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PURPOSE OF THIS TALK

Advances about a formalism which allows to describe Hamilton-Jacobi
equation for a great variety of mechanical systems

@ Unconstrained systems (Classical hamiltonian systems, reduced
hamiltonian systems,.....)

@ nonholonomic systems subjected to linear or affine constraints

@ dissipative systems subjected to external forces

@ time-dependent mechanical systems
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CLASSICAL HAMILTON-JACOBI EQUATION

INGREDIENTS
@ Q configuration space (manifold) (q)
*] 75 : T*Q — Q phase space of momenta (4, p;)
@ H: T*Q — R Hamiltonian function  H(q', p;)

4
* B . .
X € X(T*Q) hamiltonian vector field  x;; = 5/t Erial

@ W : Q — R the characteristic function  w(q')

Classical Hamilton-Jacobi Theorem

The following sentences are equivalent
@ Foreveryc: 1 — Q, c(t)=(q(t)) integral curve of

XW = TrloXyodW € X(Q) % = 84 (q(n),

2 (g(1))

4

dWoc: | — T*Q is an integral curve of Xy
@ W satisfies Hamilton-Jacobi equation

H o dW = constant, H(q', ())—M’/) = constant
aq
4
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CLASSICAL HAMILTON-JACOBI EQUATION

Let A € Q1(Q) be a closed 1-form (d\ = 0)

X
T Q T(T*Q)
/4
A TT*Q TTrxqQ
AN X7
Q TQ

c: |l — Q integral curve of X,f,‘ = Ao c integral curve of Xy,

i

Xy and X} are A-related (i.e. TA(X]) = Xu).

i

d(H o A) =0 Hamilton-Jacobi equation
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CLASSICAL HAMILTON-JACOBI EQUATION

TooLs
TQ L Q ~ vector bundle 7p : D — @ over a manifold Q

The canonical symplectic 2-form wg in T*Q ~ The canonical Poisson bracket
{-,-}r+@ on T*Q ~- a linear Poisson bracket {-,:}p+ on D*

A Hamiltonian function H: T*Q — R ~ a function H : D* — @

A section A : Q — T*Q such that d\ = 0 ~~ a section A € ['(D*) which is

closed with respect to a certain differential
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HAMILTON-JACOBI EQUATION FOR NONHOLONOMIC MECHANICAL

INGREDIENTS
@ Q manifold (configuration space)
@ D a distribution on Q (constraint distribution)
@ g a Riemannian metric on Q
@ V:Q — R a real function on @ (Potential)
4
LTQoE,  L(v) = 28(v,v) — V(r(v))
FL: TQ — T*Q Legendre transformation

FL = The vector bundle isomorphism induced by the metric g

I
D = FL(D) the constraint Hamiltonian subbundle of T*Q

@ H: T*Q — R Hamiltonian function

4
Xu € X(D*) Xy = Tip o Xy o P*
TQ=D®D- P:TQ— D, P*:D* = T*Q
ip:D— TQ, if:T*Q— D* Tip:T(T*Q) — TD*
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HAMILTON-JACOBI EQUATION FOR NONHOLONOMIC MECHANICAL

Z(D°) = the algebraic ideal generated by D°

Hamilton-Jacobi Theorem for nonholonomic systems

Let A € Q'(Q) taking values into D and satisfying d\ € Z(D°). Then the
following conditions are equivalent:

@ For every integral curve c : R — Q of
X = (Tmg)oXuo e %(Q)

then ) o c is an integral curve of Xj.

Q d(HoX)(Q)c D°

D. IGLESIAS, M. DE LEON, D. MARTIN DE DIEGO 2008
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HAMILTON-JACOBI EQUATION FOR NONHOLONOMIC MECHANICAL

TooLs

D . Q ~ 7 : D — Q vector bundle over a manifold Q

The nonholonomic bracket on D* ~~ an almost linear Poisson {-,-}p~ bracket
of functions on D™, i.e., in general, does not satisfy Jacobi identity

{F,G}px ={Foip,GoiptoP*, F,Ge C>®(D")
TQ=DaD" P.:TQ—D, P :D*=>T*Q
ip:D—>TQ, ip:T"Q— D

A Hamiltonian function H: T*Q — R = H = Ho P* : D* — R~ function
H:D* — R
4
Xu € (D*) Xu(F) = Xu(F) = {F,H}p~

A section A : @ — T*Q taking values on D such that dA(Q) C Z(D°) ~~ A
section A € ['(D*).... and is it closed with respect to a certain differential

operator?
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THE DIFFERENTIAL

INGREDIENTS:

@ 7p: D — @ a vector bundle

4

o+ : D* — Q its dual vector bundle

@ A linear almost Poisson bracket ! {,-}p+ on D*

4

dP : T(AKD*) — T(AK+1D*) differential operator

linear means that the bracket of two linear functions is a:linear function
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LINEAR ALMOST POISSON STRUCTURES ON A VECTOR BUNDLE

7p : D — Q vector bundle with linear almost Poisson bracket {:,-}p+ on D* — Q

{X :D* = R/X is linear} <= [(D) = {X : @ — D/X is a section of T}

What is the corresponding structure on D?

U

The bracket of two linear functions with respect to D* — Q is again linear

The bracket on the space of sections of D

[:s-1p : T(D) x [(D) — (D) skew-symmetric

X, Y, = —{X, V}p-

\

The bracket of a linear function and a basic function f o Tp= is a basic function

The vector bundle morphism between D and TQ

pp : D — TQ (anchor map) = pp : (D) — X(Q)

pD(X)(f) O Tpx = {)/\(, f OTD*}D*
[X, 1o = FIX, YIb + po(X)(F)Y, VX,Y €T(D), Vfe C™®(Q)
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LINEAR ALMOST POISSON STRUCTURES ON A VECTOR BUNDLE

{{:, - }p+ linear almost Poisson bracket on D*}

)

{([s ‘b, pp) skew-symmetric algebroid structure on D}
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THE DIFFERENTIAL

dP : T(AkD*) — T(Ak+1D¥)

k
dPQ(&, &, &) = D _(-1)po(€) (o, -1 & -, &))
i=0
+ZQ(H£ia£j]]Da£07"' 757"'75"" . 75/()
i<j

where &o,&1,...,&k € T(D)

(d°)2#0
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HAMILTON-JACOBI EQUATION FOR A LINEAR ALMOST POISSON BRACKET

@ 7p: D — Q vector bundle

@ {.,-}p~ linear almost Poisson bracket on D*

@ H : D* — R Hamiltonian function = Xy = {-, H}p+ € X(D*)
@ \: Q@ — D* be a section of 7px : D* — @

Xy

D* TD*
by Tp* TTp*
AN X3
Q = TQ

X3, = Trp+ 0 Xg 0 A

W:Q—R, d°W is not closed dP(d®W) # 0
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HAMILTON-JACOBI EQUATION FOR A LINEAR ALMOST POISSON BRACKET

@ \er(D)
T2 :QY(D*) - (D), n(T*(B)) =B(n")er BeQ(D*),ner(D*)
n’ € X(D*)

63, €T(D) = T (dH)

Hamilton-Jacobi Theorem

c: | — Q integral curve of X7>-\L € X(Q) = X o c integral curve of X3, € [(D*)

T

isy dP°X+dP(HoN)=0

M pE LEON, JC MARRERO, D MARTIN DE DIEGO (2010)
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HAMILTON-JACOBI EQUATIONS FOR A LINEAR ALMOST POISSON BRACKET

The general distribution D= pp(D) bracket generating

v

{Xk? [Xk7X/]7 [Xiv [Xk7XI]/)<J S 5} spans %(Q)

Lie> (D) the smallest Lie subalgebra of ¥(Q) containing D

dP(HoA) =0
g

H o X is constant on the leaves of the foliation Lie> (D)
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HAMILTON-JACOBI EQUATIONS FOR A LINEAR ALMOST POISSON BRACKET

@ g — {x} with Lie-Poisson structure on g*. Thus, if D =} is a subspace of g, we
obtain that the nonholonomic bracket (nonholonomic Lie-Poisson bracket)

@ A principal G-bundle 7: Q — Q/G
T7Q 1 TQ — Q is equivariant
(3
TQ/G — Q/G

The linear Poisson structure on (T*Q)/G is characterized by the following
condition: the canonical projection T*Q — T*Q/G is a Poisson epimorphism

the Hamilton-Poincare bracket on T*Q/G

D a G-invariant distribution on Q

\’

D/G is a vector subbundle of TQ/G
4

the non-holonomic Hamilton-Poincaré bracket on D* /G
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CLASSICAL HAMILTON-JACOBI EQUATION FOR TIME-DEPENDENT MECHAN

INGREDIENTS

@ 7 : Q — R fibration (configuration space) (g t) =t
n:W*(dt)Gﬂl(Q) n = dt

@ phase space of momenta
@ extended T*Q
@ restricted V*rr  Vm={ve TQ/n(v)=1}
4

Principal R-bundle p: T*Q — V*r w(q', t, pispe) = (', pjs t)
@ h:V*r — T*Q Hamiltonian section of u h(g'pi, t) — (q', pjs t, —H(G', pi, 1))
Fr: T"Q =R Fr(a', t, pj, pe) = H(d', pis t) + pe
mla — hu(a)) =0 = o — hu(a) = Fy(a)n
Ry € X(V*7) Ry(F)opu={Fopu,Fp} Ro= 5+ 5t 2 — 80 5
@ W : Q — R the characteristic function w(dq', ¢)
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CLASSICAL HAMILTON-JACOBI EQUATION FOR TIME-DEPENDENT MECHAN

Q=MxR
h:V*pi=T*MxR = T*Q=T*(MxR), h(q',pi,t) = (d',t,pi,—H(d', pi, 1))
H:V*7: T*"M xR — R

Hamilton-Jacobi Theorem for time-dependent Mechanics

The following sentences are equivalent

@ For every curve ¢ : | — @ such that
c'(t) = T7H 0 X, (dWi(c(t)))

I

dWoc: |l — T*Q is an integral curve of Xy.
@ W satisfies Hamilton-Jacobi equation

ow
Hy o dW; + T = constant
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CLASSICAL HAMILTON-JACOBI EQUATION FOR TIME-DEPENDENT MECHAN

TooLs
7Q: TQ ——= Q ,~ 7p : D — Q a vector bundle with a almost linear Poisson

bracket {-, -} p=

n € T(T*Q) such that dn =0 and n(q) #0 Vq € Q ~~ a section ¢ : @ — D* not
null in everywhere such that d®¢ = 0

U

7 : TQ — R linear function ~~ (3 : D — R linear function
A7N0)=Vr p:T*Q— (771(0)*~ 47 1(0)=V p:D* = V*
{:,-}V linear almost Poisson braket such that x an almost Poisson morphim
A hamiltonian section h : (&1(0))* — T*Q ~» A section h: V* — D* of p

Fn:D* =R

A section A : Q — T*Q such that d\ =0 ~ A section A\ : Q — D* of D*
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HAMILTON-JACOBI EQUATION FOR A LINEAR POISSON BRACKET WITH COCYCLE

T> . QYD*) = (D), &= T*(dFy) € I(D)

Hamilton-Jacobi Theorem

c: 1 — Q integral curve of Rﬁ‘ = TryxoRyopoX e X(Q)
= po Ao c integral curve of Ry € (V™)

:
pooigd®X+dY(FroX) =0
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HAMILTON-JACOBI EQUATION FOR MECHANICAL SYSTEMS WITH LINEAR

EXTERNAL FORCES

@ The vector bundle: TQ xR — Q

@ The linear almost Poisson bracket:

F : TQ — TQ vector bundle morphism= 3 ¢ Q(TQ) semibasic homogeneous of degree 1
o
Mreoxg =MNreo+ 2 AYF

Yr € X(T*Q) Yr(a)=F* ()l € To(T*Q)

@ R,=Xy—YrceX(T*Q)
@ The 1-cocyple ¢ = (0,1) e I(T*Q X R) = C>®(Q) x X¥(Q) = V =TQ

Q@ u=p1: T*QXR—> T*Q

@ The Hamiltonian section:
H:T*Q—>R=h:T*Q — T*Q xR, h(B)=(8,—H(3))
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HAMILTON-JACOBI EQUATION FOR MECHANICAL SYSTEMS WITH LINEAR

EXTERNAL FORCES

T2 QNT*Q) = X(Q), &) = T(dH)

Hamilton-Jacobi Theorem

€ QYQ)

c: I — Q integral curve of R} = T7rxg 0 Xy o\ € X(Q)

= Ao c integral curve of Xy — Yr € X(T* Q)

(3
ispdA+d(HoX) + Yr(X) =0
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THE HAMILTON-JACOBI EQUATION OF A MECHANICAL SYSTEM SUBJECTED

TO AFFINE NONHOLONOMIC CONSTRAINTS

INGREDIENTS
@ a vector subbundle 7: U — Q of (7p : D — Q,{:, - }p+)
@ abundle metric G: DxqD »R=P:D=Ud U+ - U
@ afunction V:Q — R
@ Xp € (D) such that P(Xp) =0

0

affine nonholonomic constraints = 77, : U — Q

q€ Q — Uy ={ug+ Xo(q)/uq € Ug}
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THE HAMILTON-JACOBI EQUATION OF A MECHANICAL SYSTEM SUBJECTED

TO AFFINE NONHOLONOMIC CONSTRAINTS

@ The vector bundle T : U= (U+)* — Q (it is a subbundle of D x R — Q)

F(U) =< {(o + Xo, f)/o € T(U), fe C®(Q)}>
@ The linear almost Poisson manifold on /* = U+

t

([-,-1p, D) skewsymmetric algebroid

P:DxR—U, P(egs)=(P(eg)+sXo(q),s)
P.:D=UsU+—>U

[(o1 + iXo, i), (02 + X0, B)lz = P(lo1 + iXo, 02 + o Xolp,
pp(o1 + AXo)(£2) — po(o2 + £2X0)(f1))
p(o + X0, f) = pp(o + fXo)
@ The 1-cocycle ¢ € I(U*)

¢ :TU) = C2(Q) ¢(o+ KXo, f)=F
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THE HAMILTON-JACOBI EQUATION OF A MECHANICAL SYSTEM SUBJECTED

TO AFFINE NONHOLONOMIC CONSTRAINTS

V=U, ([Llu=Pol,lpo, pu=nr)

the Hamiltonian section h : U* — U*
H U" R H(a) = 200+ (a0) + V(q)
h(v) = (uq + sXo(q), s) = vq(uq) — sH()
T QNU*) = T(U) 67 = TA(dH) € T(U)

Hamilton-Jacobi Theorem

Assume that A € I'(U*)

c: I — Q integral curve of R} = T7y= o Ryo X € £(Q)

= Ao c is a solution of Hamilton equations

T

i6ﬁdu)\ + 10 ixg1yd¥(hoa) =0

V.
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AN EXAMPLE: AN HOMOGENEOUS ROLLING BALL WITHOUT SLIDING ON A

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

We consider a homogeneous ball with radius r > 0, mass m and inertia
mk? about any axis. Suppose that the ball rolls without sliding on a
horizontal table which rotes with a time-dependent angular velocity Q(t)
about vertical axis thought of one of its point. Apart from the
gravitational force, no other external forces are assumed.

w

(= /
©

Configuration space: Choose a cartesian reference frame with origin at
the center of rotation of the table and z—axis along the rotation axis.
(g1, g2)=the position of the point of contact of the sphere with the table.

(t,q1,q2) € Q =R’
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AN EXAMPLE: AN HOMOGENEOUS ROLLING BALL WITHOUT SLIDING ON A

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

(t.q"q% ', g% w1, wo,w3) € R x TR? x R?
w1,w2 and w3 are the components of the angular velocity of the sphere

@ The extended phase space of momenta: T*R3 x R3
@ The restricted phase space of momenta: R x T*R? x R3

w: TR3 x R3 - R x T*R? x R3
The hamiltonian section h: R x T*R? x R3 — T*R3 x R3

h(t,q', pi,mi) = (t,q', —H(t, 4", pi, ), pi, ;)

1 1 1
H=—(=(p}+p3)+ —(n}+73+p3)
2 \m mk
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AN EXAMPLE: AN HOMOGENEOUS ROLLING BALL WITHOUT SLIDING ON A

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

Ball without sliding
4

The affine constraints

gL—rw = —Q(t)q
pt+rw = Qt)q
At)P+Ltp— Zzm = 0
—Q(t)q' + Lp2 — —am = 0

Edith Padrén H-J equation and algebroid theory



AN EXAMPLE: AN HOMOGENEOUS ROLLING BALL WITHOUT SLIDING ON A

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

Hamilton equations

. 1
gt = —m
m
. 1
P = —p
m
mk?®  dQ(t) , P2
o= = Q(t)—
A (7 a2
. mk?  dQ(t) & p1
= Q)2
P2 k2+r2( P )m)
rmk? dQ(t) p1
1 = Q(t)—
m k2 + r2( dt Fad) m)
rmk?  dQ(t) , P2
= Q(t)—
2 k2 + r2( dt +a(1) m)
p3 = 0
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AN EXAMPLE: AN HOMOGENEOUS ROLLING BALL WITHOUT SLIDING ON A

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

The vector bundle: 7: D = TR3 x R3 — R3
Global basis of I'( TR3 x R3)

b3} ) o ) b5}
=(— - Q(t)¢°— + Q(t)g'—,0 =(—,0 =(—,0
€ (8t (t)a 6q1+ (t)a o ), e (aqy )s & (aq2’ )
e3 = (0,(1,0,0)), es = (0,(0,1,0)), e =(0,(0,0,1)),

The linear almost Poisson structure on D* = T*R3 x R3
[eo, e1lp = —Q(t)e2, [eo, e2]p = Q(t)er, [es3,es]p = es,
[es, eslp = €3, [es, e3]p = es,

) d ) d d
== —Q(t)* = + Qt)qg' = = ==
po(e0) = 5= — Q(t)q o T (t)a 22’ pp(e1) gt pp(e2) o
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AN EXAMPLE: AN HOMOGENEOUS ROLLING BALL WITHOUT SLIDING ON A

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

Subbundle of D
U :=span{es —rex, es + re1, es}
Fiber metric on D
G = e’ + (m((e1) + (e2)%) + mk*((e3)* + (ea)* + (e5)?)

The section Xy of D
Xo = eo
The section )\ of U*
A =dY(e1(t)q" + e2(t)q?)

dYX#£0
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AN EXAMPLE: AN HOMOGENEOUS ROLLING BALL WITHOUT SLIDING ON A

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

If Q(t) = Qot

Solution of Hamilton equations

Xoc(t) = (t,¢"(t), g (£); As(c(1)), Aa(c(1)), 0)

_ —r . r2Qot? r2Qot?
wet) = e (e (g )+ o (g )
r r2Qot? . r?Qot?
Aa(c(t)) = m (C1 cos (Wj‘ﬂ)) -G sm(2(k27-7-r2))) )

where Ci, G, are real constants.
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Conclusions

Using the linear almost Poisson theory (or skew-symmetric
algebroid theory) we have given a simple method to describe the
Hamilton-Jacobi equations for several situations. Usually, these
equations make it easy to find solutions for the equations of
Hamilton equations.
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Thanks for your attention!
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