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Introduction

Let G be a countable group and X be a standard Borel space equipped

with a Borel action of G .

Definition

A countable Borel partition P of X is called a generator if its G -translates

{gA : g ∈ G ,A ∈ P} generate the Borel σ-algebra of X .

Another way of thinking about it is as follows: for a Borel partition

P = {Pn}n<k , k ≤ ∞, define a map fP : X → kG by x 7→ (ng )g∈G , where

gx ∈ Png . This fP is called the symbolic representation map of P.

Easy fact: P is a generator if and only if fP is injective.
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Introduction

Example

If X is an invariant Borel subset of the shift kG , then letting

Vi = {x ∈ kG : x(1G ) = i}, i < k , we get that P = {Vi}i<k is a

k-generator.

Observation

For k ≤ ∞, X admits a k-generator if and only if there is a Borel

G -embedding of X into kG .
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Countable generators

The question of the existence of countable generators is completely

resolved.

Theorem (Weiss ’87 for G = Z; Jackson-Kechris-Louveau ’02)

Every aperiodic Borel G -space X admits a countable generator. In

particular, there is a Borel G -embedding of X into NG .

This is sharp in the sense that we could not hope to obtain a finite

generator solely from the aperiodicity assumption as we will explain later.

In this talk, we are concerned with the existence of finite generators.
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Overview: dynamical systems

Generators arose in the study of entropy in ergodic theory.

Let (X , µ,T ) be a dynamical system. For a finite partition P of X

consider the following interpretation:

X is the set of possible pictures of the world,

T is a unit of time,

P is an experiment.

We repeat the experiment every day and record its outcome.

The goal is to find the true picture of the world (i.e. a randomly chosen

x ∈ X ) with probability 1. This happens precisely when P is a generator

mod µ-NULL.
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Overview: entropy

Recall: for a finite experiment (partition of X ) P = {Pn}n<k , the static
entropy hµ(P) is a real number that measures our probabilistic uncertainty
about the outcome of the experiment;

equivalently, it measures how much
information we gain from learning the outcome of the experiment.

One then defines the time average of the entropy of P by

hµ(P,T ) = lim
n→∞

1

n
hµ(

∨
i<n

T iP).

The sequence in the limit is decreasing and hence the limit is finite.

Finally the entropy of the dynamical system (X , µ,T ) is defined as the
supremum over all (finite) experiments:

hµ(T ) = sup
P

hµ(P,T ),

and it could be finite or infinite. When is this supremum achieved?
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Overview: entropy and generators

It is plausible that if P is a finite generator, then hµ(P,T ) should be all

the information there is to obtain about X

and hence P should achieve

the supremum above. Indeed:

Theorem (Kolmogorov-Sinai, ’58-59)

If P is a finite generator modulo µ-NULL, then hµ(T ) = hµ(P,T ). In

particular, the entropy is finite: hµ(T ) ≤ log(|P|) <∞.

In case of ergodic systems, the converse is also true:

Theorem (Krieger, ’70)

Suppose (X , µ,T ) is ergodic. If hµ(T ) < log k, for some k ≥ 2, then there

is a k-generator modulo µ-NULL.
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Borel context: Weiss’s question

Now let X be just a Borel Z-space (no measure specified).

By the Kolmogorov-Sinai theorem, if there exists an invariant probability

measure on X of infinite entropy, then X does not admit a finite generator.

It is because of this measure-theoretic obstruction that finite generators

don’t exist for aperiodic actions in general.

What happens when we get rid of the measures?

Question (Weiss ’87)

If a Borel Z-space X does not admit any invariant probability measure,

does it have a finite generator?
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Borel context: potential dichotomy

It is perhaps more natural to ask the following

Question

If a Borel Z-space X does not admit an invariant probability measure of

infinite entropy, does it have a finite generator?

I show that these questions are actually equivalent, so a positive answer

to Weiss’s question would imply a nice dichotomy for Borel actions of Z.

Thus we focus on Weiss’s question for arbitrary group G .

Question (Weiss ’87)

If a Borel G -space X does not admit any invariant probability measure,

does it have a finite generator?
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Measure theoretic context: the Krengel-Kuntz theorem

Weiss’s question has a positive answer in the measure-theoretic context:

Theorem (Krengel, Kuntz, ’74)

Let X be a Borel G -space and let µ be a quasi-invariant Borel probability

measure on X (i.e. G preserves the µ-null sets). If there is no invariant

Borel probability measure absolutely continuous with respect to µ, then X

admits a 2-generator modulo µ-NULL.
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Baire category context: Kechris’s question

In the early ’90s, Kechris asked whether an analogue of the Krengel-Kuntz

theorem holds in the context of Baire category:

Question (Kechris, mid-’90s)

If X is an aperiodic Polish G -space, does there exist a finite generator on
an invariant comeager set?

Note that a positive answer to Weiss’s question would imply a positive

answer to this question because, by the Generic Compressibility theorem of

Kechris-Miller, we can always restrict to a comeager invariant set with no

invariant probability measure on it and then apply the positive answer to

Weiss’s question.
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Answers: Kechris’s question (Baire category setting)

One may first try to adapt the proof of Krengel-Kuntz result to the Baire
category setting. However, their proof relies on the existence of so-called
weakly wandering sets of arbitrarily large measure, and we show that the
existence of “large” weakly wandering sets fails in the Baire category
setting.

Using a different approach, we give an affirmative answer to Kechris’s
question:

Theorem (Ts.)

If X is an aperiodic Polish G -space, then there exists a 4-generator on an
invariant comeager set.

The proof of this uses the Kuratowski-Ulam method introduced in the
proofs of generic hyperfiniteness and generic compressibility by Kechris
and Miller.
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Answers: Weiss’s question (Borel setting)

It is not hard to show that any Borel G -space X has a Polish topological
realization, i.e. there is a Polish topology on X having the same Borel sets
and making the action continuous. So we reformulate:

Question (Weiss, ’87)

If a Polish G -space X does not admit any invariant probability measure,
does it have a finite generator?

We give a positive answer to Weiss’s question in case X is a σ-compact
Polish G -space, in particular if X is a locally compact Polish G -space.
Actually, we don’t really need Polishness as long as the topology has the
same Borel sets, so the precise formulation is:

Theorem (Ts.)

Let X be a Borel G -space that admits a σ-compact realization. If there is
no invariant probability measure on X , then X admits a 32-generator.
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Answers: Weiss’s question (Borel setting)

Theorem (Ts.)

Let X be a Borel G -space that admits a σ-compact realization. If there is
no invariant probability measure on X , then X admits a 32-generator.

Remark: We were wondering if every Borel G -space had a σ-compact

realization, but it was shown in a recent Conley-Kechris-Miller paper that

it is not the case. E.g. the standard coordinatewise action of Z<N on ZN.

We will spend the remaining time discussing the idea of the proof of the

above theorem.
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Equidecomposability

First, let’s investigate the hypothesis of the question:

X does not admit an invariant probability measure.

It is a negative statement, but fortunately there is a positive equivalent
condition due to Nadkarni and we will work towards presenting it
(although the proof does not directly use this condition).

Definition

Two Borel sets A,B ⊆ X are said to
be equidecomposable (denoted by
A ∼ B) if there are Borel partitions
{An}n∈N and {Bn}n∈N of A and B,
respectively, and {gn}n∈N ⊆ G such
that gnAn = Bn.
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Compressibility and Nadkarni’s theorem

We write A � B if A ∼ B ′ ⊆ B,

and we write A ≺ B if moreover this B ′

leaves out at least one point from every orbit in B.

Observation

Let A,B ⊆ X be Borel sets and µ an invariant probability measure on X .

(a) If A ∼ B, then µ(A) = µ(B).

(b) If A � B, then µ(A) ≤ µ(B).

(c) If A ≺ B, then either µ(A) < µ(B) or µ(A) = µ(B) = 0.

We call A compressible if A ≺ A.

It is clear from (c) that if X is compressible then there is no invariant
probability measure on X . The converse is also true!

Theorem (Nadkarni, ’91)

There is no invariant probability measure on X if and only if X is
compressible.
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The idea of the proof

I first tried to use compressibility directly to construct a finite generator by

hand, but I only succeeded in special cases.

So we take the nonconstructive approach, i.e. try to prove the

contrapositive of Weiss’s question:

No finite generators −→ ∃ an invariant probability measure

When constructing an invariant measure (e.g. Haar measure), one usually

needs some notion of “largeness” so that X is “large” (e.g. having

nonempty interior, being incompressible). So we aim at something like this:

No finite generators ∃ an invariant probability measure

↘ ↗
X is not “small” = X is “large”
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The key definition towards the right notion of “smallness”

In the definition of equidecomposability of sets A and B, the partitions

{An}n∈N and {Bn}n∈N belong to the Borel σ-algebra.

For i ≥ 1, we define a finer notion of equidecomposability by restricting to

some σ-algebra that is generated by the G -translates of i-many Borel sets.

In this case we say that A and B are i -equidecomposable and denote by

A ∼i B.

In other words, A ∼i B if i-many Borel sets are enough to generate a

G -invariant σ-algebra that is sufficiently fine to carve out partitions

{An}n∈N and {Bn}n∈N witnessing A ∼ B.
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“Small” = i -compressible

As before, we say that a set A is i -compressible if A ≺i A.

Taking i-compressibility as our notion of “smallness”, we prove the

following:

No 32-generator ∃ an invariant probability measure

(1) ↘ ↗ (2)

X is not 4-compressible
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Step (1)

We prove the contrapositive of Step (1): assuming i-compressibility, we

construct a finite generator by hand.

Lemma

If X is i -compressible, then it admits a 2i+1-generator.

Thus we obtain:

No 25-generator −→ X is not 4-compressible

Remark: It is not hard to see that i-compressibility is necessary for the

existence of a finite generator under the assumption that X is compressible.
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Step (2)

This step is proving an analog of Nadkarni’s theorem for i-compressibility:

X is not 4-compressible −→ ∃ an invariant probability measure

Firstly, we show that i-compressibility is indeed a notion of “smallness”,

i.e. that the set of i-compressible sets (roughly speaking) forms a σ-ideal.

The difficulty here is to prevent i from growing when taking unions.

Secondly, we assume that X is not 4-compressible and give a construction

of a measure reminiscent of the one in the proof of Nadkarni’s theorem or

the existence of Haar measure. But unfortunately our proof only yields a

finitely additive invariant probability measure. However... with the

additional assumption that X is σ-compact, we are able to concoct a

countably additive invariant probability measure out of it.
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The main result

Putting steps (1) and (2) together, we obtain the main

Theorem (Ts.)

Let X be a Borel G -space that admits a σ-compact realization. If there is

no invariant probability measure on X , then X admits a 32-generator.
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thank you
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