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Dimension and C*-algebraic regularity

DEFINITION
Let X be locally compact and metrizable. We say X has dimension at
most n, dim X < n, if the following holds:

W. Winter (WWU Miinster) Dynamics dimension and classification 10.9.2012 3/20



Dimension and C*-algebraic regularity

DEFINITION

Let X be locally compact and metrizable. We say X has dimension at
most n, dim X < n, if the following holds:

For any open cover V of X, there is a finite open cover

(Ux)ren

W. Winter (WWU Miinster) Dynamics dimension and classification 10.9.2012 3/20



Dimension and C*-algebraic regularity

DEFINITION

Let X be locally compact and metrizable. We say X has dimension at
most n, dim X < n, if the following holds:

For any open cover V of X, there is a finite open cover

(Ux)ren

such that
> (Ux)xea refines V

W. Winter (WWU Miinster) Dynamics dimension and classification 10.9.2012 3/20



Dimension and C*-algebraic regularity

DEFINITION

Let X be locally compact and metrizable. We say X has dimension at
most n, dim X < n, if the following holds:

For any open cover V of X, there is a finite open cover

(Ux)ren

such that
> (Ux)xea refines V
» A=AOU...UAM andforeachi € {0,...,n}, the (Uy), o are
pairwise disjoint.
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Dimension and C*-algebraic regularity

DEFINITION (W—Zacharias)
Let A be a C*-algebra, n € N. We say A has nuclear dimension at most
n, dimyc A < n, if the following holds:
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DEFINITION (W—Zacharias)
Let A be a C*-algebra, n € N. We say A has nuclear dimension at most

n, dimyc A < n, if the following holds:

For any F C A finite and any ¢ > 0 there is an approximation
AL F A

with F finite dimensional, ¥ c.p.c., ¢ c.p. and

o) =Fidy,
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Dimension and C*-algebraic regularity

DEFINITION (W—Zacharias)
Let A be a C*-algebra, n € N. We say A has nuclear dimension at most
n, dimyc A < n, if the following holds:

For any F C A finite and any ¢ > 0 there is an approximation
AL F A
with F finite dimensional, ¥ c.p.c., ¢ c.p. and
pov =5, idy,
and such that F can be written as
F=F9¢q. gF®"
with c.p.c. order zero maps
(@)

o\ 1= @lp@-
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Dimension and C*-algebraic regularity

DEFINITION (Kirchberg)
Let A be unital. A has covering number at most », if the following holds:
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Dimension and C*-algebraic regularity

DEFINITION (Kirchberg)
Let A be unital. A has covering number at most », if the following holds:

For any k € N there are c.p.c. order zero maps
(b(l) : My © My —A i€ {07 ,I’l},

such that .
Z¢(i)(1k ® Liy1) > 1a.
i=0
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Dimension and C*-algebraic regularity

DEFINITION/PROPQOSITION (using Toms—W, Rgrdam-W)

A C*-algebra A is Z-stable if and only if for every k € N there are c.p.c.

order zero maps
O M — A NA

and
U:M, — Ao NA

10.9.2012
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Dimension and C*-algebraic regularity

DEFINITION/PROPQOSITION (using Toms—W, Rgrdam-W)
A C*-algebra A is Z-stable if and only if for every k € N there are c.p.c.

order zero maps
O M — A NA

and
UM, — A NA
such that
\I/(en) = 1 — (I)(le)
and

@’(611)\1/(622) = \Il(ezz)q)(ell) = \If(ezz).
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Dimension and C*-algebraic regularity

DEFINITION

A unital simple C*-algebra A has tracial m-comparison, if whenever

0+#a,be My(A), satisfy
d-(a) < d;(D)

forall 7 € T(A), then
a 3 pOm Tl
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Dimension and C*-algebraic regularity

THEOREM (by many hands)
Let

€ = {C(X) xa Z | X compact, metrizable, infinite,
« induced by a uniquely ergodic, minimal homeomorphism}.
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Dimension and C*-algebraic regularity

THEOREM (by many hands)
Let

€ = {C(X) xa Z | X compact, metrizable, infinite,

« induced by a uniquely ergodic, minimal homeomorphism}.

Forany A € &, dimp,c A < oo < A is Z-stable <= A has tracial
m-comparison for some m € N.

Moreover, the regularity properties ensure classification by ordered
K-theory in this case. (Countable structures are sufficient for
classification since T(A) is a singleton for each A.)
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Dynamic versions of dimension and regularity
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Dynamic versions of dimension and regularity

DEFINITION
Let X be compact, metrizable, infinite, and « : Z ~ X an action.
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DEFINITION

Let X be compact, metrizable, infinite, and « : Z ~ X an action. We
say (X, Z,«) has Rokhlin dimension (with single towers) at most n,
dimpek (X, Z, a) < n, if the following holds:

For any L € N, there is a system

(Ul(l)‘lE{Ovvn}7l€{1’7L})

of open subsets such that
> i (U) = UY forie {0,...,n}, 1€ {1,...,L -1}
» for each fixed i € {0,...,n} the sets U,(i) are pairwise disjoint

> (U,(i) |i€{0,...,n}, 1€ {1,...,L}) is an open cover of X.
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of open subsets such that
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Dynamic versions of dimension and regularity

DEFINITION Let X be compact, metrizable, infinite, and o : Z ~ X an
action. We say (X, Z, «) has dynamic dimension at most n,

dim(X,Z, «) < n, if the following holds:

For any open cover U/ of X and any L € N, there is a system

U liefo,...,n}, ke {l,... . KD}, 1€ {1,...,L})
of open subsets such that
> O‘I(UIE?) = U/Ef3+l for
i€{0,....n}, ke{l,.... KO} 1e{1,...,L—1}
» for each fixed i € {0,...,n} the sets U,E’g are pairwise disjoint
> (U,Ef? 1ie€{0,...,n}, ke {l,....,KO} 1e{1,...,L})is an open

cover of X refining U.

REMARK We think of n + 1 as the number of colors, of K() as the
number of towers of color i, and of L as the length of the towers.
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Dynamic versions of dimension and regularity

DEFINITION
Let (X,Z, «) be a compact dynamical system, m € Nand U,V C X
open subsets.
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DEFINITION
Let (X,Z, «) be a compact dynamical system, m € Nand U,V C X
open subsets.
We say U is m-dominated by V, U =, V, if the following holds:
For any compact subset Y C U, there are a system of open subsets of
Y

W liefo,....m} ke {l,....k0})

and a system of open subsets of V

VO iedo,...,m} ke {1,... . KD}
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Dynamic versions of dimension and regularity

DEFINITION
Let (X,Z, «) be a compact dynamical system, m € Nand U,V C X
open subsets.
We say U is m-dominated by V, U =, V, if the following holds:
For any compact subset Y C U, there are a system of open subsets of
Y

W liefo,....m} ke {l,....k0})

and a system of open subsets of V
VO iedo,...,m} ke {1,... . KD}

such that
> for each i, k there is ri” with o (o, (UY) ¢ v
"k

» for each fixed i, the sets V,Ei) are pairwise disjoint
> the U,fi) cover all of Y.
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Dynamic versions of dimension and regularity

DEFINITION

We say (X, Z, a) (o minimal) has dynamic m-comparison, if, whenever
U,V C X are open subsets with 1.(U) < u(V) for any regular invariant
Borel probability measure . on X, then U =, V.
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DEFINITION
Let (X,Z, o) be a compact dynamical system.
We say (X, Z, «) is dynamically Z-stable, if the following holds:
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Dynamic versions of dimension and regularity

DEFINITION

Let (X,Z, o) be a compact dynamical system.

We say (X, Z, «) is dynamically Z-stable, if the following holds:
For any K € N, there are systems

(Vik lj,ke{l,....,K})and (U | ke {1,...,K})

of open subsets of X
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Dynamic versions of dimension and regularity

THEOREM
Let X be compact, metrizable, infinite, and « : Z ~ X minimal.
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Dynamic versions of dimension and regularity

THEOREM
Let X be compact, metrizable, infinite, and « : Z ~ X minimal.
If (X,Z, ) is dynamically Z-stable, then C(X) x,, Z is Z-stable.
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Dynamic versions of dimension and regularity

THEOREM
Let (X, Z, o) be compact, metrizable, and minimal.
If dim(X,Z, o) < m, then (X, Z, «) has m-comparison.

For the proof, one has to construct invariant measures from a system
of open coverings of the form

U |i€{0,....n}, ke {l,... KD} 1€ {1,...,L})

(as in the definition of dynamic dimension), which become finer and
finer, and for which L becomes larger and larger.
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Dynamic versions of dimension and regularity

THEOREM
Let (X,Z, «) be compact, metrizable, and minimal.
If dim(X,Z, o) < m, then (X, Z, «) has m-comparison.

For the proof, one has to construct invariant measures from a system
of open coverings of the form

U |i€{0,....n}, ke {l,... KD} 1€ {1,...,L})

(as in the definition of dynamic dimension), which become finer and
finer, and for which L becomes larger and larger.

For V C X open, u(V) is then defined as a limit along some ultrafilter of
expressions like _
HI| U V)
. :
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Dynamic versions of dimension and regularity

THEOREM (Hirshberg—W—-Zacharias, 2011)
Let (X,Z, «) be compact, metrizable, and minimal. Suppose X is finite
dimensional.
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Dynamic versions of dimension and regularity

THEOREM (Hirshberg—W—-Zacharias, 2011)
Let (X,Z, «) be compact, metrizable, and minimal. Suppose X is finite
dimensional.

Then,
dimpok (X,Z,a) < 2(dimX + 1) —1
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Dynamic versions of dimension and regularity

THEOREM (Hirshberg—W—-Zacharias, 2011)
Let (X,Z, «) be compact, metrizable, and minimal. Suppose X is finite
dimensional.

Then,
dimpok (X,Z,a) < 2(dimX + 1) —1

and
dim(X,Z,a) < 2(dimX + 1)> — 1.
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Dynamic versions of dimension and regularity

What about more general groups?
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What about more general groups?

For Z4, replace {1,...,L} by {1,...,L}? in definition of
dimROk (Xv Zdu Oé).
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What about more general groups?

For Z4, replace {1,...,L} by {1,...,L}? in definition of
dimROk (Xv Zdu Oé).

In this case, we don’t have a general theorem, but:
EXAMPLE (Matui)
C*(Penrose tiling) ~y C(X) x4 Z2,

where X is the Cantor set and « is free and minimal.
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In this case, we don’t have a general theorem, but:
EXAMPLE (Matui)

C*(Penrose tiling) ~y C(X) x4 Z2,
where X is the Cantor set and « is free and minimal.

(X,7?, ) has a factor of form (X x X,Z?, a1 x as) with ay, a; both
minimal.
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Dynamic versions of dimension and regularity

What about more general groups?

For Z4, replace {1,...,L} by {1,...,L}? in definition of
dimROk (Xv Zdu Oé).

In this case, we don’t have a general theorem, but:
EXAMPLE (Matui)

C*(Penrose tiling) ~y C(X) x4 Z2,
where X is the Cantor set and « is free and minimal.

(X,7?, ) has a factor of form (X x X,Z?, a1 x as) with ay, a; both
minimal. From the preceding theorem we get dimgq (X, Z2, ) < oo,
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What about more general groups?

For Z4, replace {1,...,L} by {1,...,L}? in definition of
dimROk (Xv Zdu Oé).

In this case, we don’t have a general theorem, but:
EXAMPLE (Matui)
C*(Penrose tiling) ~y C(X) x4 Z2,
where X is the Cantor set and « is free and minimal.
(X,7?, ) has a factor of form (X x X,Z?, a1 x as) with ay, a; both

minimal. From the preceding theorem we get dimgq (X, Z2, ) < oo,
hence dimpek (X, Z?, a) < oo
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What about more general groups?

For Z4, replace {1,...,L} by {1,...,L}? in definition of
dimROk (Xv Zdu Oé).

In this case, we don’t have a general theorem, but:
EXAMPLE (Matui)
C*(Penrose tiling) ~y C(X) x4 Z2,
where X is the Cantor set and « is free and minimal.
(X,7?, ) has a factor of form (X x X,Z?, a1 x as) with ay, a; both

minimal. From the preceding theorem we get dimgq (X, Z2, ) < oo,
hence dimpek (X, Z2, o) < oo and dimpye (C*(Penrose tiling)) < oc.
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Dynamic versions of dimension and regularity

What about more general groups?

For Z4, replace {1,...,L} by {1,...,L}? in definition of
dimROk (Xv Zd7 O[).

In this case, we don’t have a general theorem, but:
EXAMPLE (Matui)
C*(Penrose tiling) ~y C(X) x4 Z2,

where X is the Cantor set and « is free and minimal.

(X,7?, ) has a factor of form (X x X,Z?, a1 x as) with ay, a; both
minimal. From the preceding theorem we get dimgq (X, Z2, ) < oo,
hence dimpek (X, Z2, o) < oo and dimpye (C*(Penrose tiling)) < oc.
We do not know, however, whether this ensures classifiability.
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Dynamic versions of dimension and regularity

For G finitely generated with word length metric, one might use By (e) in
place of {1,... ,L}.
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For G finitely generated with word length metric, one might use By (e) in
place of {1,...,L}. In this case, there is a nice relative result:
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Dynamic versions of dimension and regularity

For G finitely generated with word length metric, one might use By (e)
place of {1,...,L}. In this case, there is a nice relative result:

THEOREM (Bartels—Liick—Reich)
Let G be a hyperbolic group acting on its Rips complex X
(G acts freely, X/G is compact, X is contractible).
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Then, there is d € N such that the following holds:
For any L € N there is an open cover U of G x X satisfying
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Then, there is d € N such that the following holds:
For any L € N there is an open cover U of G x X satisfying

» U has covering number (or dimension) at most d
» forevery x € X, B(e) x {x} C U for some U € U
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For G finitely generated with word length metric, one might use By (e)
place of {1,...,L}. In this case, there is a nice relative result:

THEOREM (Bartels—Liick—Reich)
Let G be a hyperbolic group acting on its Rips complex X
(G acts freely, X/G is compact, X is contractible).

Then, there is d € N such that the following holds:
For any L € N there is an open cover U/ of G x X satisfying
» U has covering number (or dimension) at most d
» forevery x € X, B(e) x {x} C U for some U € U
» foreveryge GandU e U, gU € U
» foreveryge Gand U e U, eithergU =UorguUNU =)
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Dynamic versions of dimension and regularity

For G finitely generated with word length metric, one might use By (e) in
place of {1,...,L}. In this case, there is a nice relative result:

THEOREM (Bartels—Liick—Reich)
Let G be a hyperbolic group acting on its Rips complex X
(G acts freely, X/G is compact, X is contractible).

Then, there is d € N such that the following holds:
For any L € N there is an open cover U/ of G x X satisfying
» U has covering number (or dimension) at most d
» forevery x € X, B(e) x {x} C U for some U € U
» foreveryge GandU e U, gU € U
» foreveryge Gand U e U, eithergU =UorguUNU =)
» for every U € U, the subgroup Gy = {g € G | gU = U} is virtually
cyclic (contains a cyclic subgroup with finite index).
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Dynamic versions of dimension and regularity

For G finitely generated with word length metric, one might use By (e) in
place of {1,...,L}. In this case, there is a nice relative result:

THEOREM (Bartels—Liick—Reich)
Let G be a hyperbolic group acting on its Rips complex X
(G acts freely, X/G is compact, X is contractible).

Then, there is d € N such that the following holds:
For any L € N there is an open cover U/ of G x X satisfying
» U has covering number (or dimension) at most d
» forevery x € X, B(e) x {x} C U for some U € U
» foreveryge GandU e U, gU € U
» foreveryge Gand U e U, eithergU =UorguUNU =)

» for every U € U, the subgroup Gy = {g € G | gU = U} is virtually
cyclic (contains a cyclic subgroup with finite index).

(This plays a crucial role in their proof of the Farrell-Jones conjecture
for hyperbolic groups.)
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Dynamic versions of dimension and regularity

In this picture, our result can be rephrased as follows:
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Let o be a minimal action of G = Z on the compact, metrizable, finite

dimensional, infinite space X.
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dimensional, infinite space X.
Then, there is d € N such that the following holds:
For any L € N there is an open cover U of G x X satisfying

» U has covering number (or dimension) at most d
» for every x € X, Br(e) x {x} C U for some U € U
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In this picture, our result can be rephrased as follows:

THEOREM
Let o be a minimal action of G = Z on the compact, metrizable, finite
dimensional, infinite space X.

Then, there is d € N such that the following holds:
For any L € N there is an open cover U of G x X satisfying
» U has covering number (or dimension) at most d
» for every x € X, Br(e) x {x} C U for some U € U
» foreveryge Gand U e U, gU € U
» forevery0#£gc GandU cU,guUNU =0,
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Dynamic versions of dimension and regularity

In this picture, our result can be rephrased as follows:

THEOREM
Let o be a minimal action of G = Z on the compact, metrizable, finite
dimensional, infinite space X.

Then, there is d € N such that the following holds:
For any L € N there is an open cover U of G x X satisfying
» U has covering number (or dimension) at most d
» for every x € X, Br(e) x {x} C U for some U € U
» foreveryge Gand U e U, gU € U
» forevery0 #£gec GandU e U, gUNU =1, i.e.,
for every U € U, the subgroup Gy = {g € G | gU = U} is trivial.
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