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Polish spaces and groups

Definition
A Polish space is a topological space whose topology is induced by a
complete separable metric.
A Polish group is a topological group whose topology is Polish.

Examples

• The group Aut(X , µ) of measure-preserving bijections of a standard
atomless probability space (X , µ) is a Polish group with the topology
induced by the maps T 7→ µ(T (A)∆A) (where A ranges over all
measurable subsets of X ).

• Another example that will come up is the group L0(T), which is the
unitary group of the abelian von Neumann algebra L∞(X , µ).
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The space of actions

Notation
Γ will always denote a countable discrete group, and G will stand for
Aut(X , µ).

Definition
The space of homomorphisms Hom(Γ,G ) is a closed subset of G Γ, hence
a Polish space.
We may think of Hom(Γ,G ) as the space of actions of Γ on (X , µ).

Question
What does a typical element of Hom(Γ,G ) look like? Which properties
are generic in Hom(Γ,G )?

J. Melleray Generic properties of measure-preserving actions



The space of actions

Notation
Γ will always denote a countable discrete group, and G will stand for
Aut(X , µ).

Definition
The space of homomorphisms Hom(Γ,G ) is a closed subset of G Γ, hence
a Polish space.
We may think of Hom(Γ,G ) as the space of actions of Γ on (X , µ).

Question
What does a typical element of Hom(Γ,G ) look like? Which properties
are generic in Hom(Γ,G )?

J. Melleray Generic properties of measure-preserving actions



The space of actions

Notation
Γ will always denote a countable discrete group, and G will stand for
Aut(X , µ).

Definition
The space of homomorphisms Hom(Γ,G ) is a closed subset of G Γ, hence
a Polish space.
We may think of Hom(Γ,G ) as the space of actions of Γ on (X , µ).

Question
What does a typical element of Hom(Γ,G ) look like? Which properties
are generic in Hom(Γ,G )?

J. Melleray Generic properties of measure-preserving actions



The conjugacy action

Definition
G naturally acts on Hom(Γ,G ) by conjugacy:

g · π(γ) = gπ(γ)g−1 .

• There exist dense conjugacy classes in Hom(Γ,G ) for any countable
Γ (Glasner–Thouvenot–Weiss 2004).

• Hence any Baire-measurable, conjugacy-invariant subset of
Hom(Γ,G ) must be either meager or comeager.

• There exists a comeager conjugacy class in Hom(Γ,G ) whenever Γ is
finite, and conjugacy classes are meager whenever Γ is amenable and
infinite (Glasner–Weiss 2005).

• It is an open problem whether conjugacy classes are meager for all
infinite Γ.
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Does the restriction map preserve category?

Question
Assume that ∆ ≤ Γ are countable groups. How do the generic properties
in Hom(∆,G ) relate to the generic properties in Hom(Γ,G )?

Definition
Let f : X → Y be a continuous map. Say that f is category-preserving if
f −1(O) is comeager in X whenever O is comeager in Y (e.g. any open
map is category-preserving).

Question (revisited)
Assume that ∆ ≤ Γ are countable groups. When is the restriction map
Res : Hom(Γ,G )→ Hom(∆,G ) category-preserving?

Note that the restriction map is obviously category-preserving when
∆ = Fn ≤ Fm = Γ (it is open).
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An extension of the Kuratowki–Ulam theorem

Theorem (M.–Tsankov)
Let X ,Y be Polish spaces, and f : X → Y be a continuous,
category-preserving map. Then the following are equivalent, for A ⊆ X
Baire–measurable:

• A is comeager in X .

• {y ∈ Y : A is comeager in f −1({y})} is comeager in Y .

In symbols:(
∀∗x ∈ X A(x)

)
⇔
(
∀∗y ∈ Y ∀∗z ∈ f −1({y}) A(z)

)
.

The classical Kuratowski–Ulam theorem corresponds to the case where f
is a projection map.
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Restrictions of measure-preserving actions

Theorem (Ageev 2003)
Let Γ be a countable abelian group and ∆ be an infinite cyclic subgroup.
Then a generic measure-preserving ∆-action extends to a free Γ-action.

Corollary (equivalent reformulation of Ageev’s theorem)
Let Γ be a countable abelian group and ∆ be an infinite cyclic subgroup.
Then the restriction map Res : Hom(Γ,Aut(µ))→ Hom(∆,Aut(µ)) is
category-preserving.

Thus, under the above assumptions on ∆ ≤ Γ, whenever a generic ∆
action satisfies some property (P), the restriction to ∆ of a generic
Γ-action also satisfies property (P).
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Restrictions of measure-preserving actions II

Ageev’s result is based on an earlier result of King, corresponding to the
case when Γ = Z and ∆ = nZ.

Theorem (King 2000)

The map φn :

{
G → G

g 7→ gn
is category-preserving for all n ≥ 1 (In

particular, a generic element of G admits roots of all orders).

At roughly the same time as Ageev, Tikhonov also obtained similar
results (for instance the fact that the restriction map from Hom(Zd ,G )
to Hom(Z,G ) preserves category).

How far can these results be pushed?
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Restrictions of measure-preserving actions III

Using the structure theorem for finitely-generated abelian groups, and the
extension of the Kuratoski–Ulam theorem mentioned above, one can
prove the following.

Theorem (M.)
Let Γ be a countable abelian group and ∆ be a finitely generated
subgroup. Then the restriction map Res : Hom(Γ,G )→ Hom(∆,G ) is
category-preserving.

Question
Can one remove the assumption that ∆ is finitely generated in the
previous theorem?

O. Ageev has recently announced a negative answer.
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Restrictions of measure-preserving actions IV

What about non-abelian groups?

Observation (M.)
There exist a polycyclic group Γ and an infinite cyclic subgroup ∆ ≤ Γ
such that a generic measure-preserving ∆-action does not extend to a
measure-preserving Γ-action.

Previous examples of this phenomenon (where Γ was more complicated)
were already known.

The proof of the above observation depends on another result of King
(1986): the closed subgroup generated by a generic element of G is
maximal abelian; equivalently, the centralizer of a generic element g of G
is equal to the closure of {gn : n ∈ Z}.
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A new proof of King’s result on centralizers of generic
elements I.

Now we describe a simple proof of King’s result on centralizers of generic
elements (note: King’s original result is actually stronger, as it applies to
all elements of rank 1). The proof is extracted from the proof of a more
general result in a joint work with T. Tsankov.

Notation
For H a Polish group, we identify Hom(Z2,H) with

C(H) = {(a, b) ∈ H : ab = ba} .

For h ∈ H C(h) denotes the centralizer of h.

Lemma
Let H be a Polish group such that {(a, b) ∈ C(H) : b ∈ 〈a〉} is dense in

C(H). Then the map π :

{
C(H)→ H

(a, b) 7→ a
is category-preserving.
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A new proof of King’s result on centralizers of generic
elements II.

Lemma
Let H be a Polish group such that {(a, b) ∈ C(H) : b ∈ 〈a〉} is dense in

C(H). Then the map π :

{
C(H)→ H

(a, b) 7→ a
is category-preserving.

Proof.
Let A be a dense subset of H; enough to prove that π−1(A) is dense in
C(H). So let O be nonempty open in C(H) and assume w.l.o.g that

O = {(a, b) ∈ C(H) : a ∈ O1 ∧ b ∈ O2} .

There exists (a, b) ∈ O such that b ∈ 〈a〉; hence there exists a ∈ O1 and
n such that an ∈ O2. Fix such an n; restricting O1 if necessary, we may
assume c ∈ O1 ⇒ cn ∈ O2.
Then pick c ∈ O1 ∩ A: we have (c , cn) ∈ O and π(c , cn) = c ∈ A.
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A new proof of King’s result on centralizers of generic
elements III.

Theorem
Assume again that H is a Polish group such that
{(a, b) ∈ C(H) : b ∈ 〈a〉} is dense in C(H). Then the centralizer of a
generic element h of H is equal to 〈h〉.

Note that the assumption of this theorem is easily seen to be satisfied
when H = Aut(X , µ).

Proof.
We have ∀∗(a, b) ∈ C(H) b ∈ 〈a〉.
Applying the fact that (a, b) 7→ a is category-preserving from C(H) to H,
we obtain

∀∗a ∈ H
(
∀∗b ∈ C(a) b ∈ 〈a〉

)
.

Since 〈a〉 is obviously closed in C(a), we get C(a) = 〈a〉 for a generic
a ∈ H.
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A detour: separable von Neumann algebras.

The strategy of proof above is fairly flexible. As pointed out by my
student F. Le Mâıtre, it is easy to see the following.

Lemma
Let M be a separable von Neumann algebra. Then
{(a, b) ∈ C(U(M)) : b ∈ 〈a〉} is dense in C(U(M)).

Thus, a generic element in the unitary group of a separable von Neumann
algebra always generates a maximal abelian subgroup.

Lemma
Let M be a separable, diffuse von Neumann algebra. Then any maximal
abelian subalgebra of M is diffuse, so its unitary group is isomorphic to
L0(X , µ).

Of course, a maximal abelian subgroup of U(M) must be the unitary
group of a masa.
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Separable von Neumann algebras II.

To sum up:

Theorem (Le Mâıtre)
Let M be a diffuse separable von Neumann algebra; a generic element of
U(M) generates a closed subgroup which is maximal abelian and
isomorphic to L0(X , µ).

The same result holds for U(`2); this was originally proved by Todor
Tsankov and myself, but one can give a simpler proof based on the
technique discussed above and the notion of extreme amenability.
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Extreme amenability is a Gδ property.

Definition
Recall that a topological group H is extremely amenable if any
continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)
Let Γ be a countable group, and H be a Polish group. Then

{π ∈ Hom(Γ,H) : π(Γ) is extremely amenable}

is Gδ in Hom(Γ,H).

Theorem (M.–Tsankov)
In both Aut(X , µ) and U(`2), a generic element generates an extremely
amenable subgroup.

Corollary (M.–Tsankov)
A generic element of U(`2) generates a closed subgroup isomorphic to
L0(X , µ).

J. Melleray Generic properties of measure-preserving actions



Extreme amenability is a Gδ property.

Definition
Recall that a topological group H is extremely amenable if any
continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)
Let Γ be a countable group, and H be a Polish group. Then

{π ∈ Hom(Γ,H) : π(Γ) is extremely amenable}

is Gδ in Hom(Γ,H).

Theorem (M.–Tsankov)
In both Aut(X , µ) and U(`2), a generic element generates an extremely
amenable subgroup.

Corollary (M.–Tsankov)
A generic element of U(`2) generates a closed subgroup isomorphic to
L0(X , µ).

J. Melleray Generic properties of measure-preserving actions



Extreme amenability is a Gδ property.

Definition
Recall that a topological group H is extremely amenable if any
continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)
Let Γ be a countable group, and H be a Polish group. Then

{π ∈ Hom(Γ,H) : π(Γ) is extremely amenable}

is Gδ in Hom(Γ,H).

Theorem (M.–Tsankov)
In both Aut(X , µ) and U(`2), a generic element generates an extremely
amenable subgroup.

Corollary (M.–Tsankov)
A generic element of U(`2) generates a closed subgroup isomorphic to
L0(X , µ).

J. Melleray Generic properties of measure-preserving actions



Extreme amenability is a Gδ property.

Definition
Recall that a topological group H is extremely amenable if any
continuous action of H on a compact space has a fixed point.

Theorem (M.–Tsankov)
Let Γ be a countable group, and H be a Polish group. Then

{π ∈ Hom(Γ,H) : π(Γ) is extremely amenable}

is Gδ in Hom(Γ,H).

Theorem (M.–Tsankov)
In both Aut(X , µ) and U(`2), a generic element generates an extremely
amenable subgroup.

Corollary (M.–Tsankov)
A generic element of U(`2) generates a closed subgroup isomorphic to
L0(X , µ).

J. Melleray Generic properties of measure-preserving actions



What about Aut(X , µ)?

We saw that a generic element of Aut(X , µ) generates a closed subgroup
which is maximal abelian and extremely amenable; similar ideas can also
be used to proved that this subgroup is always generically monothetic.

More is kown:

Theorem (Solecki)
For a generic g ∈ Aut(X , µ), the closed subgroup generated by g is a
continuous homomorphic image of L0(X , µ), and contains an increasing
chain of finite-dimensional tori whose union is dense.

Question
Is it true that a generic element of Aut(X , µ) generates a closed
subgroup isomorphic to L0(X , µ)?

Thank you for your attention!
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