this mechanism in the ocean?
How efficient is it at mixing loang isopycnals?
How does it compare with other stirring mechanisms?



Direct knowledge of small-scale vortical modes is inferred
primarily from theory and numerical studies!

from theory...

* The vortical mode exists: it's the linear, balanced PV eigenmode
of the equations of motion.

It facilitates energy transfer N L
between waves through a :f_’/ N \m\ |
catalytic effect (Lelong and Riley, el \\,1 A
1991; Bartello, 1995; Waite and N U r"
Bartello, 2005, 2006) T
Ensembles of vortex modes can - N “*f*\ |
be modeled as random walks Sl 3\ \
and are efficient at stirring fluid i I I S |
laterally (Sundermeyer, 1998; ——
Sundermeyer and Lelong, 2005) Waite and\BarteIIo, 2005




Dye dispersion in fields of internal waves in low-strain,
low-shear environment characteristic of LatMix11 Site I.

® Winters 3D nonlinear pseudo-spectral Boussinesq model (Winters et
al, 2003)
* Initial condition: Broadband internal wave field (GM)
* Domain dimensions: 15 km x 15 km x 300 m
10 km x 10 km x 100 m

* Ambient conditions specified from LatMix 2011, site I

(no background shear/strain).
* Simulations run for 48-72 hours (unforced)
* Gaussian dye streak injected after initial flow adjustment (about 10
hours) into thermocline.
* Some simulations resolve wave breaking, others do not.



The Garrett-Munk spectrum representation of the internal
wave field

GM energy spectrum b*NoN (w? + f*)B(w)H (m)Ey/w?

b= 1500m, Ny = 5.2 x 1073571  B(w) = (f/w)//w? — f2
H(m) = (m/b)(N/No)j« my = (7/b)(N/No)j«

Assumption of horizontal isotropy

Spectral energy amplitude is adjusted by varying EO

(adapted from Flatté et al. 1979; Winters and D’ Asaro1997)



Solving an eigenvalue problem
(adapted from Winters and D'Asaro, 1997)

1 N2(2)—w?
&4k <>

kl
a Cg
fjkl is Fourier transform of vertical displacement ( of mode (7, k,1)

éjkl(z =0) = éjkl(z =L,)=0

All other variables are obtained through linear polarization relations
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Initial conditions (u, ¥,w, @)
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The role of breaking waves in PV production

Potential vorticity II
1= (w+ f2) - (N°2+Vb) = fN? + (N*w, + f0,b) +w - Vb

IT provides a measure of vorticity perpendicular to isopycnals.

Evolution equation for II: Waite, (2013)
DI

Y (N?Z 4 Vb) - (WV2B +V x F) + k(fZ+ &) - V(V?b)

IT is conserved following the flow in the absence of viscous and diffusive effects
and forcing.

Dissipation and diffusion provide both sources and sinks of PV.

At turbulent scales, dissipation produces PV.

When waves break, they create turbulence, dissipate energy and provide
a source of PV at small scales.



Diagnosing internal waves and vortical motions...

Linear eigenmode decomposition, Miiller et al. (Reviews of
Geophysics,1988), Bartello (JAS, 1995), Waite and Bartello,
( 2005, 2006)

Nk, ifk,
20k 20k
T\ —ifk, "\ £Nky,

N2k2 4 f2k2
where, o = ||wk|| — \/ kélj—_li; 2 internal wave frequency
h z

(0).
k

-
. vortical mode Ec ).

: Internal wave modes

N: buoyancy frequency  f: Coriolis frequency

k;, and k, are horizontal and vertical wave numbers



KE: contrast of non-breaking vs breaking wave fields

* non-breaking simulation: low vertical resolution
* breaking simulation: high vertical resolution

— breaking
nonbreaking ||
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time fhours)



Potential enstrophy production
(non-breaking vs breaking waves)

Simulations use identical wave field but with different vertical resolutions
 Coarse resolution ( wave breaking not resolved)
* Fine resolution (wave breaking resolved)
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potential enstrophy (s %)

Production of potential enstrophy as a function of time

17 Potential enstrophy, LatMix

| | | | | | |

10 20 30 40 o0 60 70

time fhours)

80



conversion of wave energy infto vortex energy

Energies normalized with total energy at time of dye injection

% of energy in wave and vortex fields
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About 12% of initial wave energy is converted to vortex motions.



Diagnosing wave breaking
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Inferring effective horizontal diffusivity from behavior
of second moment of tracer concentration C

1 do”
Kit™ 9 5t
where
I, L, 2
xCdx — xC dx
0 0
o = - ,
Cdx

0
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Impact of wave breaking on lateral dispersion
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Not much difference in lateral dispersion with breaking/
non-breaking waves. This suggests the role of vortical
mode may not be important.



Diagnosing wave breaking with a local Richardson criterion
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Evolution of 2" moment of tracer concentration for
LatMix case (0.25 GM)
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Evolution of second moment of tracer,
weak wave field: 0.125 GM
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GM spectrum parameter dependence, comparison with
Holmes-Cerfon et al

12972 ) 2
oMy {an(m T

D ~ 0.08 — —
N2 f m*) 4}

* Model effective diffusivities scale as 1/f and E, 2
« Consistent with Holmes-Cerfon et al. 2011
« Need to verify scaling with stratification.
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Behavior of a blob of tracer as a function of time in an

oscillatory shear flow
—
&

In a wave field, most efficient shear dispersion is due to lowest frequencies,
i.e. near-inertial waves.
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Estimating shear dispersion from
model vertical shear spectrum

N 00
Ne = 1N + li/f dCU/O dm(w2 + m4/<;2)—1 X (fﬂ'—l)(wQ . f2)—1/2w_15(m)

vertical shear spectrum

PR |
10

k_{(cpm}

PR |
10

10

(Young et al. 1982)

1 ne : effective lateral diffusivity
| n : model horizontal diffusivity
| k : model vertical diffusivity

w : frequency

1 m : vertical wavenumber
I S(m) : vertical shear spectrum

Kk = ve/N?
Ne = 0.02m?s1

Nmodel — 0(5)m25_1



What is causing observed lateral dispersion at LatMix site I?

« Vortical modes stirring? Unlikely since production from wave
breaking is too weak to have much impact.

« Shear dispersion? Still a possibility since near-inertial motions
are not well maintained in model (lack of forcing in present
simulations).

« Wave-induced dispersion? Estimates from present simulations
indicate that this is a strong possibility. Effective model-
computed diffusivities are in the range of diffusivities inferred
from observations.
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Summary and conclusions from observations
(courtesy M. Sundermeyer)

Diffusivity and strain estimates from dye and drifters
Experiment 1: K,~ 5 x100m? s,

Ky~05-4m?2st y~
0.1-2 x 102 st

Experiment 2: k, ~2 x 10¢ - 5 x10® m? s!
KH"‘O.5-4mZS_1, Y ~
1-3 x10° ¢!

Vertical shear dispersion by low frequency shears and internal
waves may explain some of this kg, but more work needed

Complex T & S structure, as well as dye details reveals more
complicated story - collaboration with other LatMix field and
modeling work needed to understand possible scale dependence
and underlying dynamics

Lidar dye surveys reveal even more rich structure of dye patches &
.. lots still to be done with these data ...



Conclusions and future work

* even weak nonbreaking wave fields are capable of
reproducing lateral dispersion characteristics observed
during LatMix 2011,

* vortical mode contribution does not appear to be
significant.

* particle studies to infer scale dependence of dispersion
( comparison with Okubo diagram)

* comparison with other dispersing mechanisms. Mixed
layer instabilities? Tandon et al. reproduce the same
ballpark values without waves.



Thank you for your attention...
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Impact of hyperviscosity

« 105 Impact of hyperviscosity
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hyperviscosity has a negligible impact on tracer dispersion



Diffusion of a passive tracer Diffusion in presence of
(no mean flow) vertical shear
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