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Jerry Marsden’s Legacy in Discrete Geometry & Mechanics
� Ph.D. Theses Directed
• Sergey Pekarsky, Discrete Reduction of Mechanical Systems and Multisymplectic Ge-

ometry of Continuum Mechanics, 2000.

• Matthew West, Variational Integrators, 2002 (defended 2004).

• Razvan Fetecau, Variational Methods for Nonsmooth Mechanics, 2003.

• Anil Hirani, Discrete Exterior Calculus, 2003.

• Melvin Leok, Foundations of Computational Geometric Mechanics, 2004.

• Nawaf Bou-Rabee, Hamilton–Pontryagin Integrators on Lie Groups, 2007.

• Ari Stern, Geometric Discretizations of Lagrangian Mechanics and Field Theories, 2009.

• Ashley Moore, Discrete mechanics and optimal control for space trajectory design, 2011.

• Molei Tao, Multiscale geometric integration of deterministic and stochastic systems, 2011.

9 out of the 21 Ph.D. students since 2000.
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Jerry Marsden’s Legacy in Discrete Geometry & Mechanics

� A blast from the past: some newly minted Ph.D.s
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Lagrangian Variational Integrators

� Discrete Variational Principle

q a(  )

q b(  )

dq t( )

Q

q t( ) varied curve

q0

qN

dqi

Q

qi varied point

•Discrete Lagrangian

Ld(q0, q1) ≈ Lexact
d (q0, q1) ≡

∫ h

0
L
(
q0,1(t), q̇0,1(t)

)
dt,

where q0,1(t) satisfies the Euler–Lagrange equations for L and the
boundary conditions q0,1(0) = q0, q0,1(h) = q1.

• This is related to Jacobi’s solution of the Hamilton–Jacobi
equation.
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Lagrangian Variational Integrators

� Discrete Variational Principle

•Discrete Hamilton’s principle

δSd = δ
∑

Ld(qk, qk+1) = 0,

where q0, qN are fixed.

� Discrete Euler–Lagrange Equations

•Discrete Euler-Lagrange equation

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0.

• The associated discrete flow (qk−1, qk) 7→ (qk, qk+1) is automati-
cally symplectic, since it is equivalent to,

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1),

which is the Type I generating function characterization of
a symplectic map.
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Lagrangian Variational Integrators

� Main Advantages of Variational Integrators

•Discrete Noether’s Theorem
If the discrete Lagrangian Ld is (infinitesimally) G-invariant under
the diagonal group action on Q×Q,

Ld(gq0, gq1) = Ld(q0, q1)

then the discrete momentum map Jd : Q×Q→ g∗,

〈Jd (qk, qk+1) , ξ〉 ≡
〈
D1Ld (qk, qk+1) , ξQ (qk)

〉
is preserved by the discrete flow.
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Lagrangian Variational Integrators

� Main Advantages of Variational Integrators

•Variational Error Analysis
Since the exact discrete Lagrangian generates the exact solution
of the Euler–Lagrange equation, the exact discrete flow map is
formally expressible in the setting of variational integrators.

• This is analogous to the situation for B-series methods, where the
exact flow can be expressed formally as a B-series.

• If a computable discrete Lagrangian Ld is of order r, i.e.,

Ld(q0, q1) = Lexact
d (q0, q1) +O(hr+1)

then the discrete Euler–Lagrange equations yield an order r accu-
rate symplectic integrator.
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Constructing Discrete Lagrangians

� Systematic Approaches

• The theory of variational error analysis suggests that one should
aim to construct computable approximations of the exact discrete
Lagrangian.

• There are two equivalent characterizations of the exact discrete
Lagrangian:

◦ Euler–Lagrange boundary-value problem characterization,

◦ Variational characterization,

which lead to two general classes of computable discrete Lagrangians:

◦ Shooting-based discrete Lagrangians,

◦ Galerkin discrete Lagrangians.
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Shooting-Based Variational Integrators

� Boundary-Value Problem Characterization of Lexact
d

• The classical characterization of the exact discrete Lagrangian is
Jacobi’s solution of the Hamilton–Jacobi equation, and is given by,

Lexact
d (q0, q1) ≡

∫ h

0
L
(
q0,1(t), q̇0,1(t)

)
dt,

where q0,1(t) satisfies the Euler–Lagrange boundary-value problem.

� Shooting-Based Discrete Lagrangians

• Replaces the solution of the Euler–Lagrange boundary-value prob-
lem with the shooting-based solution from a one-step method.

• Replace the integral with a numerical quadrature formula.
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Shooting-Based Variational Integrators

� Shooting-Based Discrete Lagrangian

• Given a one-step method Ψh : TQ → TQ, and a numerical

quadrature formula
∫ h

0 f (x)dx ≈ h
∑n
i=0 bif (x(cih)), with quadra-

ture weights bi and quadrature nodes 0 = c0 < c1 < . . . <
cn−1 < cn = 1, we construct the shooting-based discrete
Lagrangian,

Ld(q0, q1;h) = h
∑n

i=0
biL(qi, vi), (1)

where

(qi+1, vi+1) = Ψ(ci+1−ci)h(qi, vi), q0 = q0, qn = q1. (2)

• Note that while we formally require that the endpoints are included
as quadrature points, i.e., c0 = 0, and cn = 1, the associated
weights b0, bn can be zero, so this is does not constrain the type of
quadrature formula we can consider.



11

Shooting-Based Variational Integrators

� Implementation Issues

•While one can view the implicit definition of the discrete Lagrangian
separately from the implicit discrete Euler–Lagrange equations,

p0 = −D1Ld(q0, q1;h), p1 = D2Ld(q0, q1;h),

in practice, one typically considers the two sets of equations to-
gether to implicitly define a one-step method:

Ld(q0, q1;h) = h
∑n

i=0
biL(qi, vi),

(qi+1, vi+1) = Ψ(ci+1−ci)h(qi, vi), i = 0, . . . n− 1,

q0 = q0,

qn = q1,

p0 = −D1Ld(q0, q1;h),

p1 = D2Ld(q0, q1;h).
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Shooting-Based Variational Integrators

� Shooting-Based Implementation

• Given (q0, p0), we let q0 = q0, and guess an initial velocity v0.

•We obtain (qi, vi)ni=1 by setting (qi+1, vi+1) = Ψ(ci+1−ci)h(qi, vi).

•We let q1 = qn, and compute p1 = D2Ld(q0, q1;h).

• Unless the initial velocity v0 is chosen correctly, the equation p0 =
−D1Ld(q0, q1;h) will not be satisfied, and one needs to compute
the sensitivity of −D1Ld(q0, q1;h) on v0, and iterate on v0 so that
p0 = −D1Ld(q0, q1;h) is satisfied.

• This gives a one-step method (q0, p0) 7→ (q1, p1).

• In practice, a good initial guess for v0 can be obtained by inverting
the continuous Legendre transformation p = ∂L/∂v.
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Shooting-Based Variational Integrators: Inheritance

� Theorem: Order of accuracy

• Given a p-th order one-step method Ψh, a q-th order quadrature
formula, and a Lipschitz continuous Lagrangian L, the shooting-
based discrete Lagrangian has order of accuracy min(p, q).

� Theorem: Symmetric discrete Lagrangians

• Given a self-adjoint one-step method Ψh, and a symmetric quadra-
ture formula (ci + cn−i = 1, bi = bn−i), the associated shooting-
based discrete Lagrangian is self-adjoint.

� Theorem: Group-invariant discrete Lagrangians

• Given a G-equivariant one-step method Ψh : TQ→ TQ, and a G-
invariant Lagrangian L : TQ→ R, the associated shooting-based
discrete Lagrangian is G-invariant, and hence preserves a discrete
momentum map.
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Shooting-Based Variational Integrators: Generalizations

� Type I Variational Integrator for Hamiltonian Systems

• The shooting-based discrete Lagrangian is given by

Ld(q0, q1;h) = h
∑n

i=0
bi

[
pivi −H(qi, pi)

]
vi=∂H/∂p(qi,pi)

,

where

(qi+1, pi+1) = Ψ(ci+1−ci)h(qi, pi), q0 = q0, qn = q1.

� Type II Variational Integrator for Hamiltonian Systems

• The shooting-based discrete Hamiltonian is given by

H+
d (q0, p1;h) = pnqn−h

∑n

i=0
bi[p

ivi−H(qi, pi)]vi=∂H/∂p(qi,pi),

where

(qi+1, pi+1) = Ψ(ci+1−ci)h(qi, pi), q0 = q0, pn = p1.
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Shooting-Based Variational Integrators

� Optimality for Shooting-Based Variational Integrators

•While shooting-based variational integrators rely on a choice of a
one-step method and a numerical quadrature formula, it is still
possible to formulate the question of optimal rates of convergence
if we consider collocation one-step methods.

• In particular, collocation methods pick out a unique element
of a finite-dimensional function space by requiring that it satisfies
the differential equation at a number of collocation points.

• Optimality of the shooting-based variational integrator then re-
duces to the optimality of the corresponding collocation method,
which has been established for a large class of approximation spaces.
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Some related approaches

� Prolongation–Collocation variational integrators

• Intended to minimize the number of internal stages, while allowing
for high-order approximation.

• Allows for the efficient use of automatic differentiation coupled with
adaptive force evaluation techniques to increase efficiency.

� Taylor variational integrators

• Taylor variational integrators allow one to reuse the prolongation
of the Euler–Lagrange vector field at the initial time to compute
the approximation at the quadrature points.

• As such, these methods scale better when using higher-order quadra-
ture formulas, since the cost of evaluating the integrand is reduced
dramatically.
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Prolongation–Collocation Variational Integrators

� Euler–Maclaurin quadrature formula

• If f is sufficiently differentiable on (a, b), then for any m > 0,∫ b

a

f (x)dx =
θ

2

[
f (a) + 2

N−1∑
k=1

f (a + kθ) + f (b)

]

−
m∑
l=1

B2l

(2l)!
θ2l
(
f (2l−1)(b)− f (2l−1)(a)

)
− B2m+2

(2m + 2)!
Nθ2m+3f (2m+2)(ξ)

whereBk are the Bernoulli numbers, θ = (b−a)/N and ξ ∈ (a, b).

•When N = 1,

K(f ) =
h

2
[f (0) + f (h)]−

m∑
l=1

B2l

(2l)!
h2l
(
f (2l−1)(h)− f (2l−1)(0)

)
,

and the error of approximation is O(h2m+3).



18

Prolongation–Collocation Variational Integrators

� Two-point Hermite Interpolant

• A two-point Hermite interpolant qd(t) of degree d = 2n− 1
can be used to approximate the curve. It has the form

qd(t) =

n−1∑
j=0

(
q(j)(0)Hn,j(t) + (−1)jq(j)(h)Hn,j(h− t)

)
,

where

Hn,j(t) =
tj

j!
(1− t/h)n

n−j−1∑
s=0

(
n + s− 1

s

)
(t/h)s

are the Hermite basis functions.

• By construction,

q
(r)
d (0) = q(r)(0), q

(r)
d (h) = q(r)(h), r = 0, 1, . . . n− 1.
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Prolongation–Collocation Variational Integrators

� Prolongation–Collocation Discrete Lagrangian
• The prolongation–collocation discrete Lagrangian is

Ld(q0, q1, h) =
h

2
(L(qd(0), q̇d(0)) + L(qd(h), q̇d(h)))

−
bn/2c∑
l=1

B2l

(2l)!
h2l
(
d2l−1

dt2l−1
L(qd(t), q̇d(t))

∣∣∣∣
t=h

− d2l−1

dt2l−1
L(qd(t), q̇d(t))

∣∣∣∣
t=0

)
,

where qd(t) ∈ Cs(Q) is determined by the boundary and prolongation-
collocation conditions,

qd(0) = q0 qd(h) = q1,

q̈d(0) = f (q0) q̈d(h) = f (q1),

q
(3)
d (0) = f ′(q0)q̇d(0) q

(3)
d (h) = f ′(q1)q̇d(h),

... ...

q
(n)
d (0) =

dn

dtn
f (qd(t))

∣∣∣∣
t=0

q
(n)
d (h) =

dn

dtn
f (qd(t))

∣∣∣∣
t=h
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Prolongation–Collocation Variational Integrators

� Numerical Experiments: Pendulum
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Prolongation–Collocation Variational Integrators

� Numerical Experiments: Duffing oscillator
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Taylor Variational Integrators

� Taylor Discrete Lagrangian

• Consider a p-th order accurate Taylor method,

Ψh(q0, ṽ0) =

(∑p

k=0

hk

k!
q(k)(0),

∑p

k=1

hk−1

(k − 1)!
q(k)(0)

)
where one computes q(k)(0) by considering the prolongation of the
Euler–Lagrange vector field, and evaluating it at (q0, ṽ0).

• The Taylor Discrete Lagrangian is given by

Ld(q0, q1;h) = h
∑n

i=0
biL(Ψcih(q0, ṽ0))

where πQ ◦ Ψh(q0, ṽ0) = q1.
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Galerkin Variational Integrators

� Variational Characterization of Lexact
d

• An alternative characterization of the exact discrete Lagrangian,

Lexact
d (q0, q1) ≡ ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0
L(q(t), q̇(t))dt,

which naturally leads to Galerkin discrete Lagrangians.

� Galerkin Discrete Lagrangians

• Replace the infinite-dimensional function space C2([0, h], Q) with
a finite-dimensional function space.

• Replace the integral with a numerical quadrature formula.

• The element of the finite-dimensional function space that is chosen
depends on the choice of the quadrature formula.
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Galerkin Variational Integrators

� Galerkin Lagrangian Variational Integrator

• The generalized Galerkin Lagrangian variational integrator can be
written in the following compact form,

q1 = q0 + h
∑s

i=1
BiV

i,

p1 = p0 + h
∑s

i=1
bi
∂L

∂q
(Qi, Q̇i),

Qi = q0 + h
∑s

j=1
AijV

j, i = 1, . . . , s

0 =
∑s

i=1
bi
∂L

∂q̇
(Qi, Q̇i)ψj(ci)− p0Bj − h

∑s

i=1
(biBj − biAij)

∂L

∂q
(Qi, Q̇i), j = 1, . . . , s

0 =
∑s

i=1
ψi(cj)V

i − Q̇j, j = 1, . . . , s

where (bi, ci) are the quadrature weights and quadrature points,

and Bi =
∫ 1

0 ψi(τ )dτ , Aij =
∫ ci

0 ψj(τ )dτ .
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Galerkin Variational Integrators: Inheritence

� Theorem: Group-invariant discrete Lagrangians

• If the interpolatory function ϕ(gν; t) is G-equivariant, and the La-
grangian, L : TG→ R, is G-invariant, then the Galerkin discrete
Lagrangian, Ld : G×G→ R, given by

Ld(g0, g1) = ext
gν∈G;

g0=g0;gs=g1

h
∑s

i=1
biL(Tϕ(gν; cih)),

is G-invariant.
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Galerkin Variational Integrators

� Optimal Rates of Convergence

• A desirable property of a Galerkin numerical method based on a
finite-dimensional space Fd ⊂ F , is that it should exhibit opti-
mal rates of convergence, which is to say that the numerical
solution qd ∈ Fd and the exact solution q ∈ F satisfies,

‖q − qd‖ ≤ c inf
q̃∈Fd

‖q − q̃‖.

• This means that the rate of convergence depends on the best ap-
proximation error of the finite-dimensional function space.
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Galerkin Variational Integrators

� Optimality of Galerkin Variational Integrators

• Given a sequence of finite-dimensional function spaces C1 ⊂ C2 ⊂
. . . ⊂ C2([0, h], Q) ≡ C∞.

• For a correspondingly accurate sequence of quadrature formulas,

Lid(q0, q1) ≡ ext
q∈Ci

h
∑si

j=1
bijL(q(cijh), q̇(cijh)),

where L∞d (q0, q1) = Lexact
d (q0, q1).

• Proving Lid(q0, q1)→ L∞d (q0, q1), corresponds to Γ-convergence.



28

Galerkin Variational Integrators

� Optimality of Galerkin Variational Integrators

• For optimality, we require the bound,

Lid(q0, q1) = L∞d (q0, q1) + c inf
q̃∈Ci
‖q − q̃‖,

where we need to relate the rate of Γ-convergence with the best
approximation properties of the family of approximation spaces.

• The proof of optimality of Galerkin variational integrators will in-
volve refining the proof of Γ-convergence by Müller and Ortiz.
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Galerkin Variational Integrators

� Theorem: Optimality of Galerkin Variational Integrators

• Under suitable technical hypotheses:

◦ Regularity of L in a closed and bounded neighboorhood;

◦ The quadrature rule is sufficiently accurate;

◦ The discrete and continuous trajectories minimize their actions;

the Galerkin discrete Lagrangian has the same approximation prop-
erties as the best approximation error of the approximation space.

• The critical assumption is action minimization. For Lagrangians
L = q̇TMq̇−V (q), and sufficiently small h, this assumption holds.

• In particular, this shows that Galerkin variational integrators based
on polynomial spaces are order optimal, and spectral variational
integrators are geometrically convergent.
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Galerkin Variational Integrators

� Spectral Variational Integrators

• Spectral variational integrators are a class of Galerkin variational
integrators based on spectral basis functions, for example, the
Chebyshev polynomials.
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• This leads to variational integrators that increase accuracy by p-
refinement as opposed to h-refinement.
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Spectral Variational Integrators

� Numerical Experiments: Kepler 2-Body Problem
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• h = 1.5, T = 150, and 20 Chebyshev points per step.
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Spectral Variational Integrators

� Numerical Experiments: Kepler 2-Body Problem
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• h = 1.5, T = 150, and 20 Chebyshev points per step.
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Spectral Variational Integrators

� Numerical Experiments: Solar System Simulation
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• Comparison of inner solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.

• h = 100 days, T = 27 years, 25 Chebyshev points per step.
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Spectral Variational Integrators

� Numerical Experiments: Solar System Simulation

−40 −30 −20 −10 0 10 20 30 40 50
−40

−30

−20

−10

0

10

20

30

40

50

• Comparison of outer solar system orbital diagrams from a spectral
variational integrator and the JPL Solar System Dynamics Group.
Inner solar system was aggregated, and h = 1825 days.
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Spectral Variational Integrators

� Numerical Experiments: Unstable Figure Eight
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Spectral Variational Integrators

� Numerical Experiments: Pseudospectral Wave Equation
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• The wave equation utt = uxx on S1 is described by the Lagrangian
density function, L (ϕ, ϕ̇) = 1

2 |ϕ̇ (x, t)|2 − 1
2 |∇ϕ (x, t)|2 .

• Discretized using spectral in space, and linear in time.
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PDE Generalization: Multisymplectic Geometry

� Ingredients
•Base space X . (n + 1)-spacetime.

•Configuration bundle. Given by π :
Y → X , with the fields as the fiber.

•Configuration q : X → Y . Gives the
field variables over each spacetime point.

• First jet J1Y . The first partials of the
fields with respect to spacetime.

� Variational Mechanics

• Lagrangian density L : J1Y → Ωn+1(X ).

•Action integral given by, S(q) =
∫
X L(j1q).

•Hamilton’s principle states, δS = 0.
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Multisymplectic Exact Discrete Lagrangian

� What is the PDE analogue of a generating function?

• Recall the implicit characterization of a symplectic map in terms
of generating functions:{

pk = −D1Ld(qk, qk+1)

pk+1 = D2Ld(qk, qk+1)

{
pk = D1H

+
d (qk, pk+1)

qk+1 = D2H
+
d (qk, pk+1)

• Symplecticity follows as a trivial consequence of these equations,
together with d2 = 0, as the following calculation shows:

d2Ld(qk, qk+1) = d(D1Ld(qk, qk+1)dqk + D2Ld(qk, qk+1)dqk+1)

= d(−pkdqk + pk+1dqk+1)

= −dpk ∧ dqk + dpk+1 ∧ dqk+1
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Multisymplectic Exact Discrete Lagrangian

� Analogy with the ODE case

•We consider a multisymplectic analogue of Jacobi’s solution:

Lexact
d (q0, q1) ≡

∫ h

0
L
(
q0,1(t), q̇0,1(t)

)
dt,

where q0,1(t) satisfies the Euler–Lagrange boundary-value problem.

• This is given by,

Lexact
d (ϕ|∂Ω) ≡

∫
Ω
L(j1ϕ̃)

where ϕ̃ satisfies the boundary conditions ϕ̃|∂Ω = ϕ|∂Ω, and ϕ̃
satisfies the Euler–Lagrange equation in the interior of Ω.
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Multisymplectic Exact Discrete Lagrangian

� Multisymplectic Relation

• If one takes variations of the multisymplectic exact discrete
Lagrangian with respect to the boundary conditions, we obtain,

∂ϕ(x,t)L
exact
d (ϕ|∂Ω) = p⊥(x, t),

where (x, t) ∈ ∂Ω, and p⊥ is the component of the multimomen-
tum that is normal to the boundary ∂Ω at the point (x, t).

• These equations, taken at every point on ∂Ω constitute a multi-
symplectic relation, which is the PDE analogue of,{

pk = −D1Ld(qk, qk+1)

pk+1 = D2Ld(qk, qk+1)

where the sign in the equations come from the orientation of the
boundary of the time interval.
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Exact Multisymplectic Generating Functions

� Implications for Geometric Integration

• The multisymplectic generating functions depend on boundary con-
ditions on an infinite set, and one needs to consider a finite-dimensional
subspace of allowable boundary conditions.

• Let π be a projection onto allowable boundary conditions.

• In the variational error order analysis, we need to compare:

◦ Lcomputable
d (πϕ|∂Ω)

◦ Lexact
d (πϕ|∂Ω)

◦ Lexact
d (ϕ|∂Ω)

• The comparison between the last two objects involves establishing
well-posedness of the boundary-value problem, and the approxima-
tion properties of the finite-dimensional boundary conditions.



42

Summary

• The variational and boundary-value problem characteriza-
tion of the exact discrete Lagrangian naturally lead to Galerkin
variational integrators and shooting-based variational
integrators.

• These provide a systematic framework for constructing variational
integrators based on a choice of:

◦ one-step method;

◦ finite-dimensional approximation space;

◦ numerical quadrature formula.

• The resulting variational integrators can be shown to inherit prop-
erties like order of accuracy, and momentum preservation
from the properties of the chosen one-step method, approximation
space, or quadrature formula.



43

References

C
o

m
pu

ta
ti

o

nal G
eometric M

ec
h

an
ics

  San Diego  

• M.L., T. Shingel, Prolongation–Collocation Variational Integrators, IMA J. Numer. Anal., 32

(3), 1194–1216, 2012.

• M.L., T. Shingel, General Techniques for Constructing Variational Integrators, Front. Math.

China, 7 (2), 273–303, 2012.

• J. Vankerschaver, C. Liao, M.L., Generating Functionals and Lagrangian PDEs, arXiv:1111.0280.

• J. Hall, M.L., Spectral Variational Integrators, in preparation.


