
Modeling shallow water waves

David Lannes

DMA

Fields Institute 2013

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 1 / 65



1 The equations
Notations
Basic Assumptions
The free surface Euler equations
The free surface Bernoulli equations
The Zakharov/Craig-Sulem formulation
The averaged velocity

2 Asymptotic expansions
Nondimensionalization
Notations
Nondimensionalized equations
Expansion of the velocity field

3 Asymptotic models
How to choose them?
Choosing the precision
Making additional assumptions on ε
Small amplitude models
Adding O(µp) terms
Working with a different “velocity”

4 Scalar models
The 1d case
First order approximation
Second order approximation
What about large amplitudes?

5 Comments on the models
6 Water waves with vorticity

Basic assumptions
Euler’s equations
New formulation
Shallow water asymptotics

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 2 / 65



The equations Notations
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The equations Basic Assumptions

(H1) The fluid is homogeneous and inviscid

(H2) The fluid is incompressible

(H3) The flow is irrotational

(H4) The surface and the bottom can be parametrized as graphs above the
still water level

(H5) The fluid particles do not cross the bottom

(H6) The fluid particles do not cross the surface

(H7) There is no surface tension and the external pressure is constant.

(H8) The fluid is at rest at infinity

(H9) The water depth is always bounded from below by a nonnegative
constant
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The equations The free surface Euler equations

(H1)’ The fluid is homogeneous and inviscid

(H2)’ The fluid is incompressible

(H3)’ The flow is irrotational

(H4)’ The surface and the bottom can be parametrized as graphs

(H5)’ The fluid particles do not cross the bottom

(H6)’ The fluid particles do not cross the surface

(H7)’ There is no surface tension and the external pressure is constant.

(H8)’ The fluid is at rest at infinity

(H9)’ The water depth does not vanish

Definition

Equations (H1)’-(H8)’ are called free surface Euler equations.

 ONE unknown function ζ on a fixed domain Rd

 THREE unknown functions U on a moving, unknown domain Ωt
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The equations The Zakharov/Craig-Sulem formulation

Goal:

ONE unknown function ζ on a fixed domain Rd

ONE unknown function Φ on a moving, unknown domain Ωt

⇓

ONE unknown function ζ on a fixed domain Rd

ONE unknown function ψ on a fixed domain Rd

Zakharov 68:

1 Define ψ(t,X ) = Φ(t,X , ζ(t,X )) .

2 ζ and ψ fully determine Φ: indeed, the equation{
∆X ,zΦ = 0 in Ωt ,
Φ|z=ζ

= ψ, ∂nΦ|z=−H0+b
= 0.

has a unique solution Φ.
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The equations The Zakharov/Craig-Sulem formulation

Question

What are the equations on ζ and ψ???

• Equation on ζ. It is given by the kinematic equation

∂tζ −
√

1 + |∇ζ|2∂nΦ|z=ζ
= 0

Craig-Sulem 93:

Definition (Dirichlet-Neumann operator)

G [ζ, b] : ψ 7→ G [ζ, b]ψ =
√

1 + |∇ζ|2 ∂nΦ|z=ζ
.
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The equations The Zakharov/Craig-Sulem formulation

• Equation on ψ. We use (H1)” and (H7)”

∂tΦ +
1

2
|∇X ,zΦ|2 + gz = −1

ρ
(P − Patm) AND P|z=ζ

= Patm

w�
∂tΦ|z=ζ

+
1

2
|∇X ,zΦ|2|z=ζ

+ gζ = 0

We now observe that:

(∂tΦ)|z=ζ
= ∂tψ − (∂zΦ)|z=ζ

∂tζ,

(∇Φ)|z=ζ
= ∇ψ − (∂zΦ)|z=ζ

∇ζ,

(∂zΦ)|z=ζ
=

G [ζ, b]ψ +∇ζ · ∇ψ
1 + |∇ζ|2

.

 The equation on ψ can be written

∂tψ + gζ +
1

2
|∇ψ|2 − (G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.
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The equations The Zakharov/Craig-Sulem formulation

The Zakharov-Craig-Sulem equations
∂tζ − G [ζ, b]ψ = 0,

∂tψ + gζ +
1

2
|∇ψ|2 − (G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

Hamiltonian structure

Zakharov remarked that this system has a Hamiltonian structure in the
canonical variables (ζ, ψ):

∂t

(
ζ
ψ

)
=

(
0 1
−1 0

)(
∂ζH
∂ψH

)
,

with the Hamiltonian H = K + P and

K =
1

2

∫
Ω
|U|2 =

1

2

∫
Ω
|∇X ,zΦ(X , z)|2 =

1

2

∫
Rd

ψG [ζ, b]ψ

P =
1

2

∫
Rd

gζ2.
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The equations The averaged velocity


∂tζ − G [ζ, b]ψ = 0,

∂tψ + gζ +
1

2
|∇ψ|2 − (G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

The (ZCS) system contains ALL the information

One can in particular deduce models in (ζ,V ) with V the
vertically averaged velocity

V (X ) =
1

H0 + ζ − b

∫ ζ

−H0+b
V (X , z)dz

Question

How to get a model in (ζ,V ) from the (ZCS) system?
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The equations The averaged velocity

Taking the (horizontal) gradient of the equation in ψ we get
∂tζ − G [ζ, b]ψ = 0,

∂t∇ψ + g∇ζ +
1

2
∇|∇ψ|2 −∇(G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

 We need to express G [ζ, b]ψ and ∇ψ in terms of ζ and V .
• For G [ζ, b]ψ we have an exact expression: with h = H0 + ζ − b,

∇ ·
(
hV
)

= ∇ ·
∫ ζ

−H0+b
V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

) +

∫ ζ

−H0+b
∇ · V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

)−
∫ ζ

−H0+b
∂z · w(X , z)dz

= −U · N|z=ζ
+ U · N|z=−H0+b///////////////

 G [ζ, b]ψ = −∇ · (hV )

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 12 / 65



The equations The averaged velocity

Taking the (horizontal) gradient of the equation in ψ we get
∂tζ − G [ζ, b]ψ = 0,

∂t∇ψ + g∇ζ +
1

2
∇|∇ψ|2 −∇(G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

 We need to express G [ζ, b]ψ and ∇ψ in terms of ζ and V .

• For G [ζ, b]ψ we have an exact expression: with h = H0 + ζ − b,

∇ ·
(
hV
)

= ∇ ·
∫ ζ

−H0+b
V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

) +

∫ ζ

−H0+b
∇ · V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

)−
∫ ζ

−H0+b
∂z · w(X , z)dz

= −U · N|z=ζ
+ U · N|z=−H0+b///////////////

 G [ζ, b]ψ = −∇ · (hV )

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 12 / 65



The equations The averaged velocity

Taking the (horizontal) gradient of the equation in ψ we get
∂tζ − G [ζ, b]ψ = 0,

∂t∇ψ + g∇ζ +
1

2
∇|∇ψ|2 −∇(G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

 We need to express G [ζ, b]ψ and ∇ψ in terms of ζ and V .
• For G [ζ, b]ψ we have an exact expression: with h = H0 + ζ − b,

∇ ·
(
hV
)

= ∇ ·
∫ ζ

−H0+b
V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

) +

∫ ζ

−H0+b
∇ · V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

)−
∫ ζ

−H0+b
∂z · w(X , z)dz

= −U · N|z=ζ
+ U · N|z=−H0+b///////////////

 G [ζ, b]ψ = −∇ · (hV )

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 12 / 65



The equations The averaged velocity

Taking the (horizontal) gradient of the equation in ψ we get
∂tζ − G [ζ, b]ψ = 0,

∂t∇ψ + g∇ζ +
1

2
∇|∇ψ|2 −∇(G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

 We need to express G [ζ, b]ψ and ∇ψ in terms of ζ and V .
• For G [ζ, b]ψ we have an exact expression: with h = H0 + ζ − b,

∇ ·
(
hV
)

= ∇ ·
∫ ζ

−H0+b
V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

) +

∫ ζ

−H0+b
∇ · V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

)−
∫ ζ

−H0+b
∂z · w(X , z)dz

= −U · N|z=ζ
+ U · N|z=−H0+b///////////////

 G [ζ, b]ψ = −∇ · (hV )

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 12 / 65



The equations The averaged velocity

Taking the (horizontal) gradient of the equation in ψ we get
∂tζ − G [ζ, b]ψ = 0,

∂t∇ψ + g∇ζ +
1

2
∇|∇ψ|2 −∇(G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

 We need to express G [ζ, b]ψ and ∇ψ in terms of ζ and V .
• For G [ζ, b]ψ we have an exact expression: with h = H0 + ζ − b,

∇ ·
(
hV
)

= ∇ ·
∫ ζ

−H0+b
V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

) +

∫ ζ

−H0+b
∇ · V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

)−
∫ ζ

−H0+b
∂z · w(X , z)dz

= −U · N|z=ζ
+ U · N|z=−H0+b///////////////

 G [ζ, b]ψ = −∇ · (hV )

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 12 / 65



The equations The averaged velocity

Taking the (horizontal) gradient of the equation in ψ we get
∂tζ − G [ζ, b]ψ = 0,

∂t∇ψ + g∇ζ +
1

2
∇|∇ψ|2 −∇(G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

 We need to express G [ζ, b]ψ and ∇ψ in terms of ζ and V .
• For G [ζ, b]ψ we have an exact expression: with h = H0 + ζ − b,

∇ ·
(
hV
)

= ∇ ·
∫ ζ

−H0+b
V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

) +

∫ ζ

−H0+b
∇ · V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

)−
∫ ζ

−H0+b
∂z · w(X , z)dz

= −U · N|z=ζ
+ U · N|z=−H0+b///////////////

 G [ζ, b]ψ = −∇ · (hV )

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 12 / 65



The equations The averaged velocity

Taking the (horizontal) gradient of the equation in ψ we get
∂tζ − G [ζ, b]ψ = 0,

∂t∇ψ + g∇ζ +
1

2
∇|∇ψ|2 −∇(G [ζ, b]ψ +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0.

 We need to express G [ζ, b]ψ and ∇ψ in terms of ζ and V .
• For G [ζ, b]ψ we have an exact expression: with h = H0 + ζ − b,

∇ ·
(
hV
)

= ∇ ·
∫ ζ

−H0+b
V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

) +

∫ ζ

−H0+b
∇ · V (X , z)dz

= (∇ζ · V|z=ζ
−∇b · V|z=−H0+b

)−
∫ ζ

−H0+b
∂z · w(X , z)dz

= −U · N|z=ζ
+ U · N|z=−H0+b///////////////

 G [ζ, b]ψ = −∇ · (hV )

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 12 / 65



The equations The averaged velocity


∂tζ +∇ · (hV ) = 0,

∂t∇ψ + g∇ζ +
1

2
∇|∇ψ|2 −∇(−∇ · (hV ) +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
= 0,

with h = H0 + ζ − b.

For ∇ψ we do NOT have an exact expression in terms of ζ and V .

We can derive an approximate expression

This requires an asymptotic expansion of the velocity potential Φ.

Asymptotic models in (ζ,V ) are found by plugging this approximate
expression in the above equations.
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Asymptotic expansions Nondimensionalization

For the sake of simplicity, we consider here a flat bottom (b = 0).

We introduce three characteristic scales
1 The characteristic water depth H0

2 The characteristic horizontal scale L
3 The order of the free surface amplitude a
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Asymptotic expansions Nondimensionalization

For the sake of simplicity, we consider here a flat bottom (b = 0).
We introduce three characteristic scales

1 The characteristic water depth H0

2 The characteristic horizontal scale L
3 The order of the free surface amplitude a

Two independent dimensionless parameters can be formed from these
three scales. We choose:

a

H0
= ε (amplitude parameter ),

H2
0

L2
= µ (shallowness parameter ).

In general, other parameters can be introduced to handle for instance
1 Amplitude of bottom variations
2 Wavelength of bottom variations
3 Ratio between longitudinal and transverse horizontal scales

In large (or infinite) depth, ε is not a relevant parameter and one
rather uses

ε =
a

L
= ε
√
µ (steepness).
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1 Amplitude of bottom variations
2 Wavelength of bottom variations
3 Ratio between longitudinal and transverse horizontal scales

In large (or infinite) depth, ε is not a relevant parameter and one
rather uses

ε =
a

L
= ε
√
µ (steepness).
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Asymptotic expansions Nondimensionalization

Example (2004 Indian ocean tsunami)

160km ≤ L ≤ 240km, 1km < H0 < 4km, a ∼ 0.6m.

The nonlinearity and shallowness parameters are thus estimated by

1.5× 10−4 < ε < 6× 10−4 and 1.7× 10−5 < µ < 6.2× 10−4;

 A tsunami is therefore an example of wave propagating in a
shallow-water regime (even though the depth H0 is very large).

Example (Coastal waves)

Lx ∼ 100m, a ∼ 1m, H0 ∼ 10m.

One has
ε ∼ 10−1 and µ ∼ 10−2.

 It is also a shallow water regime.
 Nonlinear effects are expected to be stronger.
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Asymptotic expansions Nondimensionalization

We proceed to the simple nondimensionalizations

X ′ =
X

L
, z ′ =

z

H0
, ζ ′ =

ζ

a
,

We recall from the linear theory, the celerity is
√
gH0 (Lagrange);

therefore

t ′ =
t

t0
with t0 =

Lx√
gH0

.

How do we choose the scaling V0 for the velocities V and ∇ψ?

V0

t0
∂′t(∇ψ)′ +

ag

L
∇′ζ ′ ∼ 0,

 V0 =
agt0

L
= ε
√

gH0
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Asymptotic expansions Nondimensionalized equations

In this new set of variables and unknowns the equations become:
∂tζ +∇ · (hV ) = 0,

∂t∇ψ +∇ζ +
ε

2
∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)2

2(1 + ε2µ|∇ζ|2)
= 0,

where in dimensionless form

h = 1 + εζ and V =
1

h

∫ εζ

−1
V (x , z)dz .

Shallow water asymptotics (µ� 1)

We look for an asymptotic description with respect to µ of ∇ψ in
terms of ζ and V

This is obtained through an asymtotic description of V in the fluid.

This is obtained through an asympotic description of Φ in the fluid.
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Asymptotic expansions Expansion of the velocity field

We recall that

V =
1

h

∫ εζ

−1
V (X , z)dz with V = ∇Φ.

What is the dimensionless potential equation?

(dimensional) (dimensionless)
∆Φ + ∂2

z Φ = 0,
Φ|z=ζ

= ψ,

∂zΦ|z=−H0
= 0

 


µ∆Φ + ∂2

z Φ = 0,
Φ|z=εζ

= ψ,

∂zΦ|z=−1
= 0

We look for an approximate solution to the dimensionless potential
equation under the form

Φapp = Φ0 + µΦ1 + µ2Φ2 + . . .
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Asymptotic expansions Expansion of the velocity field

Method

We plug
Φapp = Φ0 + µΦ1 + µ2Φ2 + . . .

into {
µ∆Φ + ∂2

z Φ = 0,
Φ|z=εζ

= ψ, ∂zΦ|z=−1
= 0,

and choose the Φj to cancel the leading order terms in µ.
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Φ1 |z=εζ
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Asymptotic expansions Expansion of the velocity field

Φ(X , z) = ψ + µ
1

2
[h2 − (z + 1)2]∆ψ + O(µ2).

We deduce an expansion for the horizontal velocity in the fluid

V (X , z) = ∇Φ(X , z)

= ∇ψ + µ
1

2
∇
{

[h2 − (z + 1)2]∆ψ
}

+ O(µ2)

We deduce an expansion for the averaged velocity

V (x) =
1

h

∫ εζ

−1
V (X , z)∂z

= V 0(X ) + µV 1(X ) + O(µ2)

with
V0 = ∇ψ, V1 = −T [h]∇ψ

and

T [h]V = − 1

3h
∇(h3∇ · V ).
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Asymptotic expansions Expansion of the velocity field
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Asymptotic models How to choose them?

There exists MANY shallow water models!
 How do they differ???

By their precision p: we neglect O(µp) terms: e.g.

Nonlinear Shallow Water (St Venant) = 1st order model
Serre/Green-Naghdi = 2nd order model

By additional assumptions on the amplitude parameter ε: e.g.

Weakly nonlinear regime: ε = O(µ)

Two models of precision p can differ by O(µp) terms!
Work with a different velocity than V

How do we choose them?
 Balance simplicity and generality

The most general models are the most complicated
(mathematically, numerically)
For the tsunami in the Indian ocean, a smallness assumption can be
made on ε
For (large) waves on a beach, this is not recommanded.
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Asymptotic models Choosing the precision

• First order model: precision O(µ)

We start from the full equations
∂tζ +∇ · (hV ) = 0,

∂t∇ψ +∇ζ +
ε

2
∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)2

2(1 + ε2µ|∇ζ|2)
= 0,

We replace ∇ψ in these equations by its first order approximation in
terms of ζ and V ,

∇ψ = V + O(µ)
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ +
ε

2
∇|V |2 − εµ∇(−∇ · (hV ) +∇(εζ) · V )2

2(1 + ε2µ|∇ζ|2)
= O(µ),

We drop all O(µ) terms

Saint-Venant

{
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ +
ε

2
∇|V |2 = 0.

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 24 / 65



Asymptotic models Choosing the precision

• First order model: precision O(µ)

We start from the full equations
∂tζ +∇ · (hV ) = 0,

∂t∇ψ +∇ζ +
ε

2
∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)2

2(1 + ε2µ|∇ζ|2)
= 0,

We replace ∇ψ in these equations by its first order approximation in
terms of ζ and V ,

∇ψ = V + O(µ)
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ +
ε

2
∇|V |2 − εµ∇(−∇ · (hV ) +∇(εζ) · V )2

2(1 + ε2µ|∇ζ|2)
= O(µ),

We drop all O(µ) terms

Saint-Venant

{
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ +
ε

2
∇|V |2 = 0.

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 24 / 65



Asymptotic models Choosing the precision

• First order model: precision O(µ)

We start from the full equations
∂tζ +∇ · (hV ) = 0,

∂t∇ψ +∇ζ +
ε

2
∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)2

2(1 + ε2µ|∇ζ|2)
= 0,

We replace ∇ψ in these equations by its first order approximation in
terms of ζ and V ,

∇ψ = V + O(µ)
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ +
ε

2
∇|V |2 − εµ∇(−∇ · (hV ) +∇(εζ) · V )2

2(1 + ε2µ|∇ζ|2)
= O(µ),

We drop all O(µ) terms

Saint-Venant

{
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ +
ε

2
∇|V |2 = 0.

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 24 / 65



Asymptotic models Choosing the precision

• First order model: precision O(µ)

We start from the full equations
∂tζ +∇ · (hV ) = 0,

∂t∇ψ +∇ζ +
ε

2
∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)2

2(1 + ε2µ|∇ζ|2)
= 0,

We replace ∇ψ in these equations by its first order approximation in
terms of ζ and V ,

∇ψ = V + O(µ)
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ +
ε

2
∇|V |2 − εµ∇(−∇ · (hV ) +∇(εζ) · V )2

2(1 + ε2µ|∇ζ|2)
= O(µ),

We drop all O(µ) terms

Saint-Venant

{
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ +
ε

2
∇|V |2 = 0.

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 24 / 65



Asymptotic models Choosing the precision

• Second order model: precision O(µ2)

We start from the full equations
∂tζ +∇ · (hV ) = 0,

∂t∇ψ +∇ζ +
ε

2
∇|∇ψ|2 − εµ∇(−∇ · (hV ) +∇(εζ) · ∇ψ)2

2(1 + ε2µ|∇ζ|2)
= 0,

We find the second order approximation of ∇ψ in terms of ζ and V ,

V = (1− µT [h])∇ψ + O(µ2)

 ∇ψ = (1 + µT [h])V + O(µ2).

We replace ∇ψ in the full equations by this approximation
∂tζ +∇ · (hV ) = 0,

∂t(1 + µT [h])V +∇ζ +
ε

2
∇|(1 + µT [h])V |2

−εµ∇(−∇ · (hV ) +∇(εζ) · V )2

2(1 + ε2µ|∇ζ|2)
= O(µ2),
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Asymptotic models Choosing the precision


∂tζ +∇ · (hV ) = 0,

∂t(1 + µT [h])V +∇ζ +
ε

2
∇|(1 + µT [h])V |2

−εµ∇(−∇ · (hV ) +∇(εζ) · V )2

2(1 + ε2µ|∇ζ|2)
= O(µ2),

We drop all O(µ2) terms (and do some computations!)
Serre/Green-Naghdi equations:{

∂tζ +∇ · (hV ) = 0,

(1 + µT [h])
(
∂tV +∇ζ + εV · ∇V

)
+ εµQ[h](V ) = 0

with

T [h]V = − 1
3h∇ · (h

3∇ · V ),
Q[h](V ) = 2

3h∇
[
h3(∂1V · ∂2V

⊥ + (∇ · V )2)2
]
.
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Asymptotic models Choosing the precision

{
∂tζ +∇ · (hV ) = 0,

(1 + µT [h])
(
∂tV +∇ζ + εV · ∇V

)
+ εµQ[h](V ) = 0

No physical assumptions has been made:

(almost) columnar motion,
(almost) hydrostatic pressure

are a consequence of the shallow water assumption µ� 1.

No assumption has been made on the size of ε: ε = O(µ)

Dropping the O(µ) terms from the Green-Naghdi system, one gets{
∂tζ +∇ · (hV ) = 0

∂tV +∇ζ + εV · ∇V = 0

which is of course the Saint-Venant system.
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Asymptotic models Making additional assumptions on ε

Simpler models can be achieved by making smallness assumptions on the
nonlinearity parameter ε.
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Asymptotic models Small amplitude models

Small amplitude regime

ε = O(µ) .

• First order model (precision O(µ)). The Saint-Venant system{
∂tζ +∇ · (hV ) = 0

∂tV +∇ζ + εV · ∇V = 0
(h = 1 + εζ)

becomes after dropping the terms that are O(µ) in this regime

(Linear wave equation)

{
∂tζ +∇ · V = 0

∂tV +∇ζ = 0

The speed in 1 in dimensionless variables, and
√
gH0 in variables with

dimensions.

Very rough model OK only if ε� 1, µ� 1 (e.g. tsunami in the
ocean)
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Asymptotic models Small amplitude models

Small amplitude regime

ε = O(µ) .

• Second order model (precision O(µ2)). The Serre/Green-Naghdi
equations{

∂tζ +∇ · (hV ) = 0,

(1 + µT [h])
(
∂tV +∇ζ + εV · ∇V

)
+ εµQ[h](V ) = 0

with
h = 1 + εζ = 1 + O(µ),

become after dropping the terms that are O(µ2)

(Boussinesq)

{
∂tζ +∇ ·

(
(1 + εζ)V

)
= 0

(1− µ

3
∆)∂tV +∇ζ + εV · ∇V = 0
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Asymptotic models Adding O(µp) terms

Two models of precision O(µp) are asymptotically equivalent
if they differ by O(µp) terms only

For simplicity, let us consider the Boussinesq system in the small
amplitude regime ε = O(µ),{

∂tζ +∇ ·
(
(1 + εζ)V

)
= 0

(1− µ

3
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Asymptotic models Working with a different “velocity”

{
∂tζ +∇ ·

(
(1 + εζ)V

)
= 0

(1− αµ
3

∆)∂tV +∇ζ + εV · ∇V +
µ

3
(1− α)∆∇ζ = 0

One can work with another velocity unknown than the averaged
velocity V

Velocity at the surface

V = ∇ψ + O(µ2) = (1 + µT )V + O(µ2)

Velocity at a given depth (Nwogu 93)
More generally

Vθ,δ = (1 + µθT )−1(1 + µδT )V

We replace in the equations{
(1− µb∆)∂tζ +∇ ·

(
(1 + εζ)Vθ,δ

)
+ µa∆∇ · Vθ,δ = 0

(1− µd∆)∂tVθ,δ +∇ζ + εVθ,δ · ∇Vθ,δ + µc∆∇ζ = 0
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All these models are asymptotically equivalent

The same manipulations can be performed

For the Green-Naghdi equations (large amplitude)
For non flat bottoms

The parameters can be chosen to improve

The mathematical or numerical properties of the model
The range of validity (e.g. deep water)
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Asymptotic models Working with a different “velocity”
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Scalar models The 1d case

In the 1d case, every perturbation splits up into two
counterpropagating waves.

This is only true in the shallow water regime (µ� 1)

Question

Is it possible to find a scalar model describing the right-going wave?
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Scalar models First order approximation

We have seen that the first order model, in shallow water, and for
small amplitude waves is, in dimension 1

(Linear wave equation)

{
∂tζ + ∂xv = 0
∂tv + ∂xζ = 0

Adding and substracting this two lines, we get
(∂t + ∂x)

ζ + v

2
= 0

(∂t − ∂x)
ζ − v

2
= 0,

⇒


ζ + v

2
(t, x) =

ζ0 + v0

2
(x − t)

ζ − v

2
(t, x) =

ζ0 − v0

2
(x + t)

If initially ζ0 = v0 then ζ = v for all times

The solution to the linear wave equation can be written

(∂t + ∂x)ζ = 0, v = ζ.
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Scalar models First order approximation

Right-going solutions to the linear wave equation:{
∂tζ + ∂xv = 0
∂tv + ∂xζ = 0

⇒
{

(∂t + ∂x)ζ = 0,
v = ζ.

Question

What about the next order?
For instance, in the small amplitude regime, what are the “right going
waves”?

 We look for right-going solutions to the Boussinesq system:{
∂tζ + ∂x

(
(1 + εζ)v

)
= 0

(1− µ

3
∂2
x )∂tv + ∂xζ + εv∂xv = 0

⇒
{

(∂t + ∂x)ζ =???,
v = ζ+???.
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Scalar models Second order approximation

(Boussinesq)

{
∂tζ + ∂x

(
(1 + εζ)v

)
= 0

(1− µ

3
∂2
x )∂tv + ∂xζ + εv∂xv = 0

The idea is to

Modify the transport equation satisfied by ζ for a RGW

(KdV) ∂tζ + ∂xζ + εβζ∂xζ + µγ∂3
x ζ = 0,

Add a correction to the reconstruction formula for v ,

(corr) v = ζ + εw ,

The coefficients β and γ, and the corrector w are chosen such that

ζ solution of (KdV)
+ v given by (corr)

⇒ (ζ, v) solves (Boussinesq) at order O(µ2) terms
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Scalar models Second order approximation

(Boussinesq)

{
∂tζ + ∂xv + ε∂x(ζv) = 0

(1− µ

3
∂2
x )∂tv + ∂xζ + εv∂xv = 0

Let us substitute v = ζ + εw in the first equation,

∂tζ + ∂x
(
ζ + εw

)
+ 2εζ∂xζ = O(ε2)

If ζ solves
(KdV) ∂tζ + ∂xζ + εβζ∂xζ + µγ∂3

x ζ = 0,

then
ε∂xw = ε(βζ∂xζ − 2ζ∂xζ) + µγ∂3

x ζ

and therefore

εw = ε
1

2
(β − 2)ζ2 + µγ∂2

x ζ
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If ζ solves
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x ζ = 0,

then
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Scalar models Second order approximation

The right-going solutions of the Boussinesq equation

(Boussinesq)

{
∂tζ + ∂xv + ε∂x(ζv) = 0

(1− µ

3
∂2
x )∂tv + ∂xζ + εv∂xv = 0

are given at order O(µ2) by (ζ, v) with

∂tζ + ∂xζ +
3

2
εζ∂xζ +

µ

6
∂3
x ζ = 0, v = ζ − ε

4
ζ2 +

µ

6
∂2
x ζ

An equivalent model is the (BBM) equation

(BBM) (1− µ

6
∂2
x )∂tζ + ∂xζ +

3

2
εζ∂xζ = 0.

We of course recover the transport equation by neglecting O(µ)
terms.
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Scalar models What about large amplitudes?

We have found a scalar model for the motion of right-going waves of
small amplitude ε = O(µ)

What happens for larger amplitude waves?

For large amplitude waves ε = O(1), there does not seem to be any
scalar model...
For medium amplitude waves ε = O(

√
µ), one can generalize the

previous approach.
 The equation is more complicated since O(εµ), O(ε2) and O(ε3)
terms must be kepts to work at the precision O(µ2),

(CH) ∂tζ + ∂xζ +
3

2
εζ∂xζ −

3

8
ε2ζ2∂xζ +

3

16
ε3ζ3∂xζ

+
µ

12
(∂3

x ζ − ∂2
x∂tζ) = − 7

24
εµ(ζ∂3

x ζ + ∂xζ∂
2
x ζ)
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Comments on the models

First order models. The Saint-Venant system

(Saint-Venant)

{
∂tζ +∇ · (hV ) = 0,

∂tV +∇ζ +
ε

2
∇|V |2 = 0.

is a quasilinear hyperbolic systems that leads to shocks corresponding
to wave breaking.

It is therefore adapted for a (rough) description of wave breaking, but
misses all the dispersive effects, important in the shoaling zone for
instance.

Second-order models, small amplitude models ε = O(µ). The
Boussinesq system

(Boussinesq)

{
∂tζ +∇ ·

(
(1 + εζ)V

)
= 0

(1− µ

3
∆)∂tV +∇ζ + εV · ∇V = 0

(or the KdV equation) are not nonlinear enough to handle wave breaking.
 They are adapted when nonlinear and dispersive effects are of same
order (for solitary waves for instance).
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Comments on the models

Second-order models, large amplitude models ε = O(1). The
Serre/Green-Naghdi equations{

∂tζ +∇ · (hV ) = 0,

(1 + µT [h])
(
∂tV +∇ζ + εV · ∇V

)
+ εµQ[h](V ) = 0

are

nonlinear enough to handle wave breaking
contain the dispersive effects necessary to a good description of
shoaling and solitary waves

⇒ This is a commonly used model
(unfortunately, it is not very user friendly!)

The scalar (CH) equation for right going waves of medium amplitude

(CH) ∂tζ + ∂xζ +
3

2
εζ∂xζ −

3

8
ε2ζ2∂xζ +

3

16
ε3ζ3∂xζ

+
µ

12
(∂3

x ζ − ∂2
x∂tζ) = − 7

24
εµ(ζ∂3

x ζ + ∂xζ∂
2
x ζ)

is nonlinear enough to contain “wave breaking” singularities
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The scalar (CH) equation for right going waves of medium amplitude

(CH) ∂tζ + ∂xζ +
3

2
εζ∂xζ −

3

8
ε2ζ2∂xζ +

3

16
ε3ζ3∂xζ

+
µ

12
(∂3

x ζ − ∂2
x∂tζ) = − 7

24
εµ(ζ∂3

x ζ + ∂xζ∂
2
x ζ)

is nonlinear enough to contain “wave breaking” singularities
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Water waves with vorticity Basic assumptions

(H1) The fluid is homogeneous and inviscid

(H2) The fluid is incompressible

(H3) /////The/////flow///is//////////////irrotational

(H4) The surface and the bottom can be parametrized as graphs above the
still water level

(H5) The fluid particles do not cross the bottom

(H6) The fluid particles do not cross the surface

(H7) There is no surface tension and the external pressure is constant.

(H8) The fluid is at rest at infinity

(H9) The water depth is always bounded from below by a nonnegative
constant
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Water waves with vorticity Euler’s equations

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez ,

∇X ,z ·U = 0,

P|z=ζ
= Patm

Irrotational case

We get from curl U = 0 that U = ∇X ,zΦ

We replace Euler’s equation on U by Bernoulli’s equation on Φ

∂tΦ +
1

2
|∇X ,zΦ|2 + gz = −1

ρ
(P − Patm)

We eliminate the pressure by taking the trace on the interface

We reduce the problem to an equation on ζ and
ψ(t,X ) = Φ(t,X , ζ(t, x)).
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Water waves with vorticity Euler’s equations

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez ,

∇X ,z ·U = 0,

P|z=ζ
= Patm

Rotational case

One has curl U = ω 6= 0 and

∂tω + U · ∇X ,zω = ω · ∇X ,zU.

One cannot work with the Benouilli equation
 How can we use the boundary condition on the pressure P?
One can remark that

(∇X ,zP)|z=ζ
=

(
∇(P|z=ζ

)

0

)
+ N∂zP|z=ζ

= 0 + N∂zP|z=ζ
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Water waves with vorticity New formulation

One has

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

and

(∇X ,zP)|z=ζ
= N∂zP|z=ζ

, with N =

(
−∇ζ

1

)
.

 One can eliminate the pressure by

1 Taking the trace of Euler’s equation at the surface
2 Take the vectorial product of the resulting equation with N.

 This leads to an equation on the tangential part of the velocity at the
surface

Notation

With U = (V ,w) = U|z=ζ
, we write

U‖ = V + w∇ζ so that U × N =

(
−U⊥‖

−U⊥‖ · ∇ζ

)

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 51 / 65



Water waves with vorticity New formulation

One has

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

and

(∇X ,zP)|z=ζ
= N∂zP|z=ζ

, with N =

(
−∇ζ

1

)
.

 One can eliminate the pressure by

1 Taking the trace of Euler’s equation at the surface

2 Take the vectorial product of the resulting equation with N.

 This leads to an equation on the tangential part of the velocity at the
surface

Notation

With U = (V ,w) = U|z=ζ
, we write

U‖ = V + w∇ζ so that U × N =

(
−U⊥‖

−U⊥‖ · ∇ζ

)

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 51 / 65



Water waves with vorticity New formulation

One has

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

and

(∇X ,zP)|z=ζ
= N∂zP|z=ζ

, with N =

(
−∇ζ

1

)
.

 One can eliminate the pressure by

1 Taking the trace of Euler’s equation at the surface
2 Take the vectorial product of the resulting equation with N.

 This leads to an equation on the tangential part of the velocity at the
surface

Notation

With U = (V ,w) = U|z=ζ
, we write

U‖ = V + w∇ζ so that U × N =

(
−U⊥‖

−U⊥‖ · ∇ζ

)

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 51 / 65



Water waves with vorticity New formulation

One has

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

and

(∇X ,zP)|z=ζ
= N∂zP|z=ζ

, with N =

(
−∇ζ

1

)
.

 One can eliminate the pressure by

1 Taking the trace of Euler’s equation at the surface
2 Take the vectorial product of the resulting equation with N.

 This leads to an equation on the tangential part of the velocity at the
surface

Notation

With U = (V ,w) = U|z=ζ
, we write

U‖ = V + w∇ζ so that U × N =

(
−U⊥‖

−U⊥‖ · ∇ζ

)

David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 51 / 65



Water waves with vorticity New formulation

One has

∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

and

(∇X ,zP)|z=ζ
= N∂zP|z=ζ

, with N =

(
−∇ζ

1

)
.

 One can eliminate the pressure by

1 Taking the trace of Euler’s equation at the surface
2 Take the vectorial product of the resulting equation with N.

 This leads to an equation on the tangential part of the velocity at the
surface

Notation

With U = (V ,w) = U|z=ζ
, we write

U‖ = V + w∇ζ so that U × N =

(
−U⊥‖

−U⊥‖ · ∇ζ

)
David Lannes (DMA) Modeling shallow water waves Fields Institute 2013 51 / 65



Water waves with vorticity New formulation{
∂tU + U · ∇X ,zU = −1

ρ
∇X ,zP − gez

}
|z=ζ

× N

ww� ( with some computations)

∂tU‖ + g∇ζ +
1

2
∇|U‖|2 −

1

2
∇
(
(1 + |∇ζ|2)w2

)
+ ω · NV⊥ = 0.

What does it give in the irrotational case?

We recall that U‖ = V + w∇ζ
In the irrotational case, V = (∇Φ)|z=ζ

and w = (∂zΦ)|z=ζ
, and since

ψ = Φ|z=ζ
,

U‖ = ∇ψ.

How do we generalize to the rotational case?

We decompose U‖ into

U‖ = ∇ψ +∇⊥ψ̃
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Water waves with vorticity New formulation

We have found

∂tU‖ + g∇ζ +
1

2
∇|U‖|2 −

1

2
∇
(
(1 + |∇ζ|2)w2

)
+ ω · NV⊥ = 0.

and decomposed
U‖ = ∇ψ +∇⊥ψ̃

The question is now to find equations on ψ and ψ̃.

This is done by projecting the equation onto its “gradient” and
“orthogonal gradient” components

This is done by applying div
∆ and div ⊥

∆ to the equation

The “orthogonal gradient” component yields

∂t(ω · N −∇⊥ · U‖) = 0 ,

which is trivially true and does not bring any information
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∇
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)
+ ω · NV⊥ = 0.

The “orthogonal gradient “component of the equation does not bring
any information

The “gradient” component of the equation is obtained by applying
div

∆ . After remarking that

div

∆
U‖ =

div

∆
(∇ψ +∇⊥ψ̃)

= ψ,

we get

∂tψ + gζ +
1

2
|U‖|2 −

1

2

(
(1 + |∇ζ|2)w2

)
+
∇
∆
·
(
ω · NV⊥

)
= 0
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|∇ψ|2 − (U · N +∇ζ · ∇ψ)2

2(1 + |∇ζ|2)
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ω = 0.

Moreover, U · N = G [ζ]ψ
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Water waves with vorticity New formulation

(ZCS)gen


∂tζ − U · N = 0,

∂tψ + gζ +
1

2
|U‖|2 −

(U · N +∇ζ · U‖)2

2(1 + |∇ζ|2)
=
∇⊥

∆
· (ω · NV )

∂tω + U · ∇X ,zω = ω · ∇X ,zU.

We want to prove that this is a closed system of equations in (ζ, ψ, ω):

It is enough to prove that U is fully determined by (ζ, ψ, ω)
We recall that by definition of ψ and ψ̃,

U‖ = ∇ψ +∇⊥ψ̃,

and we have already used the fact that ω · N = ∇⊥ · U‖ ; therefore

U‖ = ∇ψ +
∇⊥

∆
ω · N.

We are therefore led to solve
curl U = ω in Ω
div U = 0 in Ω
U‖ = ∇ψ +∇⊥∆−1(ω · N) at the surface
U|z=−H0

· Nb = 0 at the bottom.
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Water waves with vorticity New formulation

(ZCS)gen


∂tζ − U · N = 0,

∂tψ + gζ +
1

2
|U‖|2 −

(U · N +∇ζ · U‖)2

2(1 + |∇ζ|2)
=
∇⊥

∆
· (ω · NV )

∂tω + U · ∇X ,zω = ω · ∇X ,zU.

It is possible to solve the div-curl problem and therefore we wave

Theorem (A. Castro, D. L. ’13)

1. The (ZCS)gen equations are in closed form.
2. They are well posed.
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Water waves with vorticity Shallow water asymptotics

In order to study the shallow water asymptotics in presence of vorticity, we
need to work with a dimensionless version of the (ZCS)gen equations



∂tζ +∇ · (hV ) = 0,

∂t∇ψ +∇ζ +
ε

2
∇|Uµ

‖ |
2 − εµ∇

(−∇ · (hV ) +∇(εζ) · Uµ
‖ )2

2(1 + ε2µ|∇ζ|2)

= ε
√
µ∇∇

⊥

∆ · (ωµ · NµV ),

∂tωµ + ε(v · ∇+
1

µ
w∂z)ωµ = ε(ωh · ∇+

1
√
µ
ωv∂z)U

with

ωµ =

(
1√
µ(∂zV⊥ −∇⊥w)

−∇ · V⊥

)
=

(
ωh

ωv

)
and Uµ

‖ = ∇ψ +
∇⊥

∆
ωµ · Nµ

and Nµ = (−ε√µ∇ζ, 1).

Question

How do we relate ζ, ∇ψ, V and ωµ ???
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Water waves with vorticity Shallow water asymptotics

Question

How do we relate ζ, ∇ψ, V and ωµ ???

Note that V is now defined as

V =
1

h

∫ εζ

−1
V(X , z)dz

 we need to understand the structure of the velocity field inside the fluid

One can decompose Uµ = (
√
µV,w) into an “irrotational” and an

“rotational” component

Uµ = Uµ
irrot + Uµ

rot

= ∇µΦ +∇µ × A,

and ∇µ =

( √
µ∇
∂z

)
.
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Water waves with vorticity Shallow water asymptotics

Uµ = ∇µΦ +∇µ × A

The irrotational part is found by solving{
(∂2

z + µ∆)Φ = 0
Φ|z=εζ

= ψ, ∂zΦ|z=−1
= 0

 This is exactly the problem seen in the irrotational case and we
can obtain an expansion at any order of Uµ

irrot .

The rotational part is found by solving

∇µ × (∇µ × A) = µωµ
∇µ · A = 0

Nb × A|z=−1
= 0

N · A|z=εζ
= 0(

(∇µ × A)|z=εζ

)
‖

= ∇⊥∆−1ωµ · Nµ,

Nb · ∇µ × A|z=−1
= 0.
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Water waves with vorticity Shallow water asymptotics



∇µ × (∇µ × A) = µωµ
∇µ · A = 0

Nb × A|z=−1
= 0

N · A|z=εζ
= 0(

(∇µ × A)|z=εζ

)
‖

= ∇⊥∆−1ωµ · Nµ,

Nb · ∇µ × A|z=−1
= 0.

Note that{
∇µ × (∇µ × A) = µωµ

∇µ · A = 0
⇒ µ∆A + ∂2

zA = µωµ

 one can implement the same strategy as in the irrotational case by
looking for a solution of the form

Aapp = 0 + µ1/2A1/2 + µA1 + . . .

 The rotational part of the velocity is then approximated by

Uµ
rot ∼ ∇µ × Aapp
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Water waves with vorticity Shallow water asymptotics
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 one can implement the same strategy as in the irrotational case by
looking for a solution of the form

Aapp = 0 + µ1/2A1/2 + µA1 + . . .

 The rotational part of the velocity is then approximated by

Uµ
rot ∼ ∇µ × Aapp
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Water waves with vorticity Shallow water asymptotics

We have therefore an asymptotic expansion of the velocity field in the
fluid domain,

V (X , z) = V (X ) +
√
µ

∫ εζ

z
ω⊥h (X , z)dz + O(µ),

where V is the velocity at the surface.

We deduce that

V (X ) =
1

h

∫ εζ

−1
V (X , z)dz

= V (X ) +
√
µ

1

h

∫ εζ

−1

∫ εζ

z
ω⊥h + O(µ)

We can either derive a system in (ζ,V ) or (ζ,V ). The latter is
simpler.

We only need to know ωh at order O(
√
µ).
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Water waves with vorticity Shallow water asymptotics

V (X ) = V (X ) +
√
µ

1

h

∫ εζ

−1

∫ εζ

z
ω⊥h + O(µ)

 We now derive an equation at order O(
√
µ) for ωh. Recall that

∂tωµ + ε(V · ∇+
1

µ
w∂z)ωµ = ε(ωh · ∇+

1
√
µ
ωv∂z)U.

Since U is divergence free{
V(X , z) = V + O(

√
µ)

w = −(1 + z)∇ · V + O(
√
µ)

Therefore{
∂tωh + ε(V · ∇+ (1 + z)∇ · V ∂z)ωh = εωh · ∇V − ωvω

⊥
h

∂tωv + εV · ∇ωv = 0
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Water waves with vorticity Shallow water asymptotics

Finally, the shallow water equations with vorticity are
∂tζ +∇ · (hV ) =

√
µ∇ · (

∫ εζ

−1

∫ εζ

z
ω⊥h )

∂tV +∇ζ + εV · ∇V = 0

∂tωh + ε(V · ∇+ (1 + z)∇ · V ∂z)ωh = εωh · ∇V − ωvω
⊥
h

∂tωv + εV · ∇ωv = 0

They coincide with the St-Venant equations in absence of vorticity
They always coincide with the Saint-Venant equation if we lower the
precision from O(µ) to O(

√
µ).

If ωh is initially of size O(
√
µ) it remains of size O(

√
µ), and the

equations simplify into the standard Saint-Venant equations.
If ωv is initially of size O(

√
µ) it remains of size O(

√
µ) and the

coupling between ωh and ωv disappears.
 In particular, at this order, there is no creation of vertical vorticity
from an initial state with purely horizontal vorticity.
No physical assumption has been made. The only assumption is
µ� 1.
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Water waves with vorticity Shallow water asymptotics

Conclusion

In general, the standard St-Venant model is not correct at order O(µ) in
presence of vorticity.
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