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Remark 20. For every set of ℵ1 many reals, there is a λ < ω2 so that this set
of reals is in the model obtained by forcing with Fn(λ, 2)×Mλ. Thus it will have
measure 0. However, from the point of view of the model V [H], there is a set of
ℵ1-many reals added by Fn(ω1, 2) which will not be meager.

1. Iterated forcing

Iterated forcing is, in some sense, really just iterated construction of posets
combined with reflection and factoring of the poset to prove the properties. But
the initial stages of the forcing allows us to pick the future posets.

Definition 21. If P is a poset, and Q̇ is forced by 1P to be a poset with ordering
<̇Q, then P ∗ Q̇ is defined so that forcing with P ∗ Q̇ is the same as forcing with P

and then forcing with Q̇.

But we have to be precise about definition of the elements of P ∗Q̇ because there
are too many possibilities. On the other hand, for many technical reasons we do
want a lot of choices.

Definition 22. Let P be a poset and assume that 1P forces that Q̇ – i.e. (Q̇, <̇Q, 1Q)

– is a poset in the extension. Let θ be a regular cardinal such that P and Q̇ are
in H(θ). Let P ∗ Q̇ denote the set of pairs (p, q̇) such that p ∈ P , q̇ ∈ H(θ), and

p 
 q̇ ∈ Q̇. The ordering < on P ∗ Q̇ is clear: (p1, q̇1) < (p0, q̇0) providing p1 <P p0
and p1 
 q̇1 <Q q̇0.

Remark 23. We have seen, for example, that if P = Fn(ω2, 2), then P ∗ P is the
same as P × P , and that P ∗Mω2 is not the same as P ∗ M̌ω2 . Similarly, P ∗ Ȟ
is the same as P ×H, but is different from P ∗ H.

The jargon here is that things like Mω2
and H are “forcing notions” which are

interpreted in the model under discussion, and the actual set of elements (but not
usually the ordering) changes when we move to a forcing extension.

We mostly prove things about the extension by P ∗ Q̇ by first forcing with P and
then forcing with valG(Q̇) – so why have it?

The answer is that there is no end to how many times you can extend your poset
Pα by attaching a Q̇α because you are just building confusing posets, but it is very
unclear what it means to force infinitely many times – a point which is handled at
limit stages in the construction of Pα’s.

Definition 24 (V.3.11 Kunen - Set Theory). An α-stage iterated forcing construc-
tion is a pair

( {(Pξ, <ξ, 1ξ) : ξ ≤ α} , {(Q̇ξ, <Q̇ξ , 1Q̇ξ) : ξ < α}

such that

(1) Each Pξ is a forcing poset,

(2) each (Q̇ξ, <Q̇ξ , 1Q̇ξ) is a Pξ-name for a forcing poset,

(3) each p ∈ Pξ is a function of the form 〈q̇µ : µ < ξ〉 where each q̇µ is an

element of dom(Q̇ξ), and p(µ) would denote this q̇µ
(4) if ξ < η and p ∈ Pη, then p � ξ ∈ Pξ
(5) if ξ < η and p ∈ Pξ, then there is p′ ∈ Pη such that p′ � ξ = p and

p′(µ) = 1Q̇µ for all ξ ≤ µ < η

(6) 1ξ is the sequence 〈1Q̇µ : µ < ξ〉
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(7) p ≤ξ p′ if, for each µ < ξ, p � µ 
 p(µ) <Q̇µ p
′(µ)

(8) for each ξ < α, Pξ+1 is (basically) Pξ ∗ Q̇ξ – more precisely, for each p ∈ Pξ
and each q̇ ∈ dom(Q̇ξ) such that p 
 q̇ ∈ Q̇ξ, we have p ∪ {(ξ, q̇)} ∈ Pξ+1

The above is a prescription, but it still needs more precision at limits. We will
mainly study FS-iteration sequences and CS-iteration sequences. For each p ∈ Pα,
the set supp(p) = {µ : p(µ) 6= 1Q̇µ} is finite or countable respectively. I find it

useful to replace p by p � supp(p) and modify the definitions accordingly.

Lemma 25. Suppose that p, q are in Pα which is constructed from an interation
sequence as above. Assume that supp(p) ∩ supp(q) ⊂ ξ. Then p 6⊥ q if and only if
p � ξ 6⊥ q � ξ

Theorem 26. A finite support iteration of ccc posets is ccc.

Proof. We leave as an informal exercise that the iteration of two ccc posets is ccc.
Here we are more interested in the handling of the supports. Suppose that Pα
is built from a FS-iteration of ccc posets. Naturally this theorem is proven by
induction on α and, by the exercise we assume that α is a limit. Let {pγ : γ ∈
ω1} ⊂ Pα. For each γ, let Fγ = supp(pγ). Clearly by the induction hypothesis,
we must have that supports are cofinal in α and that α has cofinality ω1. Apply
the ∆-system and obtain some δ < α so that the root F of the ∆-system is below
δ. By the induction hypothesis, there are γ, ζ (indices from the ∆-system) so that
pγ � δ and pζ � δ are compatible. By Lemma 25, pγ and pζ are compatible. �

Question 5. Suppose that Pκ is the result of the FS-support iteration {Pξ, Q̇ξ :
ξ < α}. It is pretty clear that for each µ < κ, the poset Pµ is completely embedded
(is a subposet by my convention) in Pκ. Thus, if Gµ is Pµ-generic, what does G+

µ

look like?

Remark 27. The answer is that it also looks like a FS-support iteration, and if
the selection of Q̇ξ’s were made by some natural formula, this “tail” of the forcing,
perhaps denoted P ξκ is, for all intents and purposes the same as Pκ (as a forcing

notion). In particular, if Q̇ξ is always chosen to be H, then this is true in the sense
that Pκ and P ξκ are both “the FS-iteration of Hechler posets”.

Remark 28. The details are messy but straightforward.

Question 6. What are some of the theorems of V [Gκ] when CH holds in V and
Pκ is the FS-iteration of H for some regular cardinal κ?

Exercise 8. The value of b, d, a, u are all equal to c = κ. (Hint: factor the forcing)

Question 7. What are the values of t and s?

Lemma 29. If any finite support iteration Pκ over a model of CH fails to preserve
a witness to t ≤ ω1 or (most witnesses to) s ≤ ω1, then it does so at some successor
step.

This next result is an excellent one: even though H fills the filter on ω × ω
generated by all sets of the form {(m, f(m)) : m > n, f ∈ ωω}, it will not fill a
linear tower.

but first, let’s go back to Truss
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Remark 30. If D ⊂ H is dense, define TD to be the minimal elements of {t ∈
ω<ω↑ : (∃h)(t, h) ∈ D}. Then define T̃D = {s ∈ ω<ω↑ : (∀t ∈ TD)|s| = |t| ⇒ s 6≤ t}
(nothing in TD above it with the same domain). Check that T̃D has no cofinal
branches and that this is absolute. Truss theorem follows from this observation.
The basic notion is the well-foundedness of T̃D.

Lemma 31 (Baumgartner). Say that a family A is ω-hitting if for each countable
S ⊂ [ω]ω, there is an a ∈ A such that a ∩ S is infinite for all S ∈ S. Forcing with
H preserves that A is ω-hitting.

Proof. LetA be a member of any countable elementary submodel M . Choose a ∈ A
so that a ∩ b is infinite for all infinite b ⊂ ω in M . We prove that for any τ ∈ M
and any (s, f) ∈ H such that (s, f) 
 τ ∈ [ω]ω, we have that (s, f) 
 ǎ ∩ τ ∈ [ω]ω.

The trick is the rank function. Let D ⊂ H be any dense set, and let TD be as
above. For each t ∈ TD we define rkD(t) = 0. Actually every s extending any
t ∈ TD will also have rkD(s) = 0. For other s ∈ ω<ω↑, we want to measure how
long is the walk to TD from (s, g) regardless of which g ∈ ωω↑ we are given. The
right definition for H (this is an idea that works for some other posets) is that
rkD(s) ≤ α if there is an integer ` so that for all n, there is an sn extending s and
in ω` so that sn(|s|) > n and rk(sn) < α. Okay, it’s a mouthful. But notice that
for any g, there is an n so that (sn, g) < (s, g).

Claim 1. For all s ∈ ω<ω↑, rkD(s) < ω1 (i.e. “it exists”).

Recursively define g ∈ ωω↑ so that for each ` and each s′ such that (s′, g) < (s, g)
we have that rkD(s′) also does not exist. Suppose we have defined g � `. We suppose
we fail to define g(`), hence for each n we have tn ∈ ω` such that (tn, g) < (s, g),
tn(`) > n, and rkD(tn) < ω1. Find minimal j so that the family {tn(j) : n ∈ ω} is
unbounded. Find t̄ ∈ ωj so that there are infinitely many n such that t̄ = tn � j
and this subfamily is also unbounded at j. Notice then that rkD(t̄) will then be
less than ω1 and (t̄, g) < (s, g).

Assume there is a (s̄, f̄) and n̄ so that (s̄, f̄) 
 ǎ ∩ τ ⊂ n̄. Let hG denote the
generic Hechler real added by H. We may assume that dom(s̄) = n̄. Choose, in
M , σ a name so that, for some f ∈ M , (s̄, f) 
 σ = min(τ \ hG(n̄)) (i.e. if (t, f)
decides σ, then it forces σ > t(n̄)). We just used the maximum principle. We have
the dense set D of conditions which force a value on σ. For each condition (s, f)
extending (s̄, f), define the set L(s) = {m ∈ ω : (∀g)(s, g) 6
 m̌ 6= σ}. In words,
m is in L(s) if the second coordinate can not prevent σ from having value m. By
induction on rkD(s), if (s, f̄) < (s̄, f̄), then L(s) is a finite subset of ω \ n̄ and
non-empty. In fact it should be a subset of ω \ s(n̄), and so, in fact L(s̄) can not
be finite and non-empty.

This clearly holds if rkD(s) = 0. Assume (s, f̄) < (s̄, f̄) and that it holds for all
s′ with rkD(s′) < rkD(s), and choose the sequence {sn : n ∈ ω} and ` witnessing
the rank of rkD(s). Thus, for all but finitely many n, L(sn) is finite and non-
empty (in fact for all n > f̄(`)). Also, the set

⋃
{L(sn) : n > f̄(`)} is necessarily

disjoint from a and so it is finite. And L(s) contains the set of all k which appear
in infinitely many. �

Perhaps more important is what we actually proved in the proof.
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Corollary 32. If N ≺ H(θ) is countable, and a ∈ [ω]ω meets every member of
N ∩ [ω]ω, then that a meets every member of N [G] ∩ [ω]ω. And, this holds if G is
a generic for the FS-iteration of Hechler.

Another important forcing is the forcing that does diagonalize a filter.

Definition 33. For a filter F on ω define Pr(F) to be the set of conditions [ω]<ω×F
with the ordering (a,A) < (b, B) providing a ⊃ b, A ⊂ B, and a \ b ⊂ B.

If A is an almost disjoint family, then let FA denote the dual filter to the ideal
generated by A. Then Pr(FA) adds a set almost disjoint from every member of A.

If F is a filter that already has such diagonalizing sets, let J be the family of all
such sets, which diagonalize it, then by genericity, forcing Pr(F) adds a new set
which diagonalizes F and meets every set in J in an infinite set.

Choosing a suitable regular cardinal κ and standard bookkeeping:

Proposition 34. There is a finite support iteration of σ-centered posets of the form
Pr(F) so that in V [Gκ] we have that p = c = κ. Also, there is a further forcing
of length κ + ω1 in which we have d = u = ω1. And a forcing Piω1

in which the

π-character of βω \ ω is ω1.

By the way, recall that there does exist Souslin trees in such models – similar to
the Exercise about Cohen reals not adding uncountable antichains, it is also true
that FS-iteration of σ-centered does not add uncountable antichains.

Remark 35. It is a theorem of Bell and Kunen (using independent matrices) that
there is an ultrafilter on ω with π-character at least cf(c).

Of course F could be an ultrafilter, in which case Pr(F) will destroy each split-
ting family. But for selective ultrafilters something very special happens.

Lemma 36. If U is a selective ultrafilter, then Pr(U) has the pure decision prop-
erty. That is, for each τ and each (a,B) ∈ Pr(U), there is a A ∈ U such that (a,A)
decides the forcing statement “τ = 0̌” (or any other).

Proof. For simplicity we start with (∅, B) and we show there is an A ⊂ B. Define
A` ∈ U so that for all s ⊂ ` if there is any U ∈ U , such that (s, U) forces a decision
on τ = 0̌, then (s,A`) does as well.

Similarly, for each s ⊂ `, there is some member U(`, s) ∈ U such that for all
u ∈ U(`, s), the status is constant for the statement about if there is some U ∈ U
such that (s ∪ {u}, U) decides τ = 0̌, and so we may assume that is the same for
all u ∈ A`. (just intersecting the above A` with more member of U).

Apply the fact that U is selective and obtain a set U ∈ U with the property that
U meets each A` \A`+1 in at most a singleton. Let {u` : ` ∈ ω} be the enumeration
of U and define g(m) (for each m) so large that ug(m) < g(m+ 1) – hence {u` : ` ≥
g(m+1)} is contained in Aug(m)

. We may assume that W =
⋃
{[g(2m), g(2m+1)) :

m ∈ ω} ∈ U , and then apply selectivity to choose A = {am : m ∈ ω} ⊂ W in U so
that for each m, am ∈ [g(2m), g(2m+ 1)).

Now, let us choose s ⊂ {am : m ∈ ω} with minimal cardinality so that there
is some U ∈ U which forces (wlog) that τ = 0̌ – just decides the truth. We
want to show that s = ∅, so let m be chosen so that am = max(s). Now it
follows that (s,A \ (am+1)) already forces that τ = 0̌, and moreover that for all
` ≥ m, ({a`} ∪ s \ {am}, A \ (a`+1)) also forces that τ = 0̌. But this means that
(s \ {am}, A \ am) forces that τ = 0̌, contradicting the minimality of |s|. �
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Definition 37. A set of reals X is a γ-set if for each ω-cover by open sets (every
finite subset of X is covered by a member of the ω-cover) has a γ-subcover {Un :
n ∈ ω} (every member of X is in all but finitely many).

For an increasing sequence ~k = 〈k` : ` ∈ ω〉 ((` < k`), define the ω-cover C~k =⋃
` C~k,` of 2ω by C ∈ C~k,` if there is a set ρC ∈ [2k` ]` such that C =

⋃
{[s] : s ∈ ρC}.

This next result was discovered for Laver forcing by Laver when proving the con-
sistency of the Borel conjecture, and adapted to Mathias forcing by Baumgartner.

Lemma 38. If 〈k` : ` ∈ ω〉 is the real added by Pr(U), and C` ∈ C~k,` for each `,

then {x ∈ 2ω ∩ V : (∃∞`)x ∈ C~k,`} is countable. Denote this forcing extension as

V [GU ].

Proof. Assume that {Ċj : j ∈ ω} is forced to be a subsequence of C~k for the generic

sequence such that for each j, Ċj ∈ C~k,j .
Step 1 is to find a sequence U = {um : m ∈ ω} ∈ U so that the following holds

for each m. For each ` ≤ m, and each um ∈ s ⊂ {ui : i ≤ m} with ` = |s|, notice

that (s, U \ (um+1)) forces that ~k(`) = um. We can arrange that (s, U \ um + 1)

decides the value of ρ` ∈ [2um ]` so that Ċ` is determined by ρ`. This uses the
decision property 2m times, and then uses that U is selective to get one set U to
work in this way for all m.

That is, for each ` and each s ∈ [U ]`−1, there is a set ρs,m` ∈ [2um ]` for large
enough m such that (s ∪ {um}, U \ (um + 1)) forces that the clopen set Cs,m` =⋃
{[ψ] : ψ ∈ ρs,m` } is equal to Ċ`.

For this next consequence, let ⊗Cs,m` denote the following clopen subset of (2ω)
`
.

Let {ψs,m,`0 , . . . , ψs,m,``−1 } be ρs,m` ordered lexicographically, and set ⊗Cs,m` equal the

product [ψs,m,`0 ] × · · · [ψs,m,``−1 ]. This is all just so that we can identify the unique

`-tuple ~xs` ∈ [2ω]` which is the U-limit of this sequence of clopen sets. That is, ~xs`
is the unique point of (2ω)

`
which is in the closure of

⋃
{Cs,m` : m ∈ W} for all

W ∈ U . If x is any point not equal to a coordinate value of ~xs` , then there is a set
Wx,` ∈ U such that x /∈ Cs,m` for all m ∈Wx,`.

Suppose that x ∈ 2ω and that x is not a member of ~xs` for any s, `. We show
(for simplicity) that an arbitrary (∅, U ′) has an extension forcing that x is in only

finitely many of the Ċj rather than working below some given (s′, U ′). For each j,
there is a Uj ∈ U such that x /∈ Cs,m` for all um ∈ Uj and s ∈ [{ui : i ≤ j}]`−1.

Apply selectivity to get Ux so that (∅, Ux) 
 x̌ /∈ Ċ` for all `. Of course (∅, Ux ∩U ′)
does the job. �

Theorem 39 (Miller). In the Hechler model, every set of reals of size ω1 has strong
measure zero (because of the Cohen reals) but none are γ-sets.

Here are the steps. We start with formulating a weaker statement than that in
Lemma 38 which is preserved by Cohen forcing.

Corollary 40. In the model obtained by forcing with ω<ω↑ (adding the Cohen real

c) over the model V [GU ] from Lemma 38, the sequence ~k′ = {k′` = k`+c(`) : ` ∈ ω}
has the property that V ∩

⋂
{Cj : j ∈ ω} is countable whenever {Cj : j ∈ ω} is an

infinite subset of C~k′ .
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Proof. Fix any sequence of names Ċj (j ∈ ω) which are forced to be distinct
members of C~k′ . For each x ∈ V ∩ 2ω, choose if possible px ∈ ω<ω↑ so that

px 
 x̌ ∈ Ċj for all j. Assume there is an uncountable set X ⊂ 2ω ∩ V so that
px = p for each x ∈ X. Choose any infinite set {D` : ` ∈ ω} such that, for each

` there is a p` ⊃ p and a j` ≥ ` such that p` 
 Ď` = Ċj` . By thinning out to a
subsequence (and re-indexing) we can assume that ` < `′ implies that j` < j`′ . For
each ` then there is a C` ∈ C~k,j` such that D` ⊂ C`. It follows that X ⊂ C` for all

`, which contradicts Lemma 38. �

Miller uses a very clever proof in which he first adds a Laver real (similar argu-
ment as for our Pr(U)) and then shows Corollary 40 – hence, by Truss’ theorem,
it holds in the model obtained by adding a single Hechler real. Then he connects
the tower preservation property to preserving the property in Corollary 40.

Corollary 41. In the model obtained by adding a Hechler real over V, we have the
Hechler sequence 〈k` : ` ∈ ω〉 satisfies that if {Cn : n ∈ ω} enumerates C~k, and if,
for x ∈ 2ω ∩ V , we let ax = {n : x /∈ Cn}, then every uncountable subset of the
collection A = {ax : x ∈ 2ω ∩ V } is ω-hitting.

Proof. This is a restatement of Corollary 40. Let us check. Let Bn : n ∈ ω be
infinitely many infinite subsets of ω. For each n, the set of x such that ax is almost
disjoint from Bn is countable (i.e the set of x which is in C` for all but finitely many
` ∈ Bn is countable). Therefore, except for those countably many x, we have that
ax hits each Bn infinitely. �

Proof of Theorem 39. Let Gω2 be a generic filter for Pω2 which is the FS-iteration
of H. Let X ⊂ 2ω have cardinality ω1, and we show that X is not a γ-set. By a
standard reflection – but the best kind is to fix a name Ẋ for X and a condition
p ∈ Gω2

to show that p doesn’t force that Ẋ is a γ-set, and to then take an
M ≺ H(θ) with Mω ⊂ M and |M | = ω1, and finally λ = M ∩ ω2 – we have that

X ∈ V [Gλ]. Let ~k be the Hechler real added by Gλ+1. C~k is an ω-cover of X. Fix
an enumeration {Cn : n ∈ ω} for C~k in V [Gλ+1]. We work in the model V [Gλ+1]
and note that the final model is a FS-iteration Hechler forcing extension. Suppose
that ḃ is a name of a subset of ω. Choose a countable elementary submodel N with
ḃ (etc.) in N . By Corollary 32, every member of the family {ax : x ∈ X} \N will

hit valG(ḃ) (we just need one). It follows that each such x is not in infinitely many

of {Cn : n ∈ ḃ} – hence there is no γ-subcover. �

By similar methods using the decision property, one can prove:

Lemma 42. If U is selective, and τ is a name which is forced to be an infinite
subset of ω (by (∅, B)). Then there is an A = {a` : ` ∈ ω} ∈ U , and a sequence
〈S` : ` ∈ ω〉 so that a` ≤ max(S`) < min(S`+1) ≤ a`+1 such that for each ` and
each s ⊂ {aj : j ≤ `}, if (s,A \ a` + 1) decides a value in τ \ max(S`−1) then it
forces τ ∩ S` 6= ∅.

Corollary 43. If U is selective and if Pr(U) diagonalizes an ultrafilter V, then V
is RK-equivalent to U .

Definition 44. h is the minimum height of a dense subtree T of [ω]ω/ fin. It
exists and is equal to the distributivity degree of the poset [ω]ω/ fin. It is known
that t ≤ h ≤ min{b, s}.
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Question 8. Can we get a model of t < h < min{b, s} (and how about also
distinguishing max{b, s})?

We have seen how to sneakily get t = ω1. We have seen that forcing with Pr(F)
can be used to fill branches through T . We have seen that forcing with H can be
used to raise b without raising h. And with considerable care we can add Cohen
reals and create selective ultrafilters U so that forcing with Pr(U) will increase s
without increasing h.

2. Martin’s Axiom, gaps and such

Martin and Solovay showed that there is a FS-iteration of ccc posets (which they
showed will be ccc – and there are many such posets) so that

(1) MAC1(ω1) holds, where C1 is the family of ccc posets of cardinality at most
ω1, and

(2) MAC1(ω1) implies MA(ω1) (where no subscript means the family of ccc
posets).

Breaking into these two steps is important to note because, looking ahead, the
second fails for proper posets.

Full MA means MA(< c) and implies that c<c = c, hence we must arrange in V
to have an uncountable cardinal κ so that κ<κ = κ. This shows up in the proof as
follows:

Proposition 45 (κ<κ = κ). There is a ccc FS-iteration sequence {Pα, Q̇α : α < κ}
so that for each Pκ-name, Q̇ ∈ H(κ), and each p ∈ Pκ so that p 
 Q̇ is ccc, there

are cofinally many α ∈ κ so that p 
Pα Q̇α = Q̇.

There are many ways to make the choice of the various Q̇α’s and in this way we
can get results that are independent of Martin’s Axiom. We start with gaps.

Definition 46. A pregap will be a pair (A,B) of ideals on ω so that A ⊥ B. The
pregap is a (κ, λ)-pregap if A has a cofinal κ-chain, and B has a cofinal λ-chain.
Usually we just write ({aα : α ∈ κ}, {bβ : β ∈ λ}). A pregap is a gap if there is
no Y ⊂ ω splitting the gap (a ⊂∗ Y and Y ∩ b =∗ ∅ for all a ∈ A and b ∈ B). A
forcing is said to preserve or split the gap according to whether there is a Y in the
extension.

Definition 47. A Hausdorff gap is a certain kind of (ω1, ω1)-gap which remains a
gap in all ω1-preserving extensions; in fact, it has the property that for each α ∈ ω1

and each n ∈ ω, the set {β < α : aβ ∩ bα ⊂ n} is finite.

Definition 48. A Lusin gap will be a family {(aα, bα) : α ∈ ω1} so that for each
α 6= β, aα ∩ bα = ∅ and ∅ 6= aα ∩ bβ =∗ ∅ (usually the entire family is an almost
disjoint family).

Theorem 49. There is a Hausdorff gap and there is a Lusin gap. As a Boolean
algebra, P(ω)/ fin is ω1-saturated but it is not ω2-saturated.

Proposition 50. A ccc poset of cardinality less than κ does not split a (κ, λ)-gap
for any λ.

Proof. We leave this an exercise if κ = ω. Suppose that 〈{aα : α ∈ κ}, {bβ : β ∈ λ}〉
is a gap and that τ is a P -name with |P | < κ. For each α ∈ κ, choose pα ∈ P
and integer nα such that pα 
 aα \ τ ⊂ nα. There is a pair p, n and a cofinal set
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Λ ⊂ κ so that (pα, nα) = (p, n) for all α ∈ Λ. Let Y =
⋃
{aα \ n : α ∈ Λ}. Notice

that there is some β < λ such that Y ∩ bβ is infinite. It follows that p 
 τ ∩ bβ is
infinite. �

Proposition 51 (Kunen). If (A,B) is an (ω1, ω1)-gap, there is a ccc poset QA,B
which forces it to contain a Hausdorff gap (we say it freezes the gap).

Proof. There are other ways to freeze the gap, we use the technique explained by
Todorcevic. We may assume that aα ∩ bα = ∅ for all α ∈ ω1, and that A = {aα :
α ∈ ω1} and B = {bα : α ∈ ω1}. Choose any countable elementary submodel M
with A,B in M – just to pick δ = M ∩ ω1. Observe that for all α ≥ δ and j ∈ aα,
the set Ij = {γ : j ∈ aγ} is uncountable. Similarly for j in any such bα, we have
that Jj = {γ : j ∈ bγ} is uncountable.

The poset Q consists of finite sets q ⊂ ω1 \ δ so that for α 6= β ∈ q, aα ∩ bβ 6= ∅.
We show that Q is ccc (and simple density implies that there is a generic for
Q which produces a Luzin subgap). Suppose that {qξ : ξ ∈ ω1} ⊂ Q is a ∆-
system of finite sets with root q. For each ξ, set Aξ =

⋂
{aα : α ∈ qξ \ q} and

Bξ =
⋂
{bβ : β ∈ qξ \ q}. It is immediate that there is some ξ, ζ such that Aξ ∩Bζ

is non-empty. Using the same trick as above, we can assume that for each j that
appears in any Aξ (respectively) Bζ appears in uncountably many. Again call these
sets Ij and Jj as before. Choose any j in some Aξ ∩Bζ and notice that j ∈ aα ∩ bβ
for all α ∈ qξ \ q and β ∈ qζ \ q. Next, the set

⋃
{Aζ : ζ ∈ Jj} must meet the

set
⋃
{Bξ : ξ ∈ Ij}, and so now we choose any ζ ∈ Jj and ξ ∈ Ij . We have that

j ∈ Aξ ∩ Bζ by the above, and now we have i ∈ Aζ ∩ Bξ. It is easily checked now
that aα ∩ bβ 6= ∅ for any distinct α, β ∈ qξ ∪ qζ . �

Proposition 52. If (A,B) is a (κ, λ)-gap with κ > ω1 regular, then there is a ccc
poset which splits the gap.

Proof. As usual, A = {aα : α ∈ κ} and B = {bβ : β ∈ λ}. A condition q ∈ Q is
a triple (Aq, Bq, Fq) where Fq ∈ [κ ∪ λ]<ω, Aq =∗

⋃
{aα : α ∈ Fq ∩ κ} is disjoint

from Bq =∗
⋃
{bβ : β ∈ Fq ∩ λ}. We define p < q providing Ap ⊃ Aq, Bp ⊃ Bq,

Fp ⊃ Fq. Assume that {qξ : ξ ∈ ω1} ⊂ Q and that the family {Fξ = Fqξ : ξ ∈ ω1}
forms a ∆-system with root F . Choose any δ ∈ κ so that Fξ ⊂ δ for all ξ. Thin
out the sequence so that there is an n so that Aξ \n ⊂ aδ and Bξ ∩aδ ⊂ n for all ξ.
Additionally, we may assume that Aqξ ∩ n and Bqξ ∩ n are independent of ξ. Now
we have that the described subsequence {qξ : ξ ∈ ω1} are pairwise compatible. �

Lemma 53. Let Pλ be a FS-support iteration and, let {αξ : ξ < cf(λ)} be cofinal

in λ so that for each ξ < cf(λ), ȧαξ , ḃαξ is added by the poset Q̇αξ which generically

splits the gap {ȧαµ , ḃαµ : µ < ξ}. Then Q̇λ (generically splitting the gap) is ccc.

Proof. For a gap {aβ , bβ : β ∈ γ}, the elements q of the gap splitting posets are of
the form q = (cq, dq, nq, Fq) where nq ∈ ω, cq \ nq =

⋃
{aβ \ nq : β ∈ Fq ∈ [γ]<ω}

is disjoint from dq \ nq =
⋃
{bβ \ nq : β ∈ Fq ∈ [γ]<ω} – hence aβ ∩ bδ ⊂ nq for

β, δ ∈ Fq.
This poset is not, in general, ccc. Assume that pβ ∈ Pλ is such that pβ 


(čβ , ďβ , ňβ , F̌β) ∈ Q̇λ for β ∈ ω1. Assume, by induction, that Pλ is ccc. Check that
we may assume that, for each β, Fβ ⊂ dom(pβ), and each ξ such that αξ ∈ dom(pβ),
then pβ � αξ forces a value on (cαξ , d

α
ξ , n

α
ξ , F

α
ξ ) in which Fαξ ⊂ dom(pβ).
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By the above results, this is only hard if cf(λ) = ω1, so we assume that this
is the case we are looking at. We arrange that for each β and each µ < ξ such
that {αµ, αξ} ⊂ dom(pβ), that we also have αµ ∈ F βαξ . We may also arrange that

there is a single n so that for all β and all ξ such that αξ ∈ dom(pβ), we have that
nβαξ = n.

We apply the ∆-system lemma to the domains of the pβ ’s, and we obtain a
δ < ω1 so that the root is contained in αδ. We pass to the generic extension by
Gαδ . We must arrange that there is an uncountable set (and we then assume all)
of β such that pβ � αδ ∈ Gαδ .

Now choose any β < γ, and enlarge F γαξ for each αξ ∈ dom(pγ), by adding

dom(pβ) ∩ {αµ : µ ∈ ω1}. We claim that pβ union this enlarged version of pγ is an
extension of pγ . Call this extension p̄

Exercise 9. Prove the claim about p̄.

In addition, p̄ forces that qβ and qγ are compatible in Q̇. The reason is that for
αµ, αξ in Fβ ∪ Fγ , we will have that p̄ forces that aαµ ∩ bαξ is contained in n. �

Corollary 54. We can force there to be an (ω2, ω2)-gap. And there is a model of
MA in which c = ω2 and there are (ω2, ω2)-gaps and (ω2, ω1)-gaps.

Remark 55. One could add such gaps with a single ccc poset of finite conditions.

Theorem 56 (CH + ♦S2
1
). There is a model of MA in which there are no (c, c)-gaps

and no (c, ω1)-gaps.

Proof. The statement ♦S2
1

is the assertion that there is a sequence {Aα : α ∈ ω2}
such that for all X ⊂ ω2 there is a stationary set S of limit ordinals of cofinality ω1

( S2
1 denotes the set of all such limit ordinals) with the property that X ∩ λ = Aλ

for all λ ∈ S.
It is a standard coding technique to use such a diamond sequence to “predict”

more general subsets of H(ω2) such as sequences of names of subsets of ω. In fact,
we may choose any function e : H(ω2)→ ω2 and in this way, if X ⊂ H(ω2), we can
use the diamond sequence to predict e[X].

We define our FS-supported iteration {Pα, Q̇α : α ∈ ω2} as follows. As usual P0

is the trivial poset, and we let Q̇0 be the P0-name of the poset for adding a single
Cohen real. Our inductive assumption on Pα is that it is a ccc poset which is a
member of H(ω2) (and so has cardinality at most ω1). Having defined Pα, have a
“look at” e−1[Aα]. If e−1[Aα] is a Pα-name (as unlikely as that may be) of a ccc

poset, then let Q̇α be this name. If e−1[Aα] happens to be the Pα-name of gap

(A,B) which contains an (ω1, ω1)-subgap, then let Q̇α be the Pα-name of QA,B (the
gap freezing poset discussed above). If neither of these two situations occurs, then

again let Q̇α be the Pα-name of the poset for adding a single Cohen real.
Let G ⊂ Pω2

be a generic filter, and for each λ < ω2, let Gλ = G ∩ Pλ.

Claim 1. Martin’s Axiom holds in V [G].

Proof of Claim 2. Let Q̇ be any Pω2-name so that there is a p ∈ G forcing that Q̇

is a ccc poset of size ℵ1. We may suppose that 1 forces that Q̇ is a ccc poset (by

slightly changing Q̇ without changing what it is forced to be by p) and that Q̇ is

in H(ω2). Also let Ḋ be any Pω2
-name of a family of at most ℵ1-many maximal

antichains of Q̇. Let S be the stationary set of α satisfying that e[Q̇] = Aα. Choose
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any α ∈ S so large that Ḋ is a Pα-name and p ∈ Gα. It should be clear that Gα+1

is such that V [Gα+1] includes a filter on valGα [Q̇] which is valGα(Ḋ)-generic. �

Claim 2. There are no (ω2, ω2)-gaps in V [G].

Proof of Claim 2. We consider a Pω2
-name τ for an (ω2, ω2)-pregap and we assume

some condition p0 forces that it is a gap. Recall that ∅ is the maximal element of
Pω2

. It is an elementary argument that we can assume that τ = {(σα, ∅) : α ∈ ω2}
(as a set – hence name, not an ω2-sequence) where each σα is a Pω2-name of a

disjoint pair, (ȧα, ḃα), of subsets of ω.
Choose any sufficiently large regular θ > ω2 and let {p0, Pω2

, τ} ∈ M ≺ H(θ)
with Mω ⊂M and |M | = ω1. There is a λ ∈ ω2 such that M ∩ ω2 = λ ∈ S2

1 .

Exercise 10. Show that in V [Gλ], {(aα, bα) : α ∈ λ} is a gap; where, for all α ∈ λ,
σα is a Pλ-name and valGλ(σα) is the pair (aα, bα).

Exercise 11. Show that there is such a λ ∈ S2
1 as above so that e[Aλ] = {σα : α ∈

λ}
By the two exercises we obtain a contradiction since we know there will be a

λ as in Exercise 11, so that V [Gλ+1] will be a model in which {(aα, bα) : α ∈ λ}
contains a Lusin (frozen) gap. �

The proof that there are no (ω2, ω1)-gaps is handled very similarly. �

Definition 57. The space βN can be taken to be the Stone space of P(N). As
a set, we treat N as a dense subset, and the remaining set of points are the free
ultrafilters on N. Notice that for each a ⊂ N, a and N \ a have disjoint (hence
clopen) closures in βN. For a subset a of N (including a = N), we let a∗ denote the
subset of βN given by a \ N.

In a space X, a subspace Y is said to be C∗-embedded if every bounded contin-
uous real-valued function on Y has a continuous extension to all of X.

Corollary 58. It is independent of MA + ¬CH if N∗ \ {p} is C∗-embedded in N∗
for all p.

Proof. Using Corollary 54 we can check that the gap is split by a single point p,
and so N∗ \ {p} has a non-extending 2-valued function.

Now work in the no gap model and fix any p ∈ N∗. Let g : N∗ \ {p} 7→ [0, 1]. If g
does not extend continuously to p, then there must be 0 ≤ r < s ≤ 1 so that for each
U ∈ p, so that g[U∗] meets both [0, r] and [s, 1]. If p is not a Pω2

-point choose a ≤ℵ1-
sized family C ⊂ [ω]ω \p witnessing. If p is a Pω2

-point, this family is any ≤ℵ1-sized
subset of [ω]ω \ p. We build an (ω2, ω2)-gap by induction, consisting of pairs aα, bα
from [ω]ω \ p which are almost disjoint from each member of C. Let {Uα : α ∈ ω2}
be an enumeration of p. At successor steps α + 1, first choose γα ∈ ω2 \ α so that
Uγα is almost disjoint from aα ∪ bα. Observe that

⋂
c∈C

⋂
γ≤γα(Uγ \ c)∗ ∩ g−1[0, r]

is a non-empty Gω1
– as is

⋂
c∈C

⋂
γ≤γα(Uγ \ c)∗ ∩ g−1[s, 1]. Thus we can choose

aα+1 ⊃ aα so that aα+1 \ aα ⊂∗ Uγ for all γ ≤ γα and g[(aα+1 \ aα)∗] ⊂ [0, r].
Similarly, choose bα+1 so that g[(bα+1 \ bα)∗] ⊂ [s, 1].

For limit step λ < ω2: We have built {aα, bα : α < λ} to be an (ω1, ω1)-pregap
contained in [ω]ω \ p and inside of C⊥. Since there are no (ω1, ω1)-gaps and since
b > ω1 (i.e. there are no (ω1, ω)-gaps), we can choose aλ, bλ as required to continue.

Since there are no (ω2, ω2)-gaps, we have achieved a contradiction. �


