Hamilton-Jacobi equation and non-holonomic dynamics

Why use algebroid theory to describe the H-J equation?

Edith Padrón

University of La Laguna, Spain mepadron@ull.es

Focus Program on Geometry, Mechanics and Dynamics and the Legacy of Jerry Marsden

Advances about a formalism which allows to describe Hamilton-Jacobi equation for a great variety of mechanical systems

- Unconstrained systems (Classical hamiltonian systems, reduced hamiltonian systems,....)
- nonholonomic systems subjected to linear or affine constraints
- dissipative systems subjected to external forces
- time-dependent mechanical systems

```
....
```

```
D Iglesias, M de León, D Martín de Diego (2008)

T Ohsawa, A Bloch (2009)

M de León, JC Marrero, D Martín de Diego (2010)

J F Carinena, X Gracia, G Marmo, E Martínez, M C Munoz-Lecanda, N Román-Roy (2010)

P Balseiro, JC Marrero, D Martín de Diego, E P (2010)

M Leok, T Ohsawa, D Sosa (2011)
```

CLASSICAL HAMILTON-JACOBI EQUATION

INGREDIENTS

- Q configuration space (manifold) (qⁱ)
- $\tau_Q^*: T^*Q \to Q$ phase space of momenta (q^i, p_i)
- $H: T^*Q \to \mathbb{R}$ Hamiltonian function $H(q^i, p_i)$

 \Downarrow

$$X_H \in \mathfrak{X}(T^*Q)$$
 hamiltonian vector field $X_H = \frac{\partial H}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial}{\partial p_i}$

• $W: Q \to \mathbb{R}$ the characteristic function $W(q^i)$

Classical Hamilton-Jacobi Theorem

The following sentences are equivalent

① For every $c: I \to Q$, $c(t) = (q^i(t))$ integral curve of

$$X_H^W = T\tau_Q^* \circ X_H \circ dW \in \mathfrak{X}(Q) \quad \frac{dq^i}{dt} = \frac{\partial H}{\partial p_i}(q(t), \frac{\partial W}{\partial q}(q(t))$$

 \Downarrow

 $dW \circ c : I \to T^*Q$ is an integral curve of X_H

2 W satisfies Hamilton-Jacobi equation

$$H \circ dW = constant, \quad H(q^i, \frac{\partial W}{\partial q^i}) = constant$$

CLASSICAL HAMILTON-JACOBI EQUATION

Let $\lambda \in \Omega^1(Q)$ be a closed 1-form $(d\lambda = 0)$

Theorem

c:I
ightarrow Q integral curve of $X_H^\lambda\Rightarrow\lambda\circ c$ integral curve of X_H ,

 X_H and X_H^{λ} are λ -related (i.e. $T\lambda(X_H^{\lambda})=X_H$).

 $d(H \circ \lambda) = 0$ Hamilton-Jacobi equation

CLASSICAL HAMILTON-JACOBI EQUATION

Tools

$$TQ \xrightarrow{\tau_{TQ}} Q \implies$$
 vector bundle $\tau_D : D \rightarrow Q$ over a manifold Q

The canonical symplectic 2-form ω_Q in $T^*Q \simeq$ The canonical Poisson bracket $\{\cdot,\cdot\}_{T^*Q}$ on $T^*Q \leadsto$ a linear Poisson bracket $\{\cdot,\cdot\}_{D^*}$ on D^*

A Hamiltonian function $H: T^*Q \longrightarrow \mathbb{R} \rightsquigarrow a$ function $H: D^* \rightarrow Q$

A section $\lambda:Q\longrightarrow T^*Q$ such that $d\lambda=0$ \leadsto a section $\lambda\in\Gamma(D^*)$ which is closed with respect to a *certain differential*

Hamilton-Jacobi equation for nonholonomic mechanical systems

INGREDIENTS

- Q manifold (configuration space)
- D a distribution on Q (constraint distribution)
- g a Riemannian metric on Q
- $V: Q \to \mathbb{R}$ a real function on Q (Potential)

$$L: TQ \to \mathbb{R}, \qquad L(v) = \frac{1}{2}g(v,v) - V(\tau(v))$$

 $\mathbb{F}L: TQ \to T^*Q$ Legendre transformation

 $\mathbb{F}L \equiv$ The vector bundle isomorphism induced by the metric g

 $\bar{D} = \mathbb{F}L(D)$ the constraint Hamiltonian subbundle of T^*Q

• $H: T^*Q \to \mathbb{R}$ Hamiltonian function

$$\bar{X}_H \in \mathfrak{X}(D^*)$$
 $\bar{X}_H = Ti_D^* \circ X_H \circ P^*$

$$TQ = D \oplus D^{\perp} \quad P: TQ \to D, \quad P^*: D^* \to T^*Q$$

Hamilton-Jacobi equation for nonholonomic mechanical systems

 $\mathcal{I}(D^0) \equiv$ the algebraic ideal generated by D^0

Hamilton-Jacobi Theorem for nonholonomic systems

Let $\lambda \in \Omega^1(Q)$ taking values into \bar{D} and satisfying $d\lambda \in \mathcal{I}(D^o)$. Then the following conditions are equivalent:

1 For every integral curve $c: \mathbb{R} \to Q$ of

$$X_H^{\lambda} = (T\pi_Q) \circ X_H \circ \lambda \in \mathfrak{X}(Q)$$

then $\lambda \circ c$ is an integral curve of \bar{X}_H .

 $2 d(H \circ \lambda)(Q) \subset D^{\circ}$

D. Iglesias, M. de León, D. Martín de Diego 2008

Hamilton-Jacobi equation for nonholonomic mechanical systems

TOOLS

$$D \xrightarrow{\tau_D} Q \rightsquigarrow \tau_D : D \rightarrow Q$$
 vector bundle over a manifold Q

The nonholonomic bracket on $D^* \rightsquigarrow$ an almost linear Poisson $\{\cdot,\cdot\}_{D^*}$ bracket of functions on D^* , i.e., in general, does not satisfy Jacobi identity

$$\{F, G\}_{D^*} = \{F \circ i_D^*, G \circ i_D^*\} \circ P^*, \quad F, G \in C^{\infty}(D^*)$$

$$TQ = D \oplus D^{\perp} \quad P : TQ \to D, \quad P^* : D^* \to T^*Q$$

$$i_D : D \to TQ, \quad i_D^* : T^*Q \to D^*$$

A Hamiltonian function $H: T^*Q \longrightarrow \mathbb{R} \Rightarrow \mathcal{H} = H \circ P^*: D^* \longrightarrow \mathbb{R} \longrightarrow \text{function}$ $\mathcal{H}:D^*\longrightarrow\mathbb{R}$

$$\downarrow \\ \bar{X}_H \in \mathfrak{X}(D^*) \ \bar{X}_H(F) = X_H(F) = \{F, \mathcal{H}\}_{D^*}$$

A section $\lambda: Q \longrightarrow T^*Q$ taking values on \bar{D} such that $d\lambda(Q) \subset \mathcal{I}(D^\circ) \rightsquigarrow A$ section $\lambda \in \Gamma(D^*)$ and is it closed with respect to a *certain differential* operator? ◆□→ ◆□→ ◆□→ ◆□→ □

INGREDIENTS:

• $\tau_D: D \longrightarrow Q$ a vector bundle

 \Downarrow

 $\tau_{D^*}:D^*\longrightarrow Q$ its dual vector bundle

• A linear almost Poisson bracket 1 $\{\cdot,\cdot\}_{D^*}$ on D^*

 \Downarrow

 $d^D: \Gamma(\wedge^k D^*) \to \Gamma(\wedge^{k+1} D^*)$ differential operator

¹linear means that the bracket of two linear functions is a linear function

● ◆○○

LINEAR ALMOST POISSON STRUCTURES ON A VECTOR BUNDLE

$$au_D: D o Q$$
 vector bundle with linear almost Poisson bracket $\{\cdot,\cdot\}_{D^*}$ on $D^* o Q$ $\{\hat{X}: D^* o \mathbb{R}/\hat{X} \text{ is linear}\} \iff \Gamma(D) = \{X: Q o D/X \text{ is a section of } \tau\}$

What is the corresponding structure on D?

 \Downarrow

The bracket of two linear functions with respect to $D^* o Q$ is again linear

The bracket on the space of sections of D

$$\llbracket \cdot, \cdot
rbracket_D : \Gamma(D) imes \Gamma(D) o \Gamma(D)$$
 skew-symmetric

$$[\![\widehat{X},\widehat{Y}]\!]_D = -\{\hat{X},\hat{Y}\}_{D^*}$$

The bracket of a linear function and a basic function $f \circ \tau_{D^*}$ is a basic function

The vector bundle morphism between D and TQ

$$ho_D:D o TQ$$
 (anchor map) $\Rightarrow
ho_D:\Gamma(D) o \mathfrak{X}(Q)$

$$\rho_D(X)(f) \circ \tau_{D^*} = \{\hat{X}, f \circ \tau_{D^*}\}_{D^*}$$

$$[\![X, fY]\!]_D = f[\![X, Y]\!]_D + \rho_D(X)(f)Y, \quad \forall X, Y \in \Gamma(D), \quad \forall f \in C^{\infty}(Q)$$

LINEAR ALMOST POISSON STRUCTURES ON A VECTOR BUNDLE

$$d^D:\Gamma(\Lambda^kD^*)\to\Gamma(\Lambda^{k+1}D^*)$$

$$d^{D}\Omega(\xi_{0},\xi_{1},\ldots,\xi_{k}) = \sum_{i=0}^{k} (-1)^{i} \rho_{D}(\xi_{i}) (\Omega(\xi_{0},\ldots,\widetilde{\xi}_{i},\ldots,\xi_{k})) + \sum_{i< j} \Omega(\llbracket \xi_{i},\xi_{j} \rrbracket_{D},\xi_{0},\ldots,\widetilde{\xi}_{i},\ldots,\widetilde{\xi}_{j},\ldots,\xi_{k})$$

where $\xi_0, \xi_1, \dots, \xi_k \in \Gamma(D)$

$$(d^D)^2 \neq 0$$

Hamilton-Jacobi equation for a linear almost Poisson bracket

- $\tau_D:D\to Q$ vector bundle
- $\{\cdot,\cdot\}_{D^*}$ linear almost Poisson bracket on D^*
- $\mathcal{H}: D^* \to \mathbb{R}$ Hamiltonian function $\Rightarrow X_{\mathcal{H}} = \{\cdot, H\}_{D^*} \in \mathfrak{X}(D^*)$
- $lackbox{0}$ $\lambda:Q\longrightarrow D^*$ be a section of $au_{D^*}:D^*\longrightarrow Q$

 $W:Q\to\mathbb{R},\quad d^DW$ is not closed $d^D(d^DW)\neq 0$

• $\lambda \in \Gamma(D^*)$

$$\Upsilon^{\lambda}: \Omega^{1}(D^{*}) \to \Gamma(D), \quad \eta(\Upsilon^{\lambda}(\beta)) = \beta(\eta^{v}) \circ \lambda \quad \beta \in \Omega^{1}(D^{*}), \eta \in \Gamma(D^{*})$$

$$\eta^{v} \in \mathfrak{X}(D^{*})$$

$$\delta^{\lambda}_{\mathcal{H}} \in \Gamma(D) = \Upsilon^{\lambda}(d\mathcal{H})$$

Hamilton-Jacobi Theorem

$$c:I o Q$$
 integral curve of $X_{\mathcal{H}}^\lambda\in\mathfrak{X}(Q)\Rightarrow\lambda\circ c$ integral curve of $X_{\mathcal{H}}\in\Gamma(D^*)$
$$\updownarrow i_{\delta_{\lambda}^\lambda}d^D\lambda+d^D(\mathcal{H}\circ\lambda)=0$$

M de León, JC Marrero, D Martín de Diego (2010)

Hamilton-Jacobi equations for a linear almost Poisson bracket

The general distribution $\widetilde{D} = \rho_D(D)$ bracket generating

1

$$\{X_k, [X_k, X_l], [X_i, [X_k, X_l]..../X_j \in \widetilde{D}\}$$
 spans $\mathfrak{X}(Q)$

 $\mathsf{Lie}^\infty(\widetilde{D})$ the smallest Lie subalgebra of $\mathfrak{X}(Q)$ containing \widetilde{D}

$$d^D(\mathcal{H}\circ\lambda)=0$$

 $\mathcal{H}\circ\lambda$ is constant on the leaves of the foliation $\mathsf{Lie}^\infty(\widetilde{D})$

Hamilton-Jacobi equations for a linear almost Poisson bracket

- $\mathfrak{g} \to \{x\}$ with Lie-Poisson structure on \mathfrak{g}^* . Thus, if $D = \mathfrak{h}$ is a subspace of \mathfrak{g} , we obtain that the nonholonomic bracket (nonholonomic Lie-Poisson bracket)
- A principal G-bundle $\pi: Q \to Q/G$

$$au_{TQ}: TQ o Q$$
 is equivariant

,

$$TQ/G \rightarrow Q/G$$

The linear Poisson structure on $(T^*Q)/G$ is characterized by the following condition: the canonical projection $T^*Q \to T^*Q/G$ is a Poisson epimorphism

the Hamilton-Poincare bracket on T^*Q/G

D a G-invariant distribution on Q

 \Downarrow

D/G is a vector subbundle of TQ/G

1

the non-holonomic Hamilton-Poincaré bracket on D^*/G

CLASSICAL HAMILTON-JACOBI EQUATION FOR TIME-DEPENDENT MECHANICS

Ingredients

•
$$\pi: Q \to \mathbb{R}$$
 fibration (configuration space) $\pi(q^i, t) \to t$

$$\eta = \pi^*(dt) \in \Omega^1(Q)$$
 $\eta = dt$

- phase space of momenta
 - extended T*Q
 - restricted $V^*\pi$ $V\pi=\{v\in TQ/\eta(v)=1\}$

Principal
$$\mathbb{R}$$
-bundle $\mu: T^*Q \to V^*\pi$
$$\mu(q^i, t, p_i, p_t) \to (q^i, p_i, t)$$

• $h: V^*\pi \to T^*Q$ Hamiltonian section of μ $h(q^i p_i, t) \to (q^i, p_i, t, -H(q^i, p_i, t))$

$$F_h: T^*Q \to \mathbb{R} \qquad F_h(q^i, t, p_i, p_t) \to H(q^i, p_i, t) + p_t$$
$$\mu(\alpha - h\mu(\alpha)) = 0 \Longrightarrow \alpha - h\mu(\alpha) = F_h(\alpha)\eta$$

$$R_h \in \mathfrak{X}(V^*\pi) \qquad \qquad R_h(F) \circ \mu = \{F \circ \mu, F_h\} \qquad \qquad R_h = \frac{\partial}{\partial t} + \frac{\partial H}{\partial P_i} \frac{\partial}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial}{\partial P_i}$$

• $W: Q \to \mathbb{R}$ the characteristic function $W(q^i, t)$

CLASSICAL HAMILTON-JACOBI EQUATION FOR TIME-DEPENDENT MECHANICS

$$Q = M \times \mathbb{R}$$

$$\begin{split} h: V^* p i &= T^* M \times \mathbb{R} \to T^* Q = T^* (M \times \mathbb{R}), \quad h(q^i, p_i, t) \to (q^i, t, p_i, -H(q^i, p_i, t)) \\ &\quad H: V^* \pi: T^* M \times \mathbb{R} \to \mathbb{R} \end{split}$$

Hamilton-Jacobi Theorem for time-dependent Mechanics

The following sentences are equivalent

1 For every curve $c: I \rightarrow Q$ such that

$$c'(t) = T\tau_Q^* \circ X_{H_t}(dW_t(c(t)))$$

 \Downarrow

 $dW \circ c : I \to T^*Q$ is an integral curve of X_H .

2 W satisfies Hamilton-Jacobi equation

$$H_t \circ dW_t + \frac{\partial W}{\partial t} = constant$$

CLASSICAL HAMILTON-JACOBI EQUATION FOR TIME-DEPENDENT MECHANICS

Tools

 $au_Q: TQ \longrightarrow Q , \leadsto au_D: D \to Q$ a vector bundle with a almost linear Poisson bracket $\{\cdot,\cdot\}_{D^*}$

 $\eta \in \Gamma(T^*Q)$ such that $d\eta = 0$ and $\eta(q) \neq 0 \quad \forall q \in Q \leadsto$ a section $\phi: Q \to D^*$ not null in everywhere such that $d^D\phi = 0$

 \Downarrow

 $\hat{\eta}: TQ \to \mathbb{R}$ linear function $\leadsto \hat{\phi}: D \to \mathbb{R}$ linear function

$$\hat{\eta}^{-1}(0) = V\pi \quad \mu: T^*Q \to (\hat{\eta}^{-1}(0))^* \leadsto \hat{\phi}^{-1}(0) = V \quad \mu: D^* \to V^*$$

 $\{\cdot,\cdot\}_V^*$ linear almost Poisson braket such that μ an almost Poisson morphim

A hamiltonian section $h:(\widehat{\phi}^{-1}(0))^*\longrightarrow T^*Q\leadsto \mathsf{A}$ section $h:V^*\to D^*$ of μ

$$F_h:D^*\to\mathbb{R}$$

A section $\lambda: Q \longrightarrow T^*Q$ such that $d\lambda = 0 \rightsquigarrow A$ section $\lambda: Q \longrightarrow D^*$ of D^*

$$\Upsilon^{\lambda}: \Omega^{1}(D^{*}) \to \Gamma(D), \quad \delta^{\lambda}_{H} = \Upsilon^{\lambda}(dF_{h}) \in \Gamma(D)$$

Hamilton-Jacobi Theorem

$$c:I o Q$$
 integral curve of $R_h^\lambda=T au_{V^*}\circ R_h\circ\mu\circ\lambda\in\mathfrak{X}(Q)$
$$\Rightarrow \mu\circ\lambda\circ c \text{ integral curve of } R_h\in\mathfrak{X}(V^*)$$

$$\updownarrow$$

$$\mu\ \circ i_{\lambda}^\lambda\ d^D\lambda+d^V(F_h\circ\lambda)=0$$

HAMILTON-JACOBI EQUATION FOR MECHANICAL SYSTEMS WITH LINEAR

• The vector bundle: $TQ \times \mathbb{R} \to Q$

EXTERNAL FORCES

The linear almost Poisson bracket:

 $\mathcal{F}: TQ o TQ$ vector bundle morphism $\equiv \beta \in \Omega^1(TQ)$ semibasic homogeneous of degree 1

$$\Pi_{T^*Q\times\mathbb{R}} = \Pi_{T^*Q} + \frac{\partial}{\partial t} \wedge Y_{\mathcal{F}}$$

$$Y_{\mathcal{F}} \in \mathfrak{X}(T^*Q) \quad Y_{\mathcal{F}}(\alpha) = \mathcal{F}^*(\alpha)^{\mathsf{v}}_{\alpha} \in T_{\alpha}(T^*Q)$$

- $\bullet \ R_h = X_H Y_{\mathcal{F}} \in \mathfrak{X}(T^*Q)$
- The 1-cocyple $\phi=(0,1)\in \Gamma(T^*Q imes \mathbb{R})\cong C^\infty(Q) imes \mathfrak{X}(Q)\Rightarrow V=TQ$
- $\bullet \ \mu = p_1 : T^*Q \times \mathbb{R} \to T^*Q$
- The Hamiltonian section:

$$H: T^*Q \to \mathbb{R} \Rightarrow h: T^*Q \to T^*Q \times \mathbb{R}, \quad h(\beta) = (\beta, -H(\beta))$$

Hamilton-Jacobi equation for Mechanical systems with linear external forces

$$\Upsilon^{\lambda}:\Omega^{1}(T^{*}Q)
ightarrow \mathfrak{X}(Q), \quad \delta^{\lambda}_{H}=\Upsilon(dH)$$

Hamilton-Jacobi Theorem

$$\lambda\in\Omega^1(Q)$$

$$c:I o Q$$
 integral curve of $R_h^\lambda=T au_{T^*Q}\circ X_H\circ\lambda\in\mathfrak{X}(Q)$ $\Rightarrow\lambda\circ c$ integral curve of $X_H-Y_{\mathcal{T}}\in\mathfrak{X}(T^*Q)$

$$i_{\delta_{\mathcal{U}}^{\lambda}}d\lambda + d(H \circ \lambda) + Y_{\mathcal{F}}(\lambda) = 0$$

THE HAMILTON-JACOBI EQUATION OF A MECHANICAL SYSTEM SUBJECTED TO AFFINE NONHOLONOMIC CONSTRAINTS

INGREDIENTS

- a vector subbundle $\tau: U \to Q$ of $(\tau_D: D \to Q, \{\cdot, \cdot\}_{D^*})$
- ullet a bundle metric $\mathcal{G}:D imes_{\mathcal{Q}}D o\mathbb{R}\Rightarrow P:D=U\oplus U^\perp o U$
- lacksquare a function $V:Q o\mathbb{R}$
- $X_0 \in \Gamma(D)$ such that $P(X_0) = 0$

 \Downarrow

affine nonholonomic constraints $\equiv au_{\mathcal{U}}: \mathcal{U}
ightarrow Q$

$$q \in Q \longrightarrow \mathcal{U}_q = \{u_q + X_0(q)/u_q \in U_q\}$$

THE HAMILTON-JACOBI EQUATION OF A MECHANICAL SYSTEM SUBJECTED TO AFFINE NONHOLONOMIC CONSTRAINTS

• The vector bundle $\tau_{\widetilde{\mathcal{U}}}:\widetilde{\mathcal{U}}=(\mathcal{U}^+)^* o Q$ (it is a subbundle of $D imes\mathbb{R} o Q$)

$$\Gamma(\widetilde{\mathcal{U}}) \equiv <\{(\sigma + fX_0, f)/\sigma \in \Gamma(U), f \in C^{\infty}(Q)\}>$$

ullet The linear almost Poisson manifold on $\widetilde{\mathcal{U}}^*\cong\mathcal{U}^+$

 $\mathbb{1}$

 $(\llbracket \cdot, \cdot \rrbracket_D, \rho_D)$ skewsymmetric algebroid

$$\widetilde{P}: D \times \mathbb{R} \to \widetilde{\mathcal{U}}, \quad \widetilde{P}(e_q, s) = (P(e_q) + sX_0(q), s)$$

$$P: D = U \oplus U^{\perp} \to U$$

$$\rho_{\widetilde{\mathcal{U}}}(\sigma + fX_0, f) = \rho_D(\sigma + fX_0)$$

• The 1-cocycle $\phi \in \Gamma(\widetilde{\mathcal{U}}^*)$

$$\phi: \Gamma(\widetilde{\mathcal{U}}) \to C^{\infty}(Q) \quad \phi(\sigma + fX_0, f) = f$$

THE HAMILTON-JACOBI EQUATION OF A MECHANICAL SYSTEM SUBJECTED TO AFFINE NONHOLONOMIC CONSTRAINTS

$$V=U,\quad ([\![\cdot,\cdot]\!]_U=P\circ [\![\cdot,\cdot]\!]_D,\quad \rho_U=\rho)$$
 the Hamiltonian section $h:U^*\to\widetilde{\mathcal U}^*$

$$H:U^* o \mathbb{R} \ \ H(\alpha) = rac{1}{2} \mathcal{G}_{U^*}(\alpha,\alpha) + V(q)$$

$$h(\gamma) = (u_q + sX_0(q), s) = \gamma_q(u_q) - sH(\gamma)$$

$$\Upsilon^{\lambda}: \Omega^{1}(U^{*}) \to \Gamma(U) \quad \delta^{\lambda}_{H} = \Upsilon^{\lambda}(dH) \in \Gamma(U)$$

Hamilton-Jacobi Theorem

Assume that $\lambda \in \Gamma(U^*)$

$$c:I o Q$$
 integral curve of $R_h^\lambda=T au_{U^*}\circ R_h\circ\lambda\in\mathfrak{X}(Q)$

 $\Rightarrow \lambda \circ c$ is a solution of Hamilton equations

$$i_{\delta^{\lambda}_{H}}d^{U}\lambda + \mu \circ i_{(X_{0},1)}d^{\widetilde{\mathcal{U}}}(h \circ \alpha) = 0$$

An example: An homogeneous rolling ball without sliding on a

ROTATING TABLE WITH TIME-DEPENDENT ANGULAR VELOCITY

We consider a homogeneous ball with radius r>0, mass m and inertia mk^2 about any axis. Suppose that the ball rolls without sliding on a horizontal table which rotes with a time-dependent angular velocity $\Omega(t)$ about vertical axis thought of one of its point. Apart from the gravitational force, no other external forces are assumed.

Configuration space: Choose a cartesian reference frame with origin at the center of rotation of the table and z-axis along the rotation axis. (q_1, q_2) =the position of the point of contact of the sphere with the table.

$$(t,q_1,q_2)\in Q:=\mathbb{R}^3$$

$$(t,q^1q^2,\dot{q}^1,\dot{q}^2,\omega_1,\omega_2,\omega_3)\in\mathbb{R} imes \mathcal{T}\mathbb{R}^2 imes\mathbb{R}^3$$

 ω_1,ω_2 and ω_3 are the components of the angular velocity of the sphere

- The extended phase space of momenta: $T^*\mathbb{R}^3 \times \mathbb{R}^3$
- The restricted phase space of momenta: $\mathbb{R} \times \mathcal{T}^* \mathbb{R}^2 \times \mathbb{R}^3$

$$\mu: T^*\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R} \times T^*\mathbb{R}^2 \times \mathbb{R}^3$$

The hamiltonian section $h: \mathbb{R} \times T^*\mathbb{R}^2 \times \mathbb{R}^3 \to T^*\mathbb{R}^3 \times \mathbb{R}^3$

$$h(t, q^{i}, p_{i}, \pi_{i}) = (t, q^{i}, -H(t, q^{i}, p_{i}, \pi_{i}), p_{i}, \pi_{i})$$

$$H = \frac{1}{2} \left(\frac{1}{m} (p_1^2 + p_2^2) + \frac{1}{mk^2} (\pi_1^2 + \pi_2^2 + p_2^2) \right)$$

Ball without sliding

The affine constraints

$$\dot{q}_1 - r\omega_2 = -\Omega(t)q_2$$

$$\dot{q}_2 + r\omega_1 = \Omega(t)q_1$$

$$\Omega(t)q^2 + \frac{1}{m}p_1 - \frac{r}{mk^2}\pi_2 = 0$$

$$-\Omega(t)q^{1} + \frac{1}{m}p_{2} - \frac{r}{mk^{2}}\pi_{1} = 0$$

Hamilton equations

The vector bundle: $\tau:D=T\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}^3$

Global basis of $\Gamma(T\mathbb{R}^3 \times \mathbb{R}^3)$

$$\begin{split} e_0 &= (\frac{\partial}{\partial t} - \Omega(t)q^2\frac{\partial}{\partial q^1} + \Omega(t)q^1\frac{\partial}{\partial q^2}, 0), \quad e_1 = (\frac{\partial}{\partial q^1}, 0), \qquad e_2 = (\frac{\partial}{\partial q^2}, 0), \\ e_3 &= (0, (1, 0, 0)), \qquad \qquad e_4 = (0, (0, 1, 0)), \quad e_5 = (0, (0, 0, 1)), \end{split}$$

The linear almost Poisson structure on $D^* = T^*\mathbb{R}^3 \times \mathbb{R}^3$

Subbundle of D

$$U := span\{e_3 - re_2, e_4 + re_1, e_5\}$$

Fiber metric on D

$$G = e_0^2 + (m((e_1)^2 + (e_2)^2) + mk^2((e_3)^2 + (e_4)^2 + (e_5)^2)$$

The section X_0 of D

$$X_0 = e_0$$

The section λ of U^*

$$\lambda = d^U(\varphi_1(t)q^1 + \varphi_2(t)q^2)$$

$$d^U\lambda \neq 0$$

If
$$\Omega(t) = \Omega_0 t$$

Solution of Hamilton equations

$$\lambda \circ c(t) = (t, q^{1}(t), q^{2}(t); \lambda_{3}(c(t)), \lambda_{4}(c(t)), 0)$$

$$\begin{array}{lcl} \lambda_3(c(t)) & = & \frac{-r}{\sqrt{m(k^2+r^2)}} \left(C_1 \sin \left(\frac{r^2 \Omega_0 t^2}{2(k^2+r^2)} \right) + C_2 \cos \left(\frac{r^2 \Omega_0 t^2}{2(k^2+r^2)} \right) \right), \\ \lambda_4(c(t)) & = & \frac{r}{\sqrt{m(k^2+r^2)}} \left(C_1 \cos \left(\frac{r^2 \Omega_0 t^2}{2(k^2+r^2)} \right) - C_2 \sin \left(\frac{r^2 \Omega_0 t^2}{2(k^2+r^2)} \right) \right), \end{array}$$

where C_1 , C_2 are real constants.

Conclusions

Using the linear almost Poisson theory (or skew-symmetric algebroid theory) we have given a simple method to describe the Hamilton-Jacobi equations for several situations. Usually, these equations make it easy to find solutions for the equations of Hamilton equations.

Thanks for your attention!