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Part I: Total Ergodicity.
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Non-free m.p. actions: An example due to Vershik

• Fix a countably infinite set T and view X = NT as the space
of ordered partitions of T . Let Y be the space of unordered
partitions of T .

• The countable group Γ = FSymT of finitely supported
permutations of T acts naturally on both X and Y and the
forgetful map X → Y is equivariant.

• For any (probability) measure µ on N, the Bernoulli measure
µT on X is Γ-invariant. The push-forward measure ν is then
Γ-invariant on Y .

• ν-almost every y ∈ Y has infinite classes and for such y

Γy =
⊕

C∈y FSymC .

This implies that the map y 7→ Γy is injective!

• For each σ ∈ Γ we also have ν(Fix(σ)) > 0.
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Non-free m.p. actions: Mixing and total ergodicity

• One may show that Vershik’s example is weakly mixing.
• Weiss observed that if Γ is an amenable group then any

faithful m.p. action of Γ with completely positive entropy is
free.

Definition

A m.p. action Γ y (X , µ) is called totally ergodic if every infinite
subgroup H of Γ acts ergodically.

Example: all mixing actions are totally ergodic.

Theorem (TD, 2012)

Let Γ y (X , µ) be a nontrivial totally ergodic action of a
countable group. Then there is a finite normal subgroup N of Γ
such that Γx = N for almost all x ∈ X . Thus, all faithful totally
ergodic actions of countable groups are free.
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Totally ergodic actions are almost free: A trick

The following trick will be seen again later:

• For any subgroup H ≤ Γ, every subset of

Fix(H) = {x ∈ X : H ≤ Γx}
is H-invariant.

• Therefore Fix(H) is null for all infinite subgroups H of Γ.

• Let A denote the union of the sets Fix(H) as H ranges over all
infinite finitely generated subgroups of Γ.

• A is null, being a countable union of null sets.

• By definition x ∈ A if and only if the stabilizer group Γx

contains an infinite finitely generated subgroup.

• We have shown that the stabilizer subgroup Γx is locally finite
for almost every x ∈ X
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A property of locally finite groups

The remaining difficulty consists in showing that the set

X∞ = {x ∈ X : Γx is infinite and locally finite}

is null. One ingredient is the following:

Theorem (Hall-Kulatilaka, Kargapolov; (1963))

Every infinite locally finite group contains an infinite abelian
subgroup.

All known proofs of this fact rely on the Feit-Thompson Theorem.

Question

Is there a proof that all mixing actions are almost free which avoids
Feit-Thompson?
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Part II: Shift-minimality.
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An analogy

Definition

A m.p. action Γ y (X , µ) is called NA-ergodic if every
non-amenable subgroup H of Γ acts ergodically.

The trick used earlier shows that almost every stabilizer of an
NA-ergodic action is amenable.

Question

Let Γ y (X , µ) be a non-trivial NA-ergodic action of Γ. Does
there necessarily exist an amenable normal subgroup N ≤ Γ such
that the stabilizer Γx is contained in N for almost every x ∈ X ?

It turns out that this is closely related to an open question
concerning the reduced C ∗-algebra of Γ.
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Weak Bernoulli Factors

The Bernoulli shift of Γ is the m.p. action sΓ of Γ on ([0, 1]Γ, λΓ)
given by: (γ · f )(δ) = f (γ−1δ).

Definition

A weak Bernoulli factor of Γ is a factor of the ultrapower sUΓ of sΓ.

Fact

All weak Bernoulli factors are NA-ergodic.

Definition

A countable group Γ is called shift-minimal if all of its non-trivial
weak Bernoulli factors are free.
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C ∗-simplicity and uniqueness of trace

Definition

• The reduced C ∗-algebra of Γ, denoted C ∗r (Γ), is the
C ∗-algebra generated by the unitaries {λΓ(γ)}γ∈Γ in B(`2(Γ)).

• Γ is called C ∗-simple if C ∗r (Γ) is simple.

• The canonical trace on C ∗r (Γ) is the tracial state
τΓ : C ∗r (Γ)→ C given by τΓ(a) = 〈a(δe), δe〉.

• Γ has unique trace if τΓ is the unique tracial state on C ∗r (Γ).

Question (B. Bekka and P. de la Harpe)

Is there a general implication (in either direction) between
C ∗-simplicity and uniqueness of trace? Are there any groups which
are not C ∗-simple, but have non-trivial normal amenable
subgroups?
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Unique trace implies shift-minimality

Theorem (TD)

If Γ is not shift-minimal then Γ does not have unique trace.

Main Idea of Proof.

Let Γ y (X , µ) be a non-trivial Bernoulli factor which is not free.

• We obtain a representation
∫ ⊕
x λΓ/Γx

dµ of Γ on the Hilbert

space H =
∫ ⊕
x `2(Γ/Γx) dµ(x).

• Using that Γx is almost surely amenable one shows this
extends to a representation of C ∗r (Γ).

• There is then an “obvious” vector such that the associate
vector state τ is tracial. The action being non-free implies
τ 6= τΓ.
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A connection with cost

Theorem (TD)

Suppose that Γ does not have fixed price 1. Then there is a finite
normal subgroup N of Γ such that Γ/N is shift-minimal.

Question

If the first `2-Betti number of Γ is non-zero then is C ∗r (Γ) simple
with a unique tracial state?
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Are they are all equivalent?

C ∗-simple

Bekka-de la Harpe

&.

No non-trivial
amenable IRS

TD

��

Unique trace
TD

ks

TDmu

Bekka-de la Harpe

px

Shift-minimal

TD

��
Trivial amenable

radical

Results of T. Poznansky imply that these are all equivalent for
Linear Groups.
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