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What is the Calkin algebra?

Let H be an infinite dimensional separable Hilbert space. Let L(H) be the
algebra of all bounded operators on H.

Besides the usual algebraic
operations, L(H) has an adjoint: for a ∈ L(H), a∗ is determined by
〈a∗ξ, η〉 = 〈ξ, aη〉 for all ξ, η ∈ H. When H = Cn with the usual Hilbert
space structure, this operation is the usual conjugate transpose of
matrices.

Let K (H) be the ideal consisting of all compact operators on H. (For a
Hilbert space, although not for a general Banach space, this is the norm
closure of the set of finite rank operators.)

The Calkin algebra is Q = L(H)/K (H). The adjoint is well defined on Q.
The Calkin algebra is an inseparable purely infinite simple C*-algebra
which has no nonzero representations on separable Hilbert spaces.
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Inner and outer automorphisms
The Calkin algebra is Q = L(H)/K (H).

In this talk, automorphisms are *-automorphisms, that is, they preserve
adjoints as well as the algebra operations. Subalgebras will be
*-subalgebras.

Let A be any unital C*-algebra. An automorphism ϕ ∈ Aut(A) is inner if
there is a unitary u ∈ A (that is, u−1 = u∗) such that, for all a ∈ A, we
have ϕ(a) = uau−1 = uau∗. (If a 7→ sas−1 is a *-automorphism, then
there is a unitary u such that sas−1 = uau∗ for all a ∈ A.) Otherwise, ϕ is
said to be outer.

We write Inn(A) for the subgroup of inner automorphisms. The
automorphism a 7→ uau∗ is denoted Ad(u).

It is easy to prove (idea given below) that every automorphism of L(H) is
inner (no matter what dim(H) is). The proof relies mainly on what
happens in K (H), and of course K (H) is no longer present in Q.
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Automorphisms of the Calkin algebra

All automorphisms of L(H) are inner. The proof is really about K (H). The
Calkin algebra is Q = L(H)/K (H).

Question

Does Q have outer automorphisms?

The first reference I have found is in the work of Brown-Douglas-Fillmore
in the early 70’s, in connection with extension theory.

Let s be the image in Q of the unilateral shift. The unilateral shift acts on
sequences in l2 by

(ξ0, ξ1, . . .) 7→ (0, ξ0, ξ1, . . .).

They really wanted to know whether there is ϕ ∈ Aut(Q) such that one
has ϕ(s) = s∗. (Such an automorphism can’t be inner because it is
nontrivial on K-theory.)
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Two papers

Question

Does Q have outer automorphisms?

1 N. C. Phillips and N. Weaver, The Calkin algebra has outer
automorphisms, Duke Math. J. 139(2007), 185–202.

2 I. Farah, All automorphisms of the Calkin algebra are inner, Ann.
Math. 173(2011), 619–661.

The first paper assumes the Continuum Hypothesis. The second assumes
Todorcevic’s Axiom (also known as the Open Coloring Axiom).

This talk is primarily about the original proof of the existence of outer
automorphisms. (There is a somewhat different proof in the second
paper.) A reason for using the original proof will be seen later.
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Innerness of automorphisms of L(H).

Let ϕ ∈ Aut(L(H)). We describe how to find u such that ϕ = Ad(u).

For ξ, η ∈ H, let θξ,η be the rank one operator µ 7→ 〈µ, η〉ξ. If ‖ξ‖ = 1,
then θξ,ξ is a rank one projection.

Fix some ξ0 ∈ H with ‖ξ0‖ = 1. Then ϕ(θξ0,ξ0) is a rank one projection.
Choose η0 in its range such that ‖η0‖ = 1. Then u is determined by
u(ξ) = ϕ(θξ,ξ0)η0 for ξ ∈ H.

We omit the (easy) proofs that u is unitary and that uθξ,ηu
∗ = ϕ(θξ,η) for

ξ, η ∈ H.

It follows that uau∗ = ϕ(a) for all a ∈ K (H). Since K (H) is an essential
ideal in L(H), general theory shows that two automorphisms which agree
on K (H) must be equal.

Therefore ϕ = Ad(u).
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Choose η0 in its range such that ‖η0‖ = 1.

Then u is determined by
u(ξ) = ϕ(θξ,ξ0)η0 for ξ ∈ H.

We omit the (easy) proofs that u is unitary and that uθξ,ηu
∗ = ϕ(θξ,η) for

ξ, η ∈ H.

It follows that uau∗ = ϕ(a) for all a ∈ K (H). Since K (H) is an essential
ideal in L(H), general theory shows that two automorphisms which agree
on K (H) must be equal.
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Open questions

Theorem

Assume the Continuum Hypothesis. Then Q has outer automorphisms.

In fact, Q has 22ℵ0 approximately inner automorphisms, but only 2ℵ0 inner
automorphisms.

Theorem

Assume Todorcevic’s Axiom. Then Q has no outer automorphisms.

Recall that s ∈ Q is the image of the unilateral shift. The following
question remains open:

Question

Is it consistent with ZFC that Q has an automorphism ϕ such that
ϕ(s) = s∗?
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Open questions (continued)

Question

Is it consistent with ZFC that Q has an automorphism ϕ such that
ϕ(s) = s∗?

Recall that K1(Q) ∼= Z. It is equivalent to ask whether there is
ϕ ∈ Aut(Q) such that ϕ∗ : K1(Q) → K1(Q) is multiplication by −1.

The following question also remains open:

Question

Is it consistent with ZFC that Q has an automorphism ϕ which is not
approximately inner but such that ϕ∗ : K1(Q) → K1(Q) is idK1(Q)?
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Open questions (continued)

Theorem

1 The Continuum Hypothesis implies that Q has outer automorphisms.

2 Todorcevic’s Axiom implies that Q has no outer automorphisms.

Coskey and Farah have made progress on the appropriate analogs of both
results for the corona algebras of arbitrary separable C*-algebras (much
more progress on the analog of the first result than that of the second).

What happens on other Banach spaces?
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Basic outline of the proof.

From now on, we assume the Continuum Hypothesis, and we describe
parts of the proof that Q has at least one outer automorphism.

The basic idea is a Cantor diagonalization argument done over 2ℵ0 .
Identify 2ℵ0 with the first uncountable ordinal.

We “enumerate” the unitaries in Q as {uα : α < 2ℵ0}. By transfinite
induction, we then construct an increasing “sequence” (Aα)α<2ℵ0 of

separable subalgebras Aα ⊂ Q such that
⋃

α<2ℵ0 Aα = Q, and construct
automorphisms ϕα ∈ Aut(Aα) such that:

1 ϕβ|Aα = ϕα whenever α ≤ β < 2ℵ0 .

2 ϕα 6= Ad(uα)|Aα whenever α < 2ℵ0 .

Then there is an automorphism ϕ ∈ Aut(Q) such that ϕ|Aα = ϕα

whenever α < 2ℵ0 . For every α < 2ℵ0 , we have ϕ 6= Ad(uα). Therefore ϕ
is not inner.
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Voiculescu’s Theorem

We want separable subalgebras Aα ⊂ Q such that
⋃

α<2ℵ0 Aα = Q, and
automorphisms ϕα ∈ Aut(Aα) such that:

1 ϕβ|Aα = ϕα whenever α ≤ β < 2ℵ0 .

2 ϕα 6= Ad(uα) whenever α < 2ℵ0 .

Suppose we have Aα and ϕα.

We will require that there be vα ∈ U(Q)
such that ϕα = Ad(vα)|Aα . This is needed to ensure that, when we
construct Aα+1, there is some ϕ ∈ Aut(Aα+1) such that ϕα = ϕ|Aα .

We postpone the details of the construction. It depends on a theorem of
Voiculescu, a double commutant theorem for separable subalgebras of Q:

Theorem

Let A ⊂ Q be a separable unital subalgebra. Let P ⊂ Q be the set of all
projections p ∈ Q which commute with every element of A. Then a ∈ Q is
in A if and only if ap = pa for all p ∈ P.
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Separability

To get Aα+1 and ϕα+1 from Aα and ϕα, we need:

Theorem (Voiculescu’s Theorem)

Let A ⊂ Q be a separable unital subalgebra. Let P ⊂ Q be the set of all
projections p ∈ Q which commute with every element of A. Then a ∈ Q is
in A if and only if ap = pa for all p ∈ P.

We will apply it with A = Aα. Therefore Aα must be separable.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ . Therefore β must
be countable. This is how we use the Continuum Hypothesis.
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The automorphism at limit ordinals

To get Aα+1 and ϕα+1 from Aα and ϕα, we need to know that ϕα is
implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ and the
automorphism ϕ ∈ Aut(A) determined by ϕ|Aγ = ϕγ whenever γ < β.
This must be implemented by a unitary in Q; otherwise, we don’t know
how to extend it to an automorphism of Aβ ) A.

So apparently we need to know the following (simplified to the case of
subalgebras indexed by Z≥0). Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 14 / 34



The automorphism at limit ordinals

To get Aα+1 and ϕα+1 from Aα and ϕα, we need to know that ϕα is
implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ and the
automorphism ϕ ∈ Aut(A) determined by ϕ|Aγ = ϕγ whenever γ < β.
This must be implemented by a unitary in Q; otherwise, we don’t know
how to extend it to an automorphism of Aβ ) A.

So apparently we need to know the following (simplified to the case of
subalgebras indexed by Z≥0). Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 14 / 34



The automorphism at limit ordinals

To get Aα+1 and ϕα+1 from Aα and ϕα, we need to know that ϕα is
implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ and the
automorphism ϕ ∈ Aut(A) determined by ϕ|Aγ = ϕγ whenever γ < β.
This must be implemented by a unitary in Q; otherwise, we don’t know
how to extend it to an automorphism of Aβ ) A.

So apparently we need to know the following (simplified to the case of
subalgebras indexed by Z≥0). Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 14 / 34



The automorphism at limit ordinals

To get Aα+1 and ϕα+1 from Aα and ϕα, we need to know that ϕα is
implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ and the
automorphism ϕ ∈ Aut(A) determined by ϕ|Aγ = ϕγ whenever γ < β.
This must be implemented by a unitary in Q; otherwise, we don’t know
how to extend it to an automorphism of Aβ ) A.

So apparently we need to know the following (simplified to the case of
subalgebras indexed by Z≥0). Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 14 / 34



The automorphism at limit ordinals

To get Aα+1 and ϕα+1 from Aα and ϕα, we need to know that ϕα is
implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ and the
automorphism ϕ ∈ Aut(A) determined by ϕ|Aγ = ϕγ whenever γ < β.
This must be implemented by a unitary in Q; otherwise, we don’t know
how to extend it to an automorphism of Aβ ) A.

So apparently we need to know the following (simplified to the case of
subalgebras indexed by Z≥0). Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 14 / 34



The automorphism at limit ordinals

To get Aα+1 and ϕα+1 from Aα and ϕα, we need to know that ϕα is
implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ and the
automorphism ϕ ∈ Aut(A) determined by ϕ|Aγ = ϕγ whenever γ < β.
This must be implemented by a unitary in Q; otherwise, we don’t know
how to extend it to an automorphism of Aβ ) A.

So apparently we need to know the following (simplified to the case of
subalgebras indexed by Z≥0). Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 14 / 34



The automorphism at limit ordinals

To get Aα+1 and ϕα+1 from Aα and ϕα, we need to know that ϕα is
implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ and the
automorphism ϕ ∈ Aut(A) determined by ϕ|Aγ = ϕγ whenever γ < β.
This must be implemented by a unitary in Q; otherwise, we don’t know
how to extend it to an automorphism of Aβ ) A.

So apparently we need to know the following (simplified to the case of
subalgebras indexed by Z≥0). Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 14 / 34



The automorphism at limit ordinals

To get Aα+1 and ϕα+1 from Aα and ϕα, we need to know that ϕα is
implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ and the
automorphism ϕ ∈ Aut(A) determined by ϕ|Aγ = ϕγ whenever γ < β.
This must be implemented by a unitary in Q; otherwise, we don’t know
how to extend it to an automorphism of Aβ ) A.

So apparently we need to know the following (simplified to the case of
subalgebras indexed by Z≥0). Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 14 / 34



The automorphism at limit ordinals

To get Aα+1 and ϕα+1 from Aα and ϕα, we need to know that ϕα is
implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will use A =
⋃

γ<β Aγ and the
automorphism ϕ ∈ Aut(A) determined by ϕ|Aγ = ϕγ whenever γ < β.
This must be implemented by a unitary in Q; otherwise, we don’t know
how to extend it to an automorphism of Aβ ) A.

So apparently we need to know the following (simplified to the case of
subalgebras indexed by Z≥0). Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 14 / 34



What we want is probably not true
Suppose:

A0 ⊂ A1 ⊂ · · · are separable unital subalgebras of Q.

v1, v2, . . . ∈ Q are unitaries such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, the limit automorphism ϕ ∈ Aut(A) is
determined by ϕ(a) = vnav

∗
n for a ∈ An.

Then we want ϕ to be implemented by a unitary in Q.

Unfortunately, this is probably false.

Here is a related example.

Let D be the rational UHF algebra, that is, the one with K0(D) ∼= Q.
(This is a particular C*-algebraic direct limit of finite dimensional
C*-algebras.) Then there exist uncountably many unital homomorphisms
from D to Q which are approximately unitarily equivalent (so unitarily
equivalent on all finite dimensional subalgebras), but are pairwise not
unitarily equivalent. (We know a parametrization of the unitary
equivalence classes, PExt1Z(Q,Z), which is an uncountable abelian group.)
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Digression: A model theoretic consequence
There exists a separable C*-algebra D which is the closure of the union of
an increasing sequence of finite dimensional subalgebras, that is,
D =

⋃∞
n=0 Dn,

and two injective unital homomorphisms ϕ,ψ : D → Q,
such that for every n ∈ Z≥0 there is a unitary un ∈ Q with
unϕ(a)u∗n = ψ(a) for all a ∈ Dn, but such that there is no unitary u ∈ Q
with uϕ(a)u∗ = ψ(a) for all a ∈ D.

This implies something bad about types (as in model theory) in Q.

Set B = ϕ(D), set Bn = ϕ(Dn) for n ∈ Z≥0, and consider
σ = ψ ◦ϕ−1 : B → Q. Choose a countable dense subset {a0, a1, . . .} of the
unit ball of B which is contained in

⋃∞
n=0 Bn. We can assume that a0 = 1.

Now consider the type in Q determined by the following conditions on an
element x ∈ Q:

‖xakx∗ − σ(ak)‖ = 0 and ‖x∗σ(ak)x − ak‖ = 0 for k ∈ Z≥0.
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Types in the Calkin algebra
We have B =

⋃∞
n=0 Bn ⊂ Q, and a homomorphism σ : B → Q, such that:

1 For every n ∈ Z≥0, there exists a unitary un ∈ Q such that
σ(b) = unbu∗n for all b ∈ Bn.

2 There is no unitary u ∈ Q such that σ(b) = ubu∗ for all b ∈ B.

We are considering the type given by the following conditions on x ∈ Q:

‖xakx∗ − σ(ak)‖ = 0 and ‖x∗σ(ak)x − ak‖ = 0 for k ∈ Z≥0.

This type is consistent, that is, for every finite collection F of the
conditions and ε > 0, there is some element x ∈ Q such that the
conditions in F hold to within ε. Indeed, we need only consider the finite
sets Fl consisting of the conditions involving ak for k = 0, 1, . . . , l . Choose
n such that a0, a1, . . . , al ∈ Bn. By (1), the element x = un satisfies all the
conditions in Fl exactly.

However, by (2), there is no x ∈ Q which satisfies all of the conditions.
This means that the type is not realizable.
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Replacing approximate innerness

We have:

Separable unital subalgebra A0 ⊂ A1 ⊂ · · · ⊂ Q.

Unitaries v1, v2, . . . ∈ Q such that vnAnv
∗
n = An and

Ad(vn+1)|An = Ad(vn)|An for n ∈ Z≥0.

With A =
⋃∞

n=0 An, an automorphism ϕ ∈ Aut(A) determined by
ϕ(a) = vnav

∗
n for a ∈ An.

It probably does not follow that ϕ is implemented by a unitary, not even
(as will happen in our case) if vn ∈ An+1 for all n ∈ Z≥0.

Stated without extraneous structure: If A ⊂ Q is a separable subalgebra
and ϕ ∈ Aut(A) is approximately inner in A, it probably does not follow
that ϕ is implemented by a unitary in Q.

However, it is true that if ϕ ∈ Aut(A) is asymptotically inner in A
(definition: next slide), then ϕ is implemented by a unitary in Q.
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Asymptotic innerness

Definition

Let A be a unital C*-algebra, and let ϕ,ψ ∈ Aut(A). Then ϕ is
asymptotically unitarily equivalent to ψ if there is a continuous path
t 7→ ut , for t ∈ [0,∞), in the unitary group of A such that
limt→∞ utϕ(a)u∗t = ψ(a) for all a ∈ A.

We say that ϕ is asymptotically inner if ϕ is asymptotically unitarily
equivalent to idA.

Using Z≥0 in place of [0,∞), we get approximate unitary equivalence and
approximate innerness (at least when A is separable).

If A ⊂ Q is a separable subalgebra and ϕ ∈ Aut(A) is approximately inner
in A, it probably does not follow that ϕ is implemented by a unitary in Q.

However, it is true that if ϕ ∈ Aut(A) is asymptotically inner in A, then ϕ
is implemented by a unitary in Q.
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Asymptotic vs. approximate

In other contexts in C*-algebras, asymptotic unitary equivalence (not
approximate unitary equivalence) is the “right” concept.

For example, KK-theory is defined in terms of asymptotic morpisms:
continuously parametrized families of maps which are closer and closer to
being homomorphisms. (Sequences don’t work.)

Asymptotically unitarily equivalent homomorphisms have the same class in
KK-theory; approximately unitarily equivalent homomorphisms need not.

This carries over to other approximations as well. For example, sometimes
one needs the “continuous Rokhlin property” (in which a family of
approximations is continuously parametrized by [0,∞)) instead of the
Rokhlin property (which uses sequences).

When dealing with C*-algebras, perhaps one should sometimes replace an
ultrapower with a “continuous” version.
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Using asymptotic innerness

If A ⊂ Q is separable and ϕ ∈ Aut(A) is asymptotically inner in A, then ϕ
is implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will take A =
⋃

γ<β Aγ and let ϕ ∈ Aut(A)
be the automorphism determined by ϕ|Aγ = ϕγ whenever γ < β. We need
the automorphisms ϕγ to be implemented by unitaries vγ ∈ Q.

We can
arrange that ϕ is approximately inner in A by ensuring that vγ ∈ Aγ+1 for
all γ.

We must carry along in the transfinite construction enough auxiliary
structure that we can show that ϕ is in fact asymptotically inner in A, and
moreover that we still have the auxiliary structure when we construct Aβ.
The basic component of this auxiliary structure is a suitable unitary path
from vγ to vγ+1. The details are a bit messy, and are omitted.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 22 / 34



Using asymptotic innerness

If A ⊂ Q is separable and ϕ ∈ Aut(A) is asymptotically inner in A, then ϕ
is implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will take A =
⋃

γ<β Aγ and let ϕ ∈ Aut(A)
be the automorphism determined by ϕ|Aγ = ϕγ whenever γ < β. We need
the automorphisms ϕγ to be implemented by unitaries vγ ∈ Q. We can
arrange that ϕ is approximately inner in A by ensuring that vγ ∈ Aγ+1 for
all γ.

We must carry along in the transfinite construction enough auxiliary
structure that we can show that ϕ is in fact asymptotically inner in A, and
moreover that we still have the auxiliary structure when we construct Aβ.
The basic component of this auxiliary structure is a suitable unitary path
from vγ to vγ+1. The details are a bit messy, and are omitted.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 22 / 34



Using asymptotic innerness

If A ⊂ Q is separable and ϕ ∈ Aut(A) is asymptotically inner in A, then ϕ
is implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will take A =
⋃

γ<β Aγ and let ϕ ∈ Aut(A)
be the automorphism determined by ϕ|Aγ = ϕγ whenever γ < β. We need
the automorphisms ϕγ to be implemented by unitaries vγ ∈ Q. We can
arrange that ϕ is approximately inner in A by ensuring that vγ ∈ Aγ+1 for
all γ.

We must carry along in the transfinite construction enough auxiliary
structure that we can show that ϕ is in fact asymptotically inner in A, and
moreover that we still have the auxiliary structure when we construct Aβ.

The basic component of this auxiliary structure is a suitable unitary path
from vγ to vγ+1. The details are a bit messy, and are omitted.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 22 / 34



Using asymptotic innerness

If A ⊂ Q is separable and ϕ ∈ Aut(A) is asymptotically inner in A, then ϕ
is implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will take A =
⋃

γ<β Aγ and let ϕ ∈ Aut(A)
be the automorphism determined by ϕ|Aγ = ϕγ whenever γ < β. We need
the automorphisms ϕγ to be implemented by unitaries vγ ∈ Q. We can
arrange that ϕ is approximately inner in A by ensuring that vγ ∈ Aγ+1 for
all γ.

We must carry along in the transfinite construction enough auxiliary
structure that we can show that ϕ is in fact asymptotically inner in A, and
moreover that we still have the auxiliary structure when we construct Aβ.
The basic component of this auxiliary structure is a suitable unitary path
from vγ to vγ+1.

The details are a bit messy, and are omitted.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 22 / 34



Using asymptotic innerness

If A ⊂ Q is separable and ϕ ∈ Aut(A) is asymptotically inner in A, then ϕ
is implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will take A =
⋃

γ<β Aγ and let ϕ ∈ Aut(A)
be the automorphism determined by ϕ|Aγ = ϕγ whenever γ < β. We need
the automorphisms ϕγ to be implemented by unitaries vγ ∈ Q. We can
arrange that ϕ is approximately inner in A by ensuring that vγ ∈ Aγ+1 for
all γ.

We must carry along in the transfinite construction enough auxiliary
structure that we can show that ϕ is in fact asymptotically inner in A, and
moreover that we still have the auxiliary structure when we construct Aβ.
The basic component of this auxiliary structure is a suitable unitary path
from vγ to vγ+1. The details are a bit messy, and are omitted.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 22 / 34



Using asymptotic innerness

If A ⊂ Q is separable and ϕ ∈ Aut(A) is asymptotically inner in A, then ϕ
is implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will take A =
⋃

γ<β Aγ and let ϕ ∈ Aut(A)
be the automorphism determined by ϕ|Aγ = ϕγ whenever γ < β. We need
the automorphisms ϕγ to be implemented by unitaries vγ ∈ Q. We can
arrange that ϕ is approximately inner in A by ensuring that vγ ∈ Aγ+1 for
all γ.

We must carry along in the transfinite construction enough auxiliary
structure that we can show that ϕ is in fact asymptotically inner in A, and
moreover that we still have the auxiliary structure when we construct Aβ.
The basic component of this auxiliary structure is a suitable unitary path
from vγ to vγ+1. The details are a bit messy, and are omitted.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 22 / 34



Using asymptotic innerness

If A ⊂ Q is separable and ϕ ∈ Aut(A) is asymptotically inner in A, then ϕ
is implemented by a unitary in Q.

If β < 2ℵ0 is a limit ordinal, we will take A =
⋃

γ<β Aγ and let ϕ ∈ Aut(A)
be the automorphism determined by ϕ|Aγ = ϕγ whenever γ < β. We need
the automorphisms ϕγ to be implemented by unitaries vγ ∈ Q. We can
arrange that ϕ is approximately inner in A by ensuring that vγ ∈ Aγ+1 for
all γ.

We must carry along in the transfinite construction enough auxiliary
structure that we can show that ϕ is in fact asymptotically inner in A, and
moreover that we still have the auxiliary structure when we construct Aβ.
The basic component of this auxiliary structure is a suitable unitary path
from vγ to vγ+1. The details are a bit messy, and are omitted.

N. C. Phillips (University of Oregon) Automorphisms of the Calkin algebra 10 September 2012 22 / 34



Quasicentral approximate identities

We give the basic idea of the proof that asymptotic innerness implies
innerness. (The main work was done by Manuilov and Thomsen.)

If A is a C*-algebra, then an approximate identity for A is a net (eλ)λ∈Λ

such that limλ eλa = a and limλ aeλ = a for all a ∈ A. We also require that
eλ ≥ 0 and ‖eλ‖ ≤ 1 for all λ ∈ Λ, and that µ ≤ λ imply eµ ≤ eλ.

The key idea is:

Definition

Let B be a C*-algebra and let J ⊂ B be an ideal. An approximate identity
(eλ)λ∈Λ for J is quasicentral for B if limλ ‖eλb − beλ‖ = 0 for all b ∈ B.

Theorem (Arveson)

Quasicentral approximate identities always exist. Moreover, if B is
separable, then there is a quasicentral approximate identity (eλ)λ∈Λ with
Λ = Z≥0.
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Using quasicentral approximate identities: setup

We have a separable subalgebra A ⊂ Q and an asymptotically inner
automorphism ϕ of A. We want to show that ϕ is implemented by a
unitary in Q.

Let π : L(H) → Q be the quotient map.

Set B = π−1(A). Let (en)n∈Z≥0

be an approximate identity for K (H) which is quasicentral for B.

That is, limn→∞ enx = limn→∞ xen = x for all x ∈ K (H) and
limn→∞ ‖enb − ben‖ = 0 for all b ∈ B.

To simplify, we will assume that all the unitaries we consider in Q can be
lifted to unitaries in L(H). Thus, there is a continuous unitary path
t 7→ wt , for t ∈ [0,∞), in L(H), such that

lim
t→∞

‖π(wt)aπ(wt)
∗ − ϕ(a)‖ = 0

for all a ∈ A.
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If the quasicentral approximate identity consists of
projections

We have π : L(H) → Q and B = π−1(A). Also, (en)n∈Z≥0
is an

approximate identity for K (H) which is quasicentral for B, and t 7→ wt is
a unitary path in L(H) such that limt→∞ ‖π(wt)aπ(wt)

∗ − ϕ(a)‖ = 0 for
all a ∈ A.

Suppose that we could take (en)n∈Z≥0
to be an increasing sequence of

finite rank projections. (Not likely, since the proof of existence involves an
averaging process. But this situation is a good place to start.)

Taking e0 = 0, this means that (en+1 − en)n∈Z≥0
is a sequence of

orthogonal finite rank projections in L(H) such that
∑∞

n=0(en+1 − en) = 1
in the strong operator topology.

Then we would only need approximate innerness. Thus, assume that
(wn)n∈Z≥0

is a unitary sequence in B such that
limn→∞ ‖π(wn)aπ(wn)

∗ − ϕ(a)‖ = 0 for all a ∈ A.
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Producing an implementing unitary
We have π : L(H) → Q and B = π−1(A). Also, (en)n∈Z≥0

is an increasing
sequence of projections in L(H) such that

∑∞
n=0(en+1 − en) = 1, and

which is quasicentral for B. Furthermore, (wn)n∈Z≥0
is a unitary sequence

in B such that limn→∞ ‖π(wn)aπ(wn)
∗ − ϕ(a)‖ = 0 for all a ∈ A.

By quasicentrality and omitting terms from (en)n∈Z≥0
, we can assume that

lim
n→∞

(enwn − wnen) = 0 and lim
n→∞

(en+1wn − wnen+1) = 0.

(Details omitted.) Now define

w =
∞∑

n=0

(en+1 − en)wn(en+1 − en),

with convergence in the strong operator topology. Then w is a block
diagonal matrix with finite rank blocks. Moreover, with pn = en+1 − en,

lim
n→∞

∥∥pnw
∗
npn · pnwnpn − pn

∥∥ = 0,

from which one easily gets π(w)∗π(w) = 1. Similarly π(w)π(w)∗ = 1.
Therefore π(w) is a unitary in Q.
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The automorphism is inner
Set pn = en+1 − en for n ∈ Z≥0.

We have
∑∞

n=0 pn = 1,
limn→∞ ‖π(wn)aπ(wn)

∗−ϕ(a)‖ = 0 for all a ∈ A, limn→∞(pnb− bpn) = 0
for all b ∈ B, and limn→∞(pnwn − wnpn) = 0. Define

w =
∞∑

n=0

pnwnpn.

Then π(w) is unitary.

Let b ∈ B. Then b −
∑∞

n=0 pnbpn is compact, and one can check that

w

( ∞∑
n=0

pnbpn

)
w∗ −

∞∑
n=0

pnwnbw
∗
npn

is compact. Moreover, one can check that

π

( ∞∑
n=0

pnwnbw
∗
npn

)
= lim

n→∞
π(wn)π(b)π(wn)

∗ = ϕ(π(b)).

Therefore ϕ = Ad(π(w))|A.
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When we don’t have projections

We heavily used the fact that we were working with block diagonal
elements.

This is a consequence of

(em+1 − em)(en+1 − en) = 0

for m 6= n, which followed from the assumption that en is a projection and
en+1 ≥ en for all n ∈ Z>0.

In general, with a little work, we can arrange to have en+1en = en for all
n ∈ Z>0, but we can’t get projections. We then get

(em+1 − em)(en+1 − en) = 0

for |m − n| > 1. But

(en − en−1)(en+1 − en) = en − e2
n ,

which is nonzero unless en is a projection.
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Not quite block diagonal
We get (em+1 − em)(en+1 − en) = 0 for |m − n| > 1; not for |m − n| = 1.

We still think of block matrices (even though en+1 − en is not a
projection).

We must now take

w =
∞∑

n=0

(en+1 − en)wn(en+1 − en)

+
∞∑

n=0

(en+2 − en+1)cn(en+1 − en) +
∞∑

n=0

(en+1 − en)dn(en+2 − en+1)

for suitable choices of cn and dn. When we try to show that π(w) is
unitary, in some places in the calculation we need cn = wn and in some
places we need cn = wn+1. Similarly for dn.

This is a problem. However, if ϕ is asymptotically inner, then we have a
continuous path t 7→ wt . We can choose 0 = t0 < t1 < · · · such that
limn→∞ tn = ∞ and limn→∞ ‖wtn+1 − wtn‖ = 0. Then the error from
sometimes using wn and sometimes wn+1 will be a compact operator, and
π(w) will still be unitary.
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Asymptotic innerness implies innerness

We have seen an outline of how to prove that if A ⊂ Q is separable unital,
and ϕ ∈ Aut(A) is asymptotically inner in A, then ϕ is implemented by a
unitary in Q.

There are still details to check (omitted). Moreover, a more complicated
statement is needed because of the auxiliary structure that must be carried
along (also omitted).

Next: How to extend automorphisms by one step.
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One step

Suppose we have Aα and ϕα, and we want to get Aα+1 and ϕα+1. Recall
that ϕα is implemented by a unitary vα ∈ Q.

We also suppose we have an “enumeration” of Q as {xβ : β < 2ℵ0}, and
we recall our “enumeration” of the unitaries in Q as {uβ : β < 2ℵ0}.
We will require that Aα+1 contain xα+1 and vα. The first ensures that,
when all is done, we get

⋃
β<2ℵ0 Aβ = Q. The second ensures that Ad(vα)

defines an automorphism η of Aα+1.

Set B = C ∗(Aα, xα+1, vα). Suppose Ad(vα) 6= Ad(uα+1). Choose y ∈ Q
such that Ad(vα)(y) 6= Ad(uα+1)(y), take Aα+1 = C ∗(B, y), and take
vα+1 = vα. We are done.

Suppose now that Ad(vα) = Ad(uα+1). Choose some y ∈ Q \ B. By
Voiculescu’s Theorem, there is a projection p ∈ Q which commutes with
all elements of B but not with Ad(vα)(y). Set v = 1− 2p, which is
unitary. Then Ad(v)|B = idB , so Ad(v)|Aα = idAα , but
(Ad(v) ◦Ad(vα))(y) 6= Ad(vα)(y), so (Ad(v) ◦Ad(vα))(y) 6= Ad(uα+1)(y).
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One step (continued)
We took B = C ∗(Aα, xα+1, vα). We had found that Ad(vα) = Ad(uα+1).
We chose y ∈ Q \ B and a projection p ∈ Q which commutes with all
elements of B but not with Ad(vα)(y). We set v = 1− 2p, getting

Ad(v)|Aα = idAα and (Ad(v) ◦ Ad(vα))(y) 6= Ad(uα+1)(y).

Take Aα+1 = C ∗(B, y , p) and vα+1 = (2p − 1)vα. Then
ϕα+1 = Ad(vα+1)|Aα+1 agrees with ϕα on Aα but is different from
Ad(uα+1)|Aα+1 . (Note: We are not claiming that
Ad(uα+1)(Aα+1) ⊂ Aα+1.)

We return very briefly to paths. In the full proof, we need a number M,
independent of α, and a continuous path from vα to vα+1, consisting of
unitaries which commute with all elements of Aα. Choosing M = π and
using the path t 7→ 1− p + eπitp, for t ∈ [0, 1], will work. (Note: One
actually needs more, and the correct construction is a bit more
complicated.)
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The last step: limit ordinals

We saw (a simplified version of) how to get Aα+1 and ϕα+1 when we have
Aα and ϕα.

The construction at limit ordinals is essentially the same. Suppose α is a
limit ordinal, and we have Aβ and ϕβ for β < α. Set B0 =

⋃
β<α Aβ. We

use B0 in place of Aα on the previous slides. We use asymptotic innerness
implies unitary implementation to get a unitary v ∈ Q such that
Ad(v)|Aβ

= ϕβ for all β < α. We set B = C ∗(B0, xα, v).

If Ad(v) 6= Ad(uα+1), choose y ∈ Q on which they disagree, take
Aα = C ∗(B, y), and take vα = v .

If Ad(v) = Ad(uα), we choose y ∈ Q \ B and a projection p ∈ Q which
commutes with all elements of B but not with Ad(v)(y). Then take
Aα = C ∗(B, y , p) and vα = (2p − 1)v .
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If Ad(v) 6= Ad(uα+1), choose y ∈ Q on which they disagree, take
Aα = C ∗(B, y), and take vα = v .

If Ad(v) = Ad(uα), we choose y ∈ Q \ B and a projection p ∈ Q which
commutes with all elements of B but not with Ad(v)(y). Then take
Aα = C ∗(B, y , p) and vα = (2p − 1)v .
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