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Theorem

(Elliott-Gong (1996)) Let A and B be two unital simple AH-algebras

with
slow dimension growth and with real rank zero. Then A ∼= B if and only if

(K0(A),K0(A)+, [1A],K1(A)) ∼= (K0(B),K0(B)+, [1B ],K1(B)).

Theorem

( Elliott-Gong-Li 2007) Let A and B be two unital simple AH-algebras
with no dimension growth. Then A ∼= B if and only if

(K0(A),K0(A)+, [1A],K1(A),T (A), rA)
∼= (K0(B),K0(B)+, [1B ],K1(B),T (B), rB). (e 0.1)
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Here rC is an affine map from T (C ) into S1(K0(C )), the state space of
K0(C ), such that rC (τ)([p]) = τ(p) for all projections in Mk(C ), k ≥ 1.

The symbol ”∼=” means: there is an isomorphism κ1 : K1(A)→ K1(B); an
order isomorphism κ0 : K0(A)→ K0(B) such that κ0([1A]) = [1B ]; an
affine homeomorphism γ : T (A)→ T (B) such that

rA ◦ (γ−1(τ))(x) = rB(τ)(κ0(x))

for all x ∈ K0(A) and τ ∈ T (A). We will write

Ell(A) = (K0(A),K0(A)+, [1A],K1(A),T (A), rA).
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Denote by I0 the class of all finite dimensional C ∗-algebras,

denote by Ik
the class of C ∗-algebras with the form PMn(C (X ))P, where X is a finite
CW complex with dimension k , P ∈ Mn(C (X )) is a projection.

Definition

Let A be a unital simple C ∗-algebra. We say A has tracial rank at
most k and write TR(A) ≤ k , if the following holds: For any
a ∈ A+ \ {0}, any ε > 0 and any compact subset F ⊂ A, there exists a
projection p ∈ A and a C ∗-subalgebra C ∈ Ik with 1C = p such that
(1) ‖px − xp‖ < ε for all x ∈ F ;
(2) dist(pxp,C ) < ε for all x ∈ F and
(3) 1− p . a.

If TR(A) ≤ k but TR(A) 6≤ k − 1, we say A has tracial rank k and write
TR(A) = k .
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Theorem

(L–2003—2007) Let A and B be two unital separable simple amenable
C ∗-algebras which satisfy the UCT.

Suppose TR(A) ≤ 1 and TR(B) ≤ 1.
Then A ∼= B if and only if

Ell(A) ∼= Ell(B).

According to a result of Guiuha Gong, a unital simple AH-algebra with
very slow dimension growth has tracial rank at most one.
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Theorem

( L-Phillips) Let X be a finite dimensional infinite metric space

and let α
be a minimal homeomorphism. Suppose that ρ(K0(C (X ) oα Z)) is dense
in Aff(T (C (X ) oα Z)). Then C (X ) oα Z is isomorphic to a unital simple
AH-algebra ẇith no dimension growth and with real rank zero (tracial rank
zero).
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ẇith no dimension growth and with real rank zero (tracial rank
zero).

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 6

/ 34



Theorem

( L-Phillips) Let X be a finite dimensional infinite metric space and let α
be a minimal homeomorphism. Suppose that ρ(K0(C (X ) oα Z)) is dense
in Aff(T (C (X ) oα Z)). Then C (X ) oα Z is isomorphic to a unital simple
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Theorem

(Villadsen) For any countable weakly unperforated simple ordered group
G0 6∼= Z with the Riesz interpolation property and with order unit u,

any
countable abelian group G1, any metrizable Choquet simplex ∆, and any
surjective affine continuous map r : ∆→ Su(G0) (the state space of G0)
so that r(∂e(∆)) = ∂e(G0), there is a unital simple AH-algebra A with
TR(A) ≤ 1 such that

Ell(A) = (G0, (G0)+, u,G1,∆, r).
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Theorem

Let A be a unital separable simple C ∗-algebra with tracial rank at most
one.

Then K0(A) is weakly unperforated Riesz group and
rA(∂e(T (A))) = ∂e(S[1A](K0(A)).

Every unital separable simple amenable C ∗-algebra A with TR(A) ≤ 1
which satisfies the UCT is isomorphic to a unital simple AH-algebra with
no dimension growth (in fact the dimension of the base spaces can be
chosen to be no more than 3).
Jiang-Su algebra Z is not an AH-algebra.
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A remarkable result of Winter provides a new method to push a
classification theorem which will apply to classes of C ∗-algebras include
simple C ∗-algebras which have tracial rank other than 0, 1.

More
precisely, Winter’s result provides a method which can be used to classify
those simple C ∗-algebras A which have the property that
TR(A⊗Mp) ≤ 1, where Mp is a UHF-algebra of infinite type.
In fact, with Winter’s method, one has the following.
Let A be the class of all unital amenable separable simple C ∗-algebras A
which satisfy the UCT and TR(A⊗Mp) ≤ 1 for all UHF-algebras Mp of
infinite type.
Let A0 be the class of all unital amenable separable simple C ∗-algebras A
which satisfy the UCT and TR(A⊗Mp) = 0 for all UHF-algebras Mp of
infinite type.

Theorem

(L–2011) Let A, B ∈ A which are Z-stable. Then A ∼= B if and only if

Ell(A) ∼= Ell(B).
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Theorem

( Toms and Winter 2009) Let X be an infinite compact metric space with
finite covering dimension

and let α : X → X be a minimal
homeomorphism. Suppose that projections of C (X ) oα Z separate the
tracial states. Then C (X ) oα Z is a unital simple Z-stable C ∗-algebra in
A0.
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Theorem

(L–Niu 2011) Let (G0, (G0)+, u) be a countable partially ordered simple
weakly unperforated

and rationally Riesz group, let G1 be a countable
abelian group, let T be a metrizable Choquet simplex and let
λT : T → Su(G0) be a surjective affine continuous map sending extremal
points to extremal points. Then there exists one (and exactly one, up to
isomorphic) unital Z -stable C ∗-algebra A ∈ A such that

Ell(A) = ((G0, (G0)+, u),G1,T , λT ).

Moreover, A can be constructed to be locally approximated by
subhomogeneous C ∗-algebras.

Proposition

Let G be a countable weakly unperforated simple partially ordered group
with an order unit u. Then G has the rationally Riesz property if and only
if Su(G ) is a metrizable Choquet simplex.
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Theorem

(L–W. Sun (2012)) Let A be a unital separable simple amenable
C ∗-algebra.

Then the following are equivalent:
(1) TR(A⊗ U) ≤ 1 for all UHF-algebras U of infinite type;
(2) TR(A⊗ U) ≤ 1 for one UHF-algebra U of infinite type;
(3) TR(A⊗ B) ≤ 1 for all unital simple AF-algebras B;
(4) TR(A⊗ B) ≤ 1 for some unital infinite dimensional simple AF-algebra
B;
(5) TR(A⊗ B) ≤ 1 for all unital simple AH-algebras B of slow dimension
growth;
(6) TR(A⊗ B) ≤ 1 for some unital infinite dimensional simple AH-algebra
with slow dimension growth.
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Let X be a compact metric space.

Let k ≥ 1 be an integer. Let
m1,m2, ...,mn ≥ 1 be integers such that mj |k , j = 1, 2, ..., n We write
Mk = Mj ⊗Mk/mj

. Let Bj = Mmj ⊗ 1mj/k . Let X1,X2, ...,Xn ⊂ X be
mutually disjoint compact subsets.
Denote

DX ,k,{Xj},{mj} =

{f ∈ C (X .Mk) : f (x) ∈ Bj for all x ∈ Xj , 1 ≤ j ≤ n}.

We say C is a generalized dimension drop algebra if C has the form

C =
N⊕
i=1

PiDXi ,k(i),{Xi,j},{mi,j}Pi ,

where Pi ∈ DXi ,k(i),{Xi,j},{mi,j} is a projection, and where Xi is locally
Euclidean (actually we allow much more general spaces).
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Theorem

(L–2010) Let A be a unital inductive limit of generalized dimension drop
algebras.

Then TR(A⊗ Q) ≤ 1.

Theorem

Let A and B be two unital inductive limits of generalized dimension drop
algebras with no dimension growth. Then A ∼= B if and only if

Ell(A) = Ell(B).
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But there are amenable simple C ∗-algebras with weakly unperforated
K0(A) which are not rationally Riesz.

There are amenable simple
C ∗-algebras that the map rA : T (A)→ S[1A](K0(A)) do not preserve the
extremal points.

Definition

Let F1 and F2 be two finite dimensional C ∗-algebras. Suppose that there
are two unital homomorphisms φ0, φ1 : F1 → F2. Put

A = A(F1,F2, φ0, φ1) =

{(f , g) ∈ C ([0, 1],F2)⊕ F1 : f (0) = φ0(g) and f (1) = φ1(g)}.

Denote by J1 the class of all unital C ∗-algebras of the form
A = A(F1,F2, φ0, φ1).
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Definition

Let A be a unital simple C ∗-algebra.

We write GTR(A) ≤ 1 if the
following hold:
Let ε > 0, let a ∈ A+ \ {0} and let F ⊂ A be a finite subset. There exists
a projection p ∈ A and a C ∗-subalgebra C ∈ J1 with K1(C ) = {0} and
with 1C = p such that

‖xp − px‖ < ε for all x ∈ F , (e 0.2)

dist(pxp,C ) < ε for all x ∈ F and (e 0.3)

1− p . a. (e 0.4)
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Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1.

Then either A is
an inductive limit of unital C ∗-algebras in J1 or it has the property (SP).

Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has stable
rank one.

Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1.Then, for any
projection p ∈ A, GTR(pAp) ≤ 1.
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Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1.

Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements

and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1.

Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1

and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U,

where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B).

Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;

(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0,

then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1. Then A has
strictly comparison for positive elements and K0(A) is weakly
unperforated.

Theorem

Let A be a unital separable amenable simple C ∗-algebra with
GTR(A) ≤ 1. Then A is Z-stable.

Lemma

Let A be a unital simple C ∗-algebra with GTR(A) ≤ 1 and let
B = A⊗ U, where U is a UHF-algebra with infinite type and let
u ∈ U0(B). Then
(i) U(B)/CU(B) is torsion free and divisible;
(ii) If u, v ∈ U(B) with cel((u∗)kvk) ≤ L for some integer k > 0, then

cel(u∗v) ≤ 6π + L/k .

Huaxin Lin Department of Mathematics University of Oregon ()Simple C∗-algebras of generalized tracial rank one
911– 2012, Fields Institute Joint work with Guihua Gong and Zhuang Niu –in progress 19

/ 34



Theorem

( Gong–L–Niu) Let A1 and B1 be two unital separable amenable simple
C ∗-algebras.

Let A = A1 ⊗ U1 and B = B1 ⊗ U2, where U1 and U2 are
infinite dimensional UHF-algebras Suppose that GTR(A) ≤ 1 and
GTR(B) ≤ 1 and both satisfy the UCT. Then A ∼= B if and only if

Ell(A) ∼= Ell(B).
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We will use Winter’s method again.

In order to have Winter’s method work, one still need so-called
”uniqueness” and ”existence” theorems.
It requires much finer ”uniqueness” and ”existence” theorems. .
Approximate Unitary equivalence
Let A and B be two unital C ∗-algebras and let φ1, φ2 : A→ B be two
unital monomorphisms. We say φ1 and φ2 are approximately unitarily
equivalent if there exists a sequence of unitaries {un} ⊂ B such that

lim
n→∞

u∗nφ1(a)un = φ2(a) for all a ∈ A.
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Asymptotic Unitary equivalence

Let A and B be two unital C ∗-algebras and let φ1, φ2 : A→ B be two
unital monomorphisms. We say φ1 and φ2 are approximately unitarily
equivalent if there exists a path of unitaries {u(t) : t ∈ [0,∞)} ⊂ B such
that

lim
t→∞

u(t)∗φ1(a)u(t) = φ2(a) for all a ∈ A.
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If φ1, φ2 are approximately unitarily equivalent,

then [φ1] = [φ2] in
KL(A,B), (φ1)T = (φ2)T and the maps U(A)/CU(A)→ U(B)/CU(B)
induced by φ1 and φ2 are the same.

If φ1 and φ2 are asymptotically unitarily equivalent, then [φ1] = [φ2] in

KK (A,B), (φ1)T = (φ2)T and φ‡1 = φ‡2 are the same. But there are
more.
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Let A and B be two unital C ∗-algebras.

Suppose that φ, ψ : A→ B are
two monomorphisms. Define

Mφ,ψ =

{x ∈ C ([0, 1],B) : x(0) = φ(a) and x(1) = ψ(a) for some a ∈ A}.

Thus one obtains an exact sequence:

0→ SB
ı→ Mφ,ψ

π0→ A→ 0, (e 0.5)

π0 : Mφ,ψ → A is identified with the point-evaluation at the point 0.
Suppose that A is a separable amenable C ∗-algebra.
Suppose that [φ] = [ψ] in KK (A,B). The mapping torus Mφ,ψ

corresponds a trivial element in KK (A,B). It follows that there are two
splitting short exact sequences:

0→ K1(B)
ı∗→ K0(Mφ,ψ)

(π0)∗→ K0(A)→ 0 and (e 0.6)

0→ K0(B)
ı∗→ K1(Mφ,ψ)

(π0)∗→ K1(A)→ 0. (e 0.7)
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Definition

Suppose that T (B) 6= ∅.

Let u ∈ Ml(Mφ,ψ) be a unitary which is a
piecewise smooth function on [0, 1]. For each τ ∈ T (B), we denote by τ
the trace τ ⊗Tr on Ml(B), where Tr is the standard trace on Ml . Define

Rφ,ψ(u)(τ) =
1

2πi

∫ 1

0
τ(

du(t)

dt
u(t)∗)dt. (e 0.8)

It is easy to see that Rφ,ψ(u) has real value.
If

τ(φ(a)) = τ(ψ(a)) for all a ∈ A and τ ∈ T (B), (e 0.9)

then there exists a homomorphism

Rφ,ψ : K1(Mφ,ψ)→ Aff (T (B))

defined by

Rφ,ψ([u])(τ) =
1

2πi

∫ 1

0
τ(

du(t)

dt
u(t)∗)dt.
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If p is a projection in Ml(B) for some integer l ≥ 1,

one has ı∗([p]) = [u],
where u ∈ Mφ,ψ is a unitary defined by

u(t) = e2πitp + (1− p) for t ∈ [0, 1].

It follows that

Rφ,ψ(ı∗([p]))(τ) = τ(p) for all τ ∈ T (B).

In other words,
Rφ,ψ(ı∗([p])) = ρB([p]).

Thus one has the following: diagram commutes:

K0(B)
ı∗−→ K1(Mφ,ψ)

ρB ↘ ↙ Rφ,ψ
Aff (T (B))
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If [φ] = [ψ] in KK (A,B) and A satisfies the Universal Coefficient
Theorem,

using Dadarlat-Loring’s notation, one has the following
splitting exact sequence:

0→ K (SB)
[ı]→K (Mφ,ψ)

[π0]

� θ K (A)→ 0. (e 0.10)

In other words, there is θ ∈ HomΛ(K (A),K (Mφ,ψ)) such that
[π0] ◦ θ = [idA]. In particular, one has a monomorphism
θ|K1(A) : K1(A)→ K1(Mφ,ψ) such that [π0] ◦ θ|K1(A) = (idA)∗1. Thus, one
may write

K1(Mφ,ψ) = K0(B)⊕ K1(A). (e 0.11)

, Suppose also that τ ◦ φ = τ ◦ ψ for all τ ∈ T (A). Then one obtains the
homomorphism

Rφ,ψ ◦ θ|K1(A) : K1(A)→ Aff (T (B)). (e 0.12)
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� θ K (A)→ 0. (e 0.10)

In other words, there is θ ∈ HomΛ(K (A),K (Mφ,ψ)) such that
[π0] ◦ θ = [idA]. In particular, one has a monomorphism
θ|K1(A) : K1(A)→ K1(Mφ,ψ) such that [π0] ◦ θ|K1(A) = (idA)∗1. Thus, one
may write

K1(Mφ,ψ) = K0(B)⊕ K1(A). (e 0.11)

, Suppose also that τ ◦ φ = τ ◦ ψ for all τ ∈ T (A). Then one obtains the
homomorphism

Rφ,ψ ◦ θ|K1(A) : K1(A)→ Aff (T (B)). (e 0.12)
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We say a rotation related map vanishes,

if there exists a such splitting
map θ such that

Rφ,ψ ◦ θ|K1(A) = 0.

Denote by R0 the set of those homomorphisms
λ ∈ Hom(K1(A),Aff(T (B))) for which there is a homomorphism
h : K1(A)→ K0(B) such that λ = ρA ◦ h. It is a subgroup of
Hom(K1(A),Aff(T (B))). There is a well-defined element
Rφ,ψ ∈ Hom(K1(A),Aff(T (B)))/R0 (which does not depend on the
choices of θ).
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In particular, if Rφ,ψ = 0, there exists Θ ∈ HomΛ(K (A),K (Mφ,ψ)) such
that [π0] ◦Θ = [idA] and

Rφ,ψ ◦Θ = 0.

When Rφ,ψ = 0, θ(K1(A)) ∈ kerRφ,ψ for some θ above.

In this case θ also
gives the following:

kerRφ,ψ = kerρB ⊕ K1(A).
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Theorem

(Gong–L–Niu—2012) Let A1 and B be two unital separable simple
amenable C ∗-algebras which satisfy the UCT.

Let A = A1 ⊗ U for some
infinite dimensional UHF-algebra U such that GTR(A) ≤ 1. Suppose that
φ, ψ : A→ B are two unital monomorphisms. Then φ and ψ are
asymptoticaly unitarily equivalent if and only if

[φ] = [ψ] in KK (A,B), (e 0.13)

φT = ψT , (e 0.14)

φ‡ = ψ‡ and (e 0.15)

Rφ,ψ = 0. (e 0.16)
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Let A and B be two unital amenable separable C ∗-algebras with stable
rank one.

Let κ ∈ KK (A,B) such that κ([1A]) = [1B ] and
κ(K0(A)+ \ {0}) ⊂ K0(B)+ \ {0}. γ : T (B)→ T (A) be an affine
continuous map and λ : U(A)/CU(A)→ U(B)/CU(B) be a continuous
homomorphism. We say κ, γ and λ are compatible, if, for any x ∈ K0(A),
rB(τ)(κ(x)) = rA(γ(τ))(x) for all τ ∈ T (B) and ΠB(λ(ū)) = κ([u]) for
all u ∈ U(A), where ΠB : U(B)/CU(B)→ K1(B) be the quotient map.

Theorem

Let A1 and B1 be unital separable amenable simple C ∗-algebras which
satisfies the UCT, let A = A1 ⊗ U1 and B = B1 ⊗ U2, where U1 and U2

are two infinite dimensional UHF-algebras. Suppose that GTR(A) ≤ 1 and
GTR(B) ≤ 1. Suppose also that (κ, λ, γ) is a compatible triple as above.
Then there exists a unital monomorphism φ : A→ B such that
([φ], φT , φ

‡) = (κ, λ, γ).
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Theorem

Given a unital monomorphism φ : A→ B

and given an element
R ∈ Hom(K1(A), ρB(K0(B)))/R0. There exists a unital monomorphism
ψ : A→ B such that

Rφ,ψ = R.
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Theorem

(Gong–L—Niu) Let A and B be two unital separable simple amenable
Z-stable C ∗-algebras which satisfy the UCT.

Suppose that
GTR(A⊗Mp) ≤ 1 and GTR(B ⊗Mp) ≤ 1 for any UHF-algebra Mp of
infinite type. Then A ∼= B are isomorphic if and only if

Ell(A) ∼= Ell(B).
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Theorem

For each countable partially ordered weakly unperforated group G0 with
order unit u,

any countable abelian group G1, any metrizable Choquet
simplex ∆ and any surjective affine continuous map r : ∆→ Su(G0) (the
state space of G0), there exists a unital separable simple amenable
C ∗-algebra A which satisfies the UCT and GTR(A⊗Mp) ≤ 1 for all
UHF-algebra Mp of infinite type such that

Ell(A) = (G0, (G0)+, u,G1,∆, r).

Moreover, A can be constructed as an inductive limit of inductive limits
of subhomogenuous C ∗-algebras with dimension of base spaces no more
than three and A is Z-stable.
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