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initially wy-compact

Definition

A space X is initially wi-compact if every open cover of size at
most wy has a finite subcover. Equivalently, each A € [X]=“! has a
CAP (complete accumulation point).
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initially wy-compact

A space X is initially wi-compact if every open cover of size at

most wy has a finite subcover. Equivalently, each A € [X]=“! has a
CAP (complete accumulation point).

A space X has countable tightness, t = w, if for each A C X,
A=J{B: B € [A*}. For compact X, this is equivalent to having
no (converging) uncountable free sequence (initial segments and
final segments have disjoint closures).
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C-embedding

Question [1978]

What property of first-countable X is sufficient to guarantee that
for any first-countable Y O X, X is C-embedded in Y7
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C-embedding

Question [1978]

What property of first-countable X is sufficient to guarantee that
for any first-countable Y O X, X is C-embedded in Y7

Answer

| A

X should be almost initially wi-compact — meaning, given two
disjoint zero sets, Z;, Z of X, at least one should be initially
wi-compact. But, is this just almost compact?
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C-embedding

Question [1978]

What property of first-countable X is sufficient to guarantee that
for any first-countable Y O X, X is C-embedded in Y7

Answer

| A\

X should be almost initially wi-compact — meaning, given two
disjoint zero sets, Z;, Z of X, at least one should be initially
wi-compact. But, is this just almost compact?

@ the properties t = w, Ng-bounded, plus initially wi-compact
implies compact,

@ hence CH implies that t = w plus initially wi-compact will be
compact

© and if there is a counterexample, there is a separable one.
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Is it consistent to have a first-countable initially wi-compact
non-compact space? [let's call one “a counterexample”].
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Is it consistent to have a first-countable initially wi-compact
non-compact space? [let's call one “a counterexample”].

Since first-countable compact spaces have cardinality ¢, we have a
follow-up question by Arhangelskii
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Is it consistent to have a first-countable initially wi-compact
non-compact space? [let's call one “a counterexample”].

Since first-countable compact spaces have cardinality ¢, we have a
follow-up question by Arhangelskii

Does each first-countable initially wi-compact space have
cardinality at most ¢?

A remaining open problem in this area

Question [Juhasz]

Does each compact space with t = w have a point with character
at most wq?
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Moore-Mrowka spaces
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Moore-Mrowka spaces

If X is a initially wi-compact, t = w non-compact space, then X
is a Moore-Mrowka space (compact, t = w and not sequential).
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Moore-Mrowka spaces

If X is a initially wi-compact, t = w non-compact space, then X
is a Moore-Mrowka space (compact, t = w and not sequential).

o

Theorem (Balogh)

PFA implies there is no Moore-Mrowka space (and so there is no
"counterexample” ).
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Assume that K is compact, t = w and X C K is sequentially
compact but not closed. MA(w;) implies that X can be assumed
to be countably compact and cardinality at most ¢. Fix any F — a
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Moore-Mrowka spaces

If X is a initially wi-compact, t = w non-compact space, then X
is a Moore-Mrowka space (compact, t = w and not sequential).

Theorem (Balogh)

PFA implies there is no Moore-Mrowka space (and so there is no
"counterexample” ).

Assume that K is compact, t = w and X C K is sequentially
compact but not closed. MA(w;) implies that X can be assumed
to be countably compact and cardinality at most ¢. Fix any F — a
free countably complete filter of closed subsets of X. For each

x € X, specify x € Wy, C Uy — open in K — with W, C U, and
X\ U e F. O

y
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Proof continued
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Proof continued

© The poset P is proper, where p € P has the form
((xa: @ € Lpy, Mp = (M, : a € Lp)) providing L, € [w1]<¥,
M, is an e-chain of M < H(\), My, Nwi = «, and
Xo €E({FN My : FeFN My}
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© The poset P is proper, where p € P has the form
((xa: @ € Lpy, Mp = (M, : a € Lp)) providing L, € [w1]<¥,
M, is an e-chain of M < H(\), My, Nwi = «, and
Xo €E({FN My : FeFN My}

Q For a € L, define WY = M{ Wi, : xo € Wi,, 6 € Lp}

Alan Dow Martin's Axiom and initially wj-compact spaces



Proof continued

© The poset P is proper, where p € P has the form
((xa: @ € Lpy, Mp = (M, : a € Lp)) providing L, € [w1]<¥,
M, is an e-chain of M < H(\), My, Nwi = «, and
Xo €E({FN My : FeFN My}

Q For a € L, define WY = M{ Wi, : xo € Wi,, 6 € Lp}

@ define p < g to require that for a € L, \ Lq and
§=min(Lg \ @) xo € Wy
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Proof continued

© The poset P is proper, where p € P has the form
((xa: @ € Lpy, Mp = (M, : a € Lp)) providing L, € [w1]<¥,
M, is an e-chain of M < H(\), My, Nwi = «, and
Xo €E({FN My : FeFN My}
Q For a € L, define WY = M{ Wi, : xo € Wi,, 6 € Lp}
@ define p < g to require that for a € L, \ Lq and
§=min(Lg \ @) xo € Wy

© Meeting wi-sets produces an wi-sequence, free in K,

| A

Corollary

Therefore PFA implies there is no first-countable initially
wi-compact non-compact space.

A\
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Proof continued

© The poset P is proper, where p € P has the form
((xa: @ € Lpy, Mp = (M, : a € Lp)) providing L, € [w1]<¥,
M, is an e-chain of M < H(\), My, Nwi = «, and
Xo €E({FN My : FeFN My}
Q For a € L, define WY = M{ Wi, : xo € Wi,, 6 € Lp}
@ define p < g to require that for a € L, \ Lq and
§=min(Lg \ @) xo € Wy

© Meeting wi-sets produces an wi-sequence, free in K,

| A

Corollary

Therefore PFA implies there is no first-countable initially
wi-compact non-compact space.

A\

What about Martin's Axiom? But we still don't know about ZFC
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How to get a large 1st-ctble initially w;-compact space

Proposition

If there is a first-countable initially wi-compact space X such that
|BX| > ¢, and each A € [BX \ X]=“* has a complete accumulation
point in X, then there is a first-countable initially wi-compact
space of cardinality greater than ¢
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How to get a large 1st-ctble initially w;-compact space

If there is a first-countable initially wi-compact space X such that
|BX| > ¢, and each A € [BX \ X]=“* has a complete accumulation
point in X, then there is a first-countable initially wi-compact
space of cardinality greater than ¢

Take the space to have base set 5X and simply declare the points
of X \ X to be isolated. The points of X retain their original
neighborhood bases.

This space is first-countable and large.

This space is initially wi-compact simply by the hypotheses. Ol

v
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Rabus forces a minimal Boolean algebra — solving t = w

A minimally generating sequence for a Boolean algebra is a
sequence {a, : @ € L} (for L C k) satisfying that
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Q fora<fayNag € Byy1=(ay 7 < a)pa
© strongly will mean that (a, : @ € L) generates a proper ideal.
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Rabus forces a minimal Boolean algebra — solving t = w

A minimally generating sequence for a Boolean algebra is a
sequence {a, : @ € L} (for L C k) satisfying that

Q aca, CLNna+tl,
Q fora<fayNag € Byy1=(ay 7 < a)pa
© strongly will mean that (a, : @ € L) generates a proper ideal.

Given such (a, : a € L) then, for each a € L,

@ the set {a, \ a, : v € aN L} generates an ultrafilter on B

@ the only other ultrafilter is generated by the complements.
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Rabus forces a minimal Boolean algebra — solving t = w

A minimally generating sequence for a Boolean algebra is a
sequence {a, : @ € L} (for L C k) satisfying that

Q aca, CLNna+tl,
Q fora<fayNag € Byy1=(ay 7 < a)pa
© strongly will mean that (a, : @ € L) generates a proper ideal.

Given such (a, : a € L) then, for each a € L,

@ the set {a, \ a, : v € aN L} generates an ultrafilter on B

@ the only other ultrafilter is generated by the complements.

the key is that a € ag implies that o ¢ a, \ (an N ap) O
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Baumgartner-Shelah A-function to get ccc poset

Theorem (Rabus)

Adding, with o-closed forcing, f : [wo]? +— [w2]¥, and force with
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Baumgartner-Shelah A-function to get ccc poset

Theorem (Rabus)

Adding, with o-closed forcing, f : [wo]? +— [w2]¥, and force with

@ g€ Q providing g = (ad : a € Lq € [wa]<¥) is strongly
minimal but also
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Baumgartner-Shelah A-function to get ccc poset

Theorem (Rabus)

Adding, with o-closed forcing, f : [wo]? +— [w2]¥, and force with

@ g€ Q providing g = (ad : a € Lq € [wa]<¥) is strongly
minimal but also

Q a< B € Ly implies al N ag, € B f(a,8)
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Baumgartner-Shelah A-function to get ccc poset

Theorem (Rabus)

Adding, with o-closed forcing, f : [wo]? +— [w2]¥, and force with

@ g€ Q providing g = (ad : a € Lq € [wa]<¥) is strongly
minimal but also

Q a< B € Ly implies al N ag, € B f(a,8)

© p < qrequires ah — ah NLg = ad fora € Lq is an
isomorphism.
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Baumgartner-Shelah A-function to get ccc poset

Theorem (Rabus)

Adding, with o-closed forcing, f : [wo]? +— [w2]¥, and force with
@ g€ Q providing g = (ad : a € Lq € [wa]<¥) is strongly
minimal but also
Q a< B € Ly implies al N ag € B f(a,8)
© p < qrequires ah — ah NLg = ad fora € Lq is an
isomorphism.

v

Properties in extension by @

If G is Q-generic, then a, = J{ad : g€ G} C a+1
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Baumgartner-Shelah A-function to get ccc poset

Theorem (Rabus)

Adding, with o-closed forcing, f : [wo]? +— [w2]¥, and force with
@ g€ Q providing g = (ad : a € Lq € [wa]<¥) is strongly
minimal but also
Q a< B € Ly implies al N ag € B f(a,8)
© p < qrequires ah — ah NLg = ad fora € Lq is an
isomorphism.

v

Properties in extension by @
If G is Q-generic, then a, = J{ad : g€ G} C a+1

© vyields a locally compact, scattered thin very-tall space on wy
which is t = w and initially wi-compact
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Theorem (Rabus)

Adding, with o-closed forcing, f : [wo]? +— [w2]¥, and force with
@ g€ Q providing g = (ad : a € Lq € [wa]<¥) is strongly
minimal but also
Q a< B € Ly implies al N ag € B f(a,8)
© p < qrequires ah — ah NLg = ad fora € Lq is an
isomorphism.

v

If G is Q-generic, then a, = J{ad : g€ G} C a+1
© vyields a locally compact, scattered thin very-tall space on wy
which is t = w and initially wi-compact
@ for the a-th limit Ay, [Aa, Ao + w) is the « scattering level,
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Baumgartner-Shelah A-function to get ccc poset

Theorem (Rabus)

Adding, with o-closed forcing, f : [wo]? +— [w2]¥, and force with
@ g€ Q providing g = (ad : a € Lq € [wa]<¥) is strongly
minimal but also
Q a< B € Ly implies al N ag € B f(a,8)
© p < qrequires ah — ah NLg = ad fora € Lq is an
isomorphism.

v

If G is Q-generic, then a, = J{ad : g€ G} C a+1
© vyields a locally compact, scattered thin very-tall space on wy
which is t = w and initially wi-compact
@ for the a-th limit Ay, [Aa, Ao + w) is the « scattering level,

© more generally, each ground model infinite set has coinitial
closure
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A T-algebra reformulation

the hardest step!

if A C wy does not have compact closure, then A is coinitial
(even a single limit for countable A was the innovative step).
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A T-algebra reformulation
the hardest step!

if A C wy does not have compact closure, then A is coinitial
(even a single limit for countable A was the innovative step).

Definition (Koszmider)

Fix a tree T C 2<% such that for all t € T, T N {t0, t1} is not a
singleton (for t € 2°t1, let t! denote its twin). A T-algebra
generating sequence at = {a; : t € Succ(T)} satisfies
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A T-algebra reformulation
the hardest step!

if A C wy does not have compact closure, then A is coinitial
(even a single limit for countable A was the innovative step).

Definition (Koszmider)

Fix a tree T C 2<% such that for all t € T, T N {t0, t1} is not a
singleton (for t € 2°t1, let t! denote its twin). A T-algebra
generating sequence at = {a; : t € Succ(T)} satisfies

Q@ tca CCG={seSucc(T):s<t}

Q a; = CtT \at

@ {as :s € G} is strongly minimal (as above)
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a topology A+ on the maximal branches bT

Definition

For each t € Succ(T), we define A; € At
Ar={xcbT:(Fpca) pl Cx}
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a topology A+ on the maximal branches bT

Definition

For each t € Succ(T), we define A; € At
Ar={xcbT:(Fpca) pl Cx}

A¢ is also equal to {x € bT :

t ¢ x and min(C; \ x) € a¢};
A: and A,+ are complements;
t e Atf.

each point x € bT has
neighborhood base generated by
{As 1t e G}
A set Y of branches accumu-
lates to a branch x if its §-
projection does.
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a topology A+ on the maximal branches bT

Definition
For each t € Succ(T), we define A; € At
Ar={xcbT:(Fpca) pl Cx}

A¢ is also equal to {x € bT :
t ¢ x and min(C; \ x) € a¢};
A: and A,+ are complements; =

A :
te Atf. ( E
each point x € bT has "'-:.Atf i ":ga
neighborhood base generated by pe Uy
{A;i 1 te G} . T |
A set Y of branches accumu- LI e

lates to a branch x if its §- ‘
projection does. b e . ;
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Rabus example as a T-algebra

For Rabus' example, we let
Tr={ta | a,ta €22ty () =0and t, [ @ = 1}.
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Rabus example as a T-algebra

Definition

For Rabus' example, we let

Tr={ta | a,ta €22ty () =0and t, [ @ = 1}.

The point t, € bTr because it is maximal, and strangely, at
codes the canonical neighborhood A i of t,. at is descrlbmg a set
of tg which have bounded closure.
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Rabus example as a T-algebra

Definition
For Rabus' example, we let
Tr={ta | a,ta €22ty () =0and t, [ @ = 1}.

The point t, € bTr because it is maximal, and strangely, at
codes the canonical neighborhood A i of t,. at is descrlbmg a set
of tg which have bounded closure.

X = bTg \ {1} is initially wi-compact and t = w. a;, codes a set
which is dense in a tail. )
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Forcing minimal extensions of Boolean algebras

Theorem ( P. Koszmider, TAMS 351, 1999)

Using a FS-support iteration of (Souslin-free) ccc posets, and
To=2<w1, T =2<9t% there is at extending at, s.t.
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Using a FS-support iteration of (Souslin-free) ccc posets, and
To=2<w1, T =2<9t% there is at extending at, s.t.

© the space bTy has no points of countable character
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Using a FS-support iteration of (Souslin-free) ccc posets, and
To=2<w1, T =2<9t% there is at extending at, s.t.

© the space bTy has no points of countable character

@ the space bT s first-countable
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Forcing minimal extensions of Boolean algebras

Theorem ( P. Koszmider, TAMS 351, 1999)

Using a FS-support iteration of (Souslin-free) ccc posets, and
To=2<w1, T =2<9t% there is at extending at, s.t.

© the space bTy has no points of countable character

@ the space bT s first-countable
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Forcing minimal extensions of Boolean algebras

Theorem ( P. Koszmider, TAMS 351, 1999)

Using a FS-support iteration of (Souslin-free) ccc posets, and
To =21, T =251 there is ar extending ar. s.t. __

. Tyt
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| / {
\ g {
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Apply this general idea to Rabus space

Borrowing from the paper

Juhasz, Koszmider, and Soukup, A first countable, initially
wi-compact but non-compact space, TopAppl 156, 2009
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Apply this general idea to Rabus space

Borrowing from the paper

Juhasz, Koszmider, and Soukup, A first countable, initially
wi-compact but non-compact space, TopAppl 156, 2009

Definition

Set
To={t€2<“2: t(a) =0 implies (A < a < B+ w)t | S =1}
each Rabus t, has all possible finite extensions
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Apply this general idea to Rabus space

Borrowing from the paper

Juhasz, Koszmider, and Soukup, A first countable, initially
wi-compact but non-compact space, TopAppl 156, 2009

Definition

Set
To={t€2<“2: t(a) =0 implies (A < a < B+ w)t | S =1}
each Rabus t, has all possible finite extensions

Again, forcing (using A-function) an at, makes X = bT,, \ {1}
initially wi-compact and (somewhat remarkably) first-countable.

Alan Dow Martin's Axiom and initially wj-compact spaces



can we use simply T = 2<“2? and make it large

References

Alan Dow Martin's Axiom and initially wj-compact spaces



can we use simply T = 2<“2? and make it large

References

Q Itay Neeman, Forcing with sequences of models of two
types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.

Alan Dow Martin's Axiom and initially wj-compact spaces



can we use simply T = 2<“2? and make it large

Q Itay Neeman, Forcing with sequences of models of two
types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.

@ Boban Velickovic and Giorgio Venturi, Proper forcing
remastered , 2011,

www.math.cmu.edu/~eschimme/Appalachian/Index.html,

Alan Dow Martin's Axiom and initially wj-compact spaces



can we use simply T = 2<“2? and make it large

Q Itay Neeman, Forcing with sequences of models of two
types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.

@ Boban Velickovic and Giorgio Venturi, Proper forcing
remastered , 2011,

www.math.cmu.edu/~eschimme/Appalachian/Index.html,

Assume GCH and let < be a well-ordering of H(wy) in type ws.
Let £2 = £2 U &2

Alan Dow Martin's Axiom and initially wj-compact spaces



can we use simply 7 = 2<“27 and make it large

Q Itay Neeman, Forcing with sequences of models of two
types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.

@ Boban Velickovic and Giorgio Venturi, Proper forcing
remastered , 2011,

www.math.cmu.edu/~eschimme/Appalachian/Index.html,

Assume GCH and let < be a well-ordering of H(wy) in type ws.
Let £2 = £2 U &2

Q E € &2 providing E < (H(w2), <) is countable

Alan Dow Martin's Axiom and initially wj-compact spaces



can we use simply 7 = 2<“27 and make it large

Q Itay Neeman, Forcing with sequences of models of two
types, 2011 www.math.ucla.edu/~ineeman/ttms.pdf.

@ Boban Velickovic and Giorgio Venturi, Proper forcing
remastered , 2011,

www.math.cmu.edu/~eschimme/Appalachian/Index.html,

Assume GCH and let < be a well-ordering of H(wy) in type ws.
Let £2 = £2 U &2

Q E € &2 providing E < (H(w2), <) is countable

Q Ec 512 providing E = | J E, for some continuous increasing
€-chain {Ey:a € w1} C &2
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we can use I = T, or T = 2“2 — cofinality of branches

Following Velickovic's lead on the Baumgartner-Shelah example:

A condition p € Pt if p = (ap = {a; : t € H, N Succ(T)}, M)
where
@ H, € [T]<¥ is closed under N, t and Y’s (i.e. t < sp,51 € Hp
with t = sp N s1, then {t0, t1} C Hp)
Q@ E € My, t C s both in H, N Succ(T) N E implies
arNas € (ar:re GNH,N E)pa (same as Rabus)
Q a;t = Gyt \ a for {t,tT} C H,
Q and p < qif M, D Mg, Hy D Hg, and a4 canonically
embeds in ap.
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sketch of proper and w;-compact

Suppose that Pr,p € M* < H(0), M = M*NH(wz2) € M,, r<p
and r € D for some dense D € M*; prepare H,, then

v
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sketch of proper and w;-compact

Suppose that Pr,p € M* < H(0), M = M*NH(wz2) € M,, r<p
and r € D for some dense D € M*; prepare H,, then

@ Then there is g € DN M such that Hy \ H, and Mg\ M, are
each disjoint from E for all E € M, N M* N &2,

v
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sketch of proper and w;-compact

Lemma

Suppose that Pr,p € M* < H(0), M = M*NH(wz2) € M,, r<p
and r € D for some dense D € M*; prepare H,, then
@ Then there is g € DN M such that Hg \ H, and Mg\ M, are
each disjoint from E for all E € M, N M* N &2,
Q@ to define g < q,r, Mg is handled by Neeman/Velickovic as
the smallest set containing Mg U M, closed under finite
intersections, and Hz = Hy U H, (this takes some work),
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the smallest set containing Mg U M, closed under finite
intersections, and Hz = Hy U H, (this takes some work),
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Suppose that Pr,p € M* < H(0), M = M*NH(wz2) € M,, r<p
and r € D for some dense D € M*; prepare H,, then

@ Then there is g € DN M such that Hg \ H, and Mg\ M, are
each disjoint from E for all E € M, N M* N &2,

Q@ to define g < q,r, Mg is handled by Neeman/Velickovic as
the smallest set containing Mg U M, closed under finite
intersections, and Hz = Hy U H, (this takes some work),

© for each t € Hy \ H,, we have t' € H, \ H, and (we designate
t as primary if) t' has no extension in H, (one of them has
this property)

Q fort € H, \ Hy (which may have extensions in H,!) we
designate it primary if t' has no extension in Hg

v
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sketch of proper and w;-compact

Lemma

Suppose that Pr,p € M* < H(0), M = M*NH(wz2) € M,, r<p
and r € D for some dense D € M*; prepare H,, then

@ Then there is g € DN M such that Hg \ H, and Mg\ M, are
each disjoint from E for all E € M, N M* N &2,

Q@ to define g < q,r, Mg is handled by Neeman/Velickovic as
the smallest set containing Mg U M, closed under finite
intersections, and Hg = Hy U H, (this takes some work),

© for each t € Hy \ H,, we have t' € H, \ H, and (we designate
t as primary if) t' has no extension in H, (one of them has
this property)

Q fort € H, \ Hy (which may have extensions in H,!) we
designate it primary if t' has no extension in Hg

@ for t € Hy U H,, we define af’ from a4 and a, and we let a?T
be equal (Hy U H,) N Cyt \ 7.
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more proof and another lemma

Definition (of amalgamation)

We define the values for af’ by recursion on primary t — choose
minimal P, € Mg with t € P, (for t € H,, same as P, € M)
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more proof and another lemma

Definition (of amalgamation)

We define the values for af’ by recursion on primary t — choose
minimal P, € Mg with t € P, (for t € H,, same as P, € M)

Q if t € HyN H,, then af = af U a}
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more proof and another lemma

Definition (of amalgamation)

We define the values for af’ by recursion on primary t — choose
minimal P, € Mg with t € P, (for t € H,, same as P, € M)

Q if t € HyN H,, then af = af U a}

Q for t € Hy\ H, a? equals a7 union of all sets of the form
nseLo ad \ UueL1 ag where Lo U Ly C Py N Cy N Hy satisfies
ﬂseLo ag \ UueLl ag C a?
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more proof and another lemma

Definition (of amalgamation)

We define the values for af’ by recursion on primary t — choose
minimal P, € Mg with t € P, (for t € H,, same as P, € M)

Q if t € HyN H,, then af = af U a}

Q for t € Hy\ H, a? equals a7 union of all sets of the form
nseLo ad \ UueL1 ag where Lo U L1 C P: N C; N Hy satisfies
ﬂsELo ag \ UuELl ag C a?

@ symmetric definition for t € H, \ Hq

© we note that for t € H, \ Hy primary, af’ is minimum possible
~ hence a, is pretty big
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more proof and another lemma
Definition (of amalgamation)

We define the values for af’ by recursion on primary t — choose
minimal Py € Mg with t € P; (for t € Hg, same as Py € M)

Q if t € HyN H,, then af = af U a}

Q for t € Hy\ H, a? equals a7 union of all sets of the form
nsGLo ad \ UueL1 ag where Lo U L1 C P: N C; N Hy satisfies
ﬂsELo ag \ UuELl ag C a?

@ symmetric definition for t € H, \ Hq
© we note that for t € H, \ Hy primary, a? is minimum possible
~ hence a, is pretty big

v
Lemma

Forcing with Pt adds many new branches to bT, but none with
uncountable cofinality. Thus bT \ (2+2)Y consists of countable
cofinality branches.
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Lemma (sample)

Let x € 22, x D {t, : @ € Succ(wo)}. If p forces that A is an
uncountable set of successor ordinals, p, A € My < H(6),

E = My N H(w2) € €2, and p forces uncountable

{acA:ty ¢ U{ae, : B € L}} for any finite L € [A]<%,
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Lemma (sample)

Let x € 22, x D {t, : @ € Succ(wo)}. If p forces that A is an
uncountable set of successor ordinals, p, A € My < H(6),

E = My N H(w2) € €2, and p forces uncountable

{acA:ty ¢ U{ae, : B € L}} for any finite L € [A]<%,

@ then for each n, p forces that at, 1n \ Uycp, at,+k contains
uncountably many members of {t, : a € A}.
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Lemma (sample)

Let x € 242, x D {ty : a € Succ(wz)}. If p forces that A is an
uncountable set of successor ordinals, p, A€ My < H(0),
E = My N H(w,) € &F, and p forces uncountable
{a € Aty ¢ U {4, - B € L}} for any finite L € [A]<*,
@ then for each n, p forces that at, 1n \ Uycp, at,+k contains
uncountably many members of {t, : a € A}.
Q@ and so if Y C bT is any set that projects onto {t, : o € A}

then the closure of Y contains the entire set bT N {x D ty}
for some \ € wy.
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Lemma (sample)

Let x € 242, x D {ty : a € Succ(wz)}. If p forces that A is an
uncountable set of successor ordinals, p, A€ My < H(0),
E = My N H(w,) € &F, and p forces uncountable
{a € Aty ¢ U {4, - B € L}} for any finite L € [A]<*,
@ then for each n, p forces that at, 1n \ Uycp, at,+k contains
uncountably many members of {t, : a € A}.
Q@ and so if Y C bT is any set that projects onto {t, : o € A}

then the closure of Y contains the entire set bT N {x D ty}
for some \ € wy.

Proof.

We can work inside of E to decide members of A and designate
each ty1x (k < n) as primary. O

| \

v
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Now we can force Martin's Axiom

Proposition

Let G C Pt be generic. Let Q be a Souslin-free ccc poset of
cardinality at most w;. What are the properties of X = bT N 2<%2
in this extension?

Alan Dow Martin's Axiom and initially wj-compact spaces



Now we can force Martin's Axiom

Proposition

Let G C Pt be generic. Let Q be a Souslin-free ccc poset of
cardinality at most w;. What are the properties of X = bT N 2<%2
in this extension?

© bT acquires only new branches of countable cofinality, and all
such points will have countable character
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Now we can force Martin's Axiom

Proposition
Let G C Pt be generic. Let Q be a Souslin-free ccc poset of
cardinality at most w;. What are the properties of X = bT N 2<%2
in this extension?
© bT acquires only new branches of countable cofinality, and all
such points will have countable character
@ each countable subset of X which does not have compact
closure, still contains a set of the form bT N {x D t} for some
te T
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Now we can force Martin's Axiom

Proposition
Let G C Pt be generic. Let Q be a Souslin-free ccc poset of
cardinality at most w;. What are the properties of X = bT N 2<%2
in this extension?
© bT acquires only new branches of countable cofinality, and all
such points will have countable character
@ each countable subset of X which does not have compact
closure, still contains a set of the form bT N {x D t} for some
te T

© each wj-sized subset of X does the same
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Now we can force Martin's Axiom

Proposition
Let G C Pt be generic. Let Q be a Souslin-free ccc poset of
cardinality at most w;. What are the properties of X = bT N 2<%2
in this extension?
© bT acquires only new branches of countable cofinality, and all
such points will have countable character
@ each countable subset of X which does not have compact
closure, still contains a set of the form bT N {x D t} for some
te T
© each wji-sized subset of X does the same
Q therefore X is still first-countable and initially wi-compact in
the forcing extension by Q.
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It is consistent with MA +c = w» that there is a first-countable
initially wi-compact space which is not compact.
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Corollary

It is consistent with MA +c = w» that there is a first-countable
initially wi-compact space which is not compact.

| \

Corollary
It is consistent with MA +c = w» that there is a Moore-Mrowka
space.

N,
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Corollary

It is consistent with MA +c = w» that there is a first-countable
initially wi-compact space which is not compact.

”
Corollary

It is consistent with MA +c = w» that there is a Moore-Mrowka
space.

”
Corollary

Our bT is BX and it has the desired property that every

Y € [bT N2“2]<%1t accumulates to points in X, thus there is a
first-countable initially wi-compact space of cardinality greater
than c.
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Proof.

We skip the proof of part 1.

To prove parts 2 and 3, we note that the space we get from at,
maps perfectly onto the space we get from ar.. l.e. our only
points are the t, with neighborhoods given by At&. It suffices to
show that this space remains initially wi-compact.

We just consider countably compact.

Assume that A = {&, : n € w} is a Q-name of an infinite set of
successor ordinals. Assume that for all g € Q, and all finite

L C Succ(wy), there is ¢’ < g and an n such that ¢’ I te, € Az,
for each 8 € L (a typical neighborhood of the point f)

For each uncountable limit X, choose finite F, C A, ny, and

g € Q, so that for n > ny, if gy IF x, € Afi . then gy IF x, € At;

+
for some B € F).

But now, there is a stationary S and fixed g, n, F so that

(gr,n\, Fx) = (g,n, F) for all A € S.

However, it now follows that Y = {t : (3¢’ < §)¢ € A} must have
compact closure, since its closure misses {ty11: A € S}.
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