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• Embedded and Associated Optimal Control Problems

• Symmetric rigid body equations – smooth and discrete

• Flows on Stiefel manfolds – Jacobi flow on ellipsoid

• Flows on Quadratic groups
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Rigid Body Equations:

Ṁ = [M,Ω], M = ΛΩ + ΩΛ

Symmetric Rigid Body Equations:

Q̇ = QΩ Ṗ = PΩ

Coupled double bracket flows:

ẋ = [x, [x, p], (0.1)

ṗ = [p, [x, p] , (0.2)

(with Brockett and Crouch)
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• Continuous Embedded Optimal Control Problems

Let Q denote a (finite dimensional) manifold and let X(Q) denote the space of smooth vector

fields on Q. Consider D ⊂ X(Q) and D ⊂ TQ defined at every q ∈ Q by

D(q) = span{X(q), X ∈ D}.

This is an example of a generalized distribution; if the rank of D is constant on Q it is a

distribution in the classical sense. Consider the control problem

q̇ =

m∑
i=1

Xi(q)ui, (0.3)

where q ∈ Q,Xi ∈ X(Q), u = (u1, . . . , um) ∈ U with U ⊂ Rm an open neighborhood of

0 ∈ Rm. Let N ⊂ Q denote an immersed submanifold of Q which is invariant under the flow

of (0.3). If N is a maximal integral manifold of an integrable generalized distribution D then

N is an immersed submanifold of Q which is invariant by construction.

Let ` : Q× U → R be a cost function. For each choice of invariant submanifold N ⊂ Q we

introduce the concept of an embedded optimal control problem as follows:
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Embedded optimal control problem. Minimize∫ T

0

`
(
q(t), u(t)

)
dt,

subject to q̇ =
∑m

i=1Xi(q)ui, q ∈ Q, u = (u1, . . . , um) ∈ U ⊂ Rm, and with fixed endpoints

q(0) = q0 ∈ N and q(T ) = qT ∈ N .

The embedded optimal control problem is well posed when (0.3) restricted to N is accessible

from q0. When this is the case we can impose on qT that it needs to belong to the set of states

reachable from q0 in time T . The associated optimal control problem on N is now given by:
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Associated optimal control problem. Minimize∫ T

0

`
(
q(t), u(t)

)
dt,

subject to q̇ =
∑m

i=1 Xi|N (q)ui, q ∈ N , u = (u1, . . . , um) ∈ U ⊂ Rm, and with fixed

endpoints q(0) = q0 ∈ N and q(T ) = qT ∈ N .

When N ⊂ Q is an immersed submanifold of Q the inclusion iN : N ↪→ Q is an immersion.

The pullback bundle i∗N(T ∗Q) is defined as the vector bundle over N whose fiber over n ∈ N is

given by T ∗iN (n)Q. Since T ∗n iN : T ∗iN (n)Q→ T ∗nN , the dual of the tangent map of iN is globally

defined when restricted to i∗N(T ∗Q). Furthermore since iN : N ↪→ Q is an immersion we have

that TniN : TnN → Ti(n)Q is injective for all n ∈ N and therefore T ∗n iN : T ∗iN (n)Q → T ∗nN is

surjective; that is T ∗iN |i∗N (T ∗Q) is surjective on fibers.
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1 The n-dimensional Rigid Body.

• Here review the classical rigid body equations in in n dimensions.

Use the following pairing on so(n), the Lie algebra of the n-dimensional proper rotation

group SO(n):

〈ξ, η〉 = −1

2
trace(ξη).

Use this inner product to identify so(n)∗ so(n).

• Recall from Manakov [1976] and Ratiu [1980] that the left invariant generalized rigid body

equations on SO(n) may be written as

Q̇ = QΩ

Ṁ = [M,Ω] , (RBn)

where Q ∈ SO(n) denotes the configuration space variable (the attitude of the body), Ω =

Q−1Q̇ ∈ so(n) is the body angular velocity, and the body angular momentum is

M := J(Ω) = ΛΩ + ΩΛ ∈ so(n) .
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• Here J : so(n)→ so(n) is the symmetric pos def operator defined by

J(Ω) = ΛΩ + ΩΛ,

where Λ is a diagonal matrix sat Λi + Λj > 0 for all i 6= j.

There is a similar formalism for any semisimple Lie group.
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Right Invariant System. The system (RBn) has a right invariant counterpart. This

right invariant system is given as follows:

Q̇r = ΩrQr; Ṁr = [Ωr,Mr] (RightRBn)

where in this case Ωr = Q̇rQ
−1
r and Mr = J(Ωr) where J has the same form as above.

Relating the Left and the Right Rigid Body Systems.

Proposition 1.1. If (Q(t),M(t)) satisfies (RBn) then the pair (Qr(t),Mr(t)), where

Qr(t) = Q(t)T and Mr(t) = −M(t) satisfies (RightRBn). There is a similar converse

statement.
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2 The Symmetric Rigid Body Equations.

The System (SRBn). By definition, the left invariant symmetric rigid body

system (SRBn) is given by the first order equations

Q̇ = QΩ

Ṗ = PΩ (SRBn)

where Ω is regarded as a function of Q and P via the equations

Ω := J−1(M) ∈ so(n) and M := QTP − P TQ.

Proposition 2.1. If (Q,P ) is a solution of (SRBn), then (Q,M) where M = J(Ω) and

Ω = Q−1Q̇ satisfies the rigid body equations (RBn).

Proof. Differentiating M = QTP −P TQ and using the equations (SRBn) gives the second

of the equations (RBn). �

Proposition 2.2. For a solution of the left invariant rigid body equations (RBn) obtained
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by means of Proposition 2.1, the spatial angular momentum is given by m = PQT −QP T

and hence m is conserved along the rigid body flow.
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• Local Equivalence of the Rigid Body and the Symmetric Rigid Body Equa-

tions.

Above saw that solutions of the symmetric rigid body system can be mapped to solutions of

the rigid body system. Now consider the converse question:

Suppose have a solution (Q,M) of the standard left invariant rigid body equations. Sseek

to solve for P in

M = QTP − P TQ. (2.1)

Definition 2.3. Let C denote the set of (Q,P ) that map to M ’s with operator norm

equal to 2 and let S denote the set of (Q,P ) that map to M ’s with operator norm strictly

less than 2. Also denote by SM the set of points (Q,M) ∈ T ∗ SO(n) with ‖M‖op ≤ 2.

Proposition 2.4. For ‖M‖op < 2, the equation(2.1) has the solution

P = Q
(
esinh−1M/2

)
(2.2)
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The System (RightSRBn). By definition, the symmetric representation of the

rigid body equations in right invariant form on SO(n) × SO(n) are given by the

first order equations

Q̇r = ΩrQr; Ṗr = ΩrPr (RightSRBn)

where Ωr := J−1(Mr) ∈ so(n) and where Mr = PrQ
T
r −QrP

T
r .

It is easy to check that that this system is right invariant on SO(n)× SO(n).

Proposition 2.5. If (Qr, Pr) is a solution of (RightSRBn), then (Qr,Mr), where Mr =

J(Ωr) and Ωr = Q̇rQ
−1
r , satisfies the right rigid body equations (RightRBn).
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The Hamiltonian Form of (SRBn).

Recall that the classical rigid body equations are Hamiltonian on T ∗ SO(n) with respect to

the canonical symplectic structure on the cotangent bundle of SO(n).

In symmetric case have:

Proposition 2.6. Consider the Hamiltonian system on the symplectic vector space gl(n)×
gl(n) with the symplectic structure

Ωgl(n)(ξ1, η1, ξ2, η2) =
1

2
trace(ηT2 ξ1 − ηT1 ξ2) (2.3)

and Hamiltonian

H(ξ, η) = −1

8
trace

[(
J−1(ξTη − ηTξ)

) (
ξTη − ηTξ

)]
. (2.4)

The corresponding Hamiltonian system leaves SO(n) × SO(n) invariant and induces on

it, the symmetric rigid body flow.

Note that the above Hamiltonian is equivalent to

H =
1

4

〈
J−1M,M

〉
.
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3 Optimal Control formulation of Rigid Body

Definition 3.1. Let T > 0, Q0, QT ∈ SO(n) be given and fixed. Let the rigid body optimal

control problem be given by

min
U∈so(n)

1

4

∫ T

0

〈U, J(U)〉dt (3.1)

subject to the constraint on U that there be a curve Q(t) ∈ SO(n) such that

Q̇ = QU Q(0) = Q0, Q(T ) = QT . (3.2)

Proposition 3.2. The rigid body optimal control problem (3.1) has optimal evolution

equations (SRBn) where P is the costate vector given by the maximum principle.

The optimal controls in this case are given by

U = J−1(QTP − P TQ). (3.3)

The proof involves writing the Hamiltonian of the maximum principle as

H = 〈P,QU〉 +
1

4
〈U, J(U)〉 , (3.4)
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where the costate vector P is a multiplier enforcing the dynamics, and then maximizing with

respect to U in the standard fashion (see, for example, Brockett [1973]).

Merging the Left and Right Problems. We will now show both the symmetric

representation of the rigid body equations in both left and right invariant form arise from a

rather general optimal control problem that includes the one above as a special case.

We begin by recalling a general optimal control problem on matrices:

Definition 3.3. Let u(n) denote the Lie algebra of the unitary group U(n).

Let Q be a p × q complex matrix and let U ∈ u(p) and V ∈ u(q). Let JU and JV be

constant symmetric positive definite operators on the space of complex p × p and q × q
matrices respectively and let 〈·, ·〉 denote the trace inner product 〈A,B〉 = 1

2 trace(A†B),

where A† is the adjoint; that is, the transpose conjugate.

Let T > 0, Q0, QT be given and fixed. Define the optimal control problem over u(p)×u(q)

min
U,V

1

4

∫
{〈U, JUU〉 + 〈V, JV V 〉}dt (3.5)
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subject to the constraint that there exists a curve Q(t) such that

Q̇ = UQ−QV, Q(0) = Q0, Q(T ) = QT . (3.6)

This problem was motivated by an optimal control problem on adjoint orbits of compact Lie

groups as discussed by Brockett.
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Theorem 3.4. The optimal control problem 3.3 has optimal controls given by

U = J−1
U (PQ† −QP †); V = J−1

V (P †Q−Q†P ) . (3.7)

and the optimal evolution of the states Q and costates P is given by

Q̇ = J−1
U (PQ† −QP †)Q−QJ−1

V (P †Q−Q†P )

Ṗ = J−1
U (PQ† −QP †)P − PJ−1

V (P †Q−Q†P ). (3.8)

Corollary 3.5. The equations (3.8) are given by the coupled double bracket equations

˙̂
Q = [Q̂, Ĵ−1[P̂ , Q̂]];

˙̂
P = [P̂ , Ĵ−1[P̂ , Q̂]] . (3.9)

where Ĵ is the operator diag(JU , JV ),

Q̂ =

[
0 Q

−Q† 0

]
∈ u(p + q), (3.10)

Q is a complex p× q matrix of full rank, Q† is its adjoint, and similarly for P .



4 Discrete Variational Problems 18

4 Discrete Variational Problems

This general method is closely related to the development of variational integrators for the

integration of mechanical systems, as in Kane, Marsden, Ortiz and West [2000]. See also

Iserles, McLachlan, and Zanna [1999] and Budd and Iserles [1999].

Key notion: discrete Lagrangian, which is a map Ld : Q × Q → R. The important

point here is that the velocity phase space TQ of Lagrangian mechanics has been replaced by

Q×Q.

In the discrete setting, the action integral of Lagrangian mechanics is replaced by an action

sum

Sd =

N−1∑
k=0

Ld(qk, qk+1) (4.1)

where qk ∈ Q, the sum is over discrete time, and the equations are obtained by a discrete

action principle which minimizes the discrete action given fixed endpoints q0 and qN .

Taking the extremum over q1, · · · , qN−1 gives the discrete Euler-Lagrange equations
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D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0, (4.2)

for k = 1, · · · , N − 1.

We can rewrite this as follows

D2Ld + D1Ld ◦ Φ = 0, (4.3)

where Φ : Q×Q→ Q×Q is defined implicitly by Φ(qk−1, qk) = (qk, qk+1).
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5 Moser–Veselov Discretization

Recall now the Moser–Veselov [1991] discrete rigid body equations. This system will be called

DRBn.

See also Deift, Li and Tomei [1992].

Discretize the configuration matrix and let Qk ∈ SO(n) denote the rigid body configuration

at time k, let Ωk ∈ SO(n) denote the discrete rigid body angular velocity at time k, let I denote

the diagonal moment of inertia matrix, and let Mk denote the rigid body angular momentum

at time k.

These quantities are related by the Moser-Veselov equations

Ωk = QT
kQk−1 (5.1)

Mk = ΩT
kΛ− ΛΩk (5.2)

Mk+1 = ΩkMkΩ
T
k . (5.3)

(DRBn)
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The Moser-Veslov equations (5.1)-(5.3) can in fact be obtained by a discrete variational prin-

ciple (see Moser and Veselov [1991]) of the form described above: one considers the stationary

points of the functional

S =
∑
k

trace(QkIQk+1) (5.4)

on sequences of orthogonal n× n matrices.

See also Marsden, Pekarsky and Shkoller [1999].
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The Discrete Symmetric Rigid Body.

We now define the symmetric discrete rigid body equations as follows:

Qk+1 = QkUk

Pk+1 = PkUk , (SDRBn)

where Uk is defined by

UkΛ− ΛUT
k = QT

kPk − P T
k Qk . (5.5)

Using these equations, we have the algorithm (Qk, Pk) 7→ (Qk+1, Pk+1) defined by: compute

Uk from (5.5), compute Qk+1 and Pk+1 using (SDRBn). We note that the update map for Q

and P is done in parallel here.

Have:

Proposition 5.1. The symmetric discrete rigid body equations (SDRBn) on S are equiv-

alent to the Moser-Veselov equations (5.1)– (5.3) (DRBn) on the set SM where S and

SM are defined in Proposition 2.3.

Note that mk = PkQ
T
k −QkP

T
k then mk = QkMkQ

T
k and is conserved spatial momentum.
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Discrete Optimal Control

Definition 5.2. Let Λ be a positive definite diagonal matrix. Let Q0, QN ∈ SO(n) be

given and fixed. Let

V̂ =

N∑
k=1

trace(ΛUk). (5.6)

Define the optimal control problem

min
Uk

V̂ = min
Uk

N∑
k=1

trace(ΛUk) (5.7)

subject to dynamics and initial and final data

Qk+1 = QkUk, Q0 = Q0, QN = QN (5.8)

for Qk, Uk ∈ SO(n).

Theorem 5.3. A solution of the optimal control problem (5.2) satisfies the optimal evo-

lution equations (SDRBn)

Qk+1 = QkUk; Pk+1 = PkUk , (5.9)
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where Pk is the discrete covector in the discrete maximum principle and Uk is defined by

UkΛ− ΛUT
k = QT

kPk − P T
k Qk . (5.10)



6 Stiefel Manifolds 25

6 Stiefel Manifolds

We introduce the variational and optimal control problems on a Stiefel manifold based on

minimizing the time integral of the kinetic energy.

The metric on the manifold is given by the kinetic energy expression. We also give the

extremal flows obtained in the limiting cases of the sphere/ellipsoid (n = 1), and the N

dimensional rigid body (n = N). The extremal flows in these cases are well-known and

integrable.

Variational Problems on a Stiefel Manifold

The Stiefel manifold V (n,N) ⊂ RnN consists of orthogonal n frames in N dimensional real

Euclidean space,

V (n,N) = {Q ∈ RnN ; QQT = In}.
Introduce the pairing in Rrs given by

〈A,B〉 = Tr(ATB), (6.1)

where Tr(·) denotes trace of a matrix and the left invariant metric on RnN given by

〈〈W1,W2〉〉 = 〈W1Λ,W2〉 = 〈W1,W2Λ〉, (6.2)
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where Λ is a positive definite N ×N diagonal matrix.

Consider the variational problem given by:

min
Q(·)

∫ T

0

1

2
〈〈Q̇, Q̇〉〉dt (6.3)

subject to: QQT = In, Q ∈ RnN , 1 ≤ n ≤ N , Q(0) = Q0, Q(T ) = QT , In denotes the n× n
identity matrix. This is a variational problem defined on the Stiefel manifold V (n,N). The

dimension of this manifold is given by

Dim V (n,N) = nN − n(n + 1)

2
= n(N − n) +

n(n− 1)

2
.

Or:

min
U(·)

∫ T

0

1

2
〈〈QU,QU〉〉dt (6.4)

subject to: Q̇ = QU ; QQT = In, Q(0) = Q0, Q(T ) = QT where U ∈ so(N). Note that the

quantity to be minimized is invariant with respect to the left action of SO(n) on V (n,N) since

the metric (6.2) is left invariant.
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The Rigid Body equations

For the special case when n = N , V (N,N) ≡ SO(N) and the extremal trajectories of the

optimal control problem (6.4) give the N -dimensional rigid body equations.

Geodesic flow on the ellipsoid

For the other extreme case, when n = 1, we obtain the equations for the geodesic flow on the

sphere V (1, N) ≡ SN−1 with Q = qT, qTq = 1. This can be also be regarded as the geodesic

flow on the ellipsoid

q̄TΛ−1q̄ = 1,

where q = Λ−1/2q̄. The costate variable P = pT is used to enforce the constraint q̇ = −Uq for

the (6.4) when n = 1. The extremal solutions to this problem are

q̇ = −Uq, ṗ = −Up + Aq, (6.5)

where A = qqTUΛU − UΛUqqT. The body momentum is obtained as

M = qpT − pqT, (6.6)

in terms of the solution (q, p). Equations (6.5 can than be expressed in terms of the body



6 Stiefel Manifolds 28

momentum as

q̇ = −Uq, Ṁ = [M,U ]− A. (6.7)

The Lagrangian (variational) formulation for this problem gives us the equations for the

geodesic flow on the sphere. To obtain these equations, we take reduced variations (see Marsden

and Ratiu, 1999) on V (1, N) = SN−1. The equation of motion can be written as

Λq̈ = bq, (6.8)

where b is a real scalar in this case. We get the Lagrangian (variational) equations for the

geodesic flow on the sphere (SN−1) as

q̈ = − q̇Tq̇

qTΛ−1q
Λ−1q. (6.9)

Integrability of these extremal flows were proven by Jacobi with relation to Neumann problem

of motion on sphere with quadratic potential, as shown by Knorrer (1982). Contemporary

version of integrability of the geodesic flow on an ellipsoid was demonstrated by Moser (1980)

using Theorem of Chasles and geometry of quadrics.
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We can similarly obtain the equations for the general Stiefel case.

Obtain a symmetric form and discretization.
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7 Quadratic Matrix Lie Groups

We consider quadratic matrix groups of the form

G :=
{
g ∈ Rn×n | gTJg = J

}
, (7.1)

where gT is the transpose of the n× n matrix g, J2 = αIn and JT = αJ for α = ±1.

This class of groups includes standard classical groups of interest including the symplectic

group and O(p, q).

This class of matrix groups gives matrix representations of linear transformations on Rn that

leave the following symmetric, bilinear form invariant:

f (x, y) = xTJy, x, y ∈ Rn.

Observation The Lie algebra of the group G is given by

g =
{
X ∈ Rn×n | XTJ + JX = 0

}
.

If g ∈ G then gT ∈ G and g − g−1 ∈ g.
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We use the trace pairing in gl(n):

〈A,B〉 = Trace(ATB). (7.2)

Let Σ : g → g be a fixed symmetric positive definite operator with respect to the inner

product given by (6.1). Consider the optimal control problem on G given by

min

∫ T

0

1

4
〈U,Σ(U)〉dt (7.3)

subject to Q̇ = QU where U ∈ g, and where the minimum is taken over all curves Q(t) ∈ G
with t ∈ [0, T ] and with fixed endpoints Q(0) = Q0 and Q(T ) = QT .

The Hamiltonian for the optimal control problem (7.3) is then defined as

H(P,Q, U) = 〈P,QU〉 − 1

4
〈U,Σ(U)〉

= 〈QTP,U〉 − 1

4
〈U,Σ(U)〉. (7.4)
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Proposition 7.1. The necessary conditions for optimality of a solution to the optimal

control problem (7.3) with costate P ∈ Rn×n yield the following Hamilton’s equations

Q̇ = QU, Ṗ = −PUT. (7.5)

Lemma 7.2. The extremal controls for the optimal control problem (7.3) when P ∈ G
are given by

Uext = Σ−1
(
QTP − (QTP )−1

)
. (7.6)
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The space Rn×n × Rn×n is a symplectic manifold with the canonical symplectic form

Ωcan((X1, Y1), (X2, Y2)) = 〈Y2, X1〉 − 〈Y1, X2〉. (7.7)

Proposition 7.3. The extremal flow (7.5) generated by the optimal control problem (7.3)

which evolves on the canonical symplectic manifold (Rn×n × Rn×n,Ωcan) as a Hamiltonian

flow, naturally restricts to a flow on G×G.

Let M = QTP − (QTP )−1, then M ∈ g if P ∈ G in which case

H(P,Q, Uext) =
1

4
〈M,Σ−1(M)〉, (7.8)

and the extremal control can be expressed as

Uext = Σ−1(M) ∈ g. (7.9)
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Extremal flow in terms of an involution Consider the Lie algebra automorphism of

g and gl(n), given by

σ̂ : g→ g; σ̂(A) = −AT. (7.10)

Can show:

Theorem 7.4. The ”generalized Euler” equations for the optimal control problem (7.3)

are given by

Q̇ = QU, Ṁ = [M, σ̂(U)], U = Σ−1(M). (7.11)

To pass between the two formulations we consider the map

Φ : G×G→ G× g, (Q,P ) 7→ (Q,M) (7.12)

where M = σ(Q−1)P − P−1σ(Q).

The inverse of the map Φ, where defined, is obtained simply by setting

P = σ(Q) exp

(
sinh−1 M

2

)
, (7.13)
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Note that sinh(·) does indeed restrict to a map from g to g since if X ∈ g, exp(X) ∈ G, and

hence exp(X)− exp(−X) ∈ g by our earlier observation.

Can show:

Theorem 7.5. The set S ⊂ G×G ⊂ Rn×n × Rn×n given by

S ,
{

(Q,P ) ∈ G×G | m = Pσ(Q−1)− σ(Q)P−1, ‖m‖ < 2
}
, (7.14)

is a symplectic submanifold of Rn×n × Rn×n.
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Discrete Optimal Control Problem

Let the matrix Λ satisfing ΛTJ = JΛ, be such that Λ + ΛT is positive definite. Let Q0,

QN ∈ G be given fixed endpoints. We define the optimal control problem

min
Uk

N∑
k=1

〈∆, Uk〉, ∆ =
1

2
(Λ + ΛT), (7.15)

subject to

Qk+1 = QkUk, Q0 = Q0, QN = QN . (7.16)

Therefore Uk = Q−1
k Qk+1 ∈ G, and ∆ is positive definite satisfying the condition ∆TJ =

∆J = J∆.

Theorem 7.6. A solution of the discrete optimal control problem (7.15) is given by a

sequence of matrices (Qk, Pk) in G×G satisfying the optimal evolution equations

Qk+1 = QkUk, Pk+1 = Pkσ(Uk), (7.17)

where σ : GL(n)→ GL(n) is the involution defined above, and Uk is defined by

Uk∆−∆U−1
k = PT

k Qk −
(
PT
k Qk

)−1
. (7.18)
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8 Continuous Embedded Optimal Control Problems

Let Q denote a (finite dimensional) manifold and let X(Q) denote the space of smooth vector

fields on Q. Consider D ⊂ X(Q) and D ⊂ TQ defined at every q ∈ Q by

D(q) = span{X(q), X ∈ D}.

This is an example of a generalized distribution; if the rank of D is constant on Q it is a

distribution in the classical sense. Consider the control problem

q̇ =

m∑
i=1

Xi(q)ui, (8.1)

where q ∈ Q,Xi ∈ X(Q), u = (u1, . . . , um) ∈ U with U ⊂ Rm an open neighborhood of

0 ∈ Rm. Let N ⊂ Q denote an immersed submanifold of Q which is invariant under the

flow of (8.1). If N is a maximal integral manifold of an integrable generalized distribution D
then N is an immersed submanifold of Q which is invariant by construction, see, e.g., ?. Let

` : Q × U → R be a cost function. For each choice of invariant submanifold N ⊂ Q we

introduce the concept of an embedded optimal control problem as follows:
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Embedded optimal control problem. Minimize∫ T

0

`
(
q(t), u(t)

)
dt,

subject to q̇ =
∑m

i=1Xi(q)ui, q ∈ Q, u = (u1, . . . , um) ∈ U ⊂ Rm, and with fixed endpoints

q(0) = q0 ∈ N and q(T ) = qT ∈ N .

The embedded optimal control problem is well posed when (8.1) restricted to N is accessible

from q0. When this is the case we can impose on qT that it needs to belong to the set of states

reachable from q0 in time T . The associated optimal control problem on N is now given by:
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Associated optimal control problem. Minimize∫ T

0

`
(
q(t), u(t)

)
dt,

subject to q̇ =
∑m

i=1 Xi|N (q)ui, q ∈ N , u = (u1, . . . , um) ∈ U ⊂ Rm, and with fixed

endpoints q(0) = q0 ∈ N and q(T ) = qT ∈ N .

When N ⊂ Q is an immersed submanifold of Q the inclusion iN : N ↪→ Q is an immersion.

The pullback bundle i∗N(T ∗Q) is defined as the vector bundle over N whose fiber over n ∈ N is

given by T ∗iN (n)Q. Since T ∗n iN : T ∗iN (n)Q→ T ∗nN , the dual of the tangent map of iN is globally

defined when restricted to i∗N(T ∗Q). Furthermore since iN : N ↪→ Q is an immersion we have

that TniN : TnN → Ti(n)Q is injective for all n ∈ N and therefore T ∗n iN : T ∗iN (n)Q → T ∗nN is

surjective; that is T ∗iN |i∗N (T ∗Q) is surjective on fibers.
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We define the map P : X(Q)→ F(T ∗Q) by

P(X)(αq) = 〈αq, X(q)〉 ,
where 〈·, ·〉 is the natural pairing between covectors and vectors. The function P(X) is called

the momentum function of X . Similarly we define the map P̄ : X(N)→ F(T ∗N) by

P̄(Y )(βq) = 〈βq, Y (q)〉 ,
where again P̄(Y ) is called the momentum function of Y .

We define the following vector field on Q

Xu(q) =

m∑
i=1

Xi(q)ui. (8.2)

The Hamiltonian function H : T ∗Q× U → R of interest is defined as

H(αq, u) := 〈αq, Xu(q)〉 − λ0`(q, u) = P(Xu)(αq)− λ0`(q, u),

where λ0 is a constant with value either λ0 = 1 or λ0 = 0. Similarly the Hamiltonian function

H̄ : T ∗N × U → R is defined as

H̄(βq, u) := 〈βq, Xu|N(q)〉 − λ0`(q, u) = P̄(Xu|N)(βq)− λ0`(q, u).
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The solutions to the embedded optimal control problem and the associated optimal control

problem as given by Pontryagin’s principle, which utilizes these Hamiltonians, are called normal

extremals for λ0 = 1 and abnormal extremals for λ0 = 0.

The variational derivative δ`
δq(q, u) ∈ T ∗qQ is defined as〈

δ`

δq
(q, u), δq

〉
=

d

dε

∣∣∣∣
ε=0

`(γε, u), (8.3)

where γε depends smoothly on ε and γ0 = q and d
dε

∣∣
ε=0

γε = δq ∈ TqQ. Similarly we define the

variational derivative δ̄`
δ̄q

(q, u) ∈ T ∗qN as〈
δ̄`

δ̄q
(q, u), δ̄q

〉
=

d

dε

∣∣∣∣
ε=0

`(γ̄ε, u), (8.4)

where γ̄ε depends smoothly on ε and γ̄0 = q and d
dε

∣∣
ε=0

γ̄ε = δ̄q ∈ TqN . For q ∈ N we have

δ̄`

δ̄q
(q, u) = T ∗q iN

(
δ`

δq
(q, u)

)
. (8.5)
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For α, σ ∈ T ∗qQ the vertical lift of σ relative to α is

verα(σ) :=
d

ds

∣∣∣∣
s=0

(α + sσ) ∈ Tα(T ∗Q). (8.6)

Similarly for β, η ∈ T ∗qN the vertical lift of η relative to β is

v̄erβ(η) :=
d

ds

∣∣∣∣
s=0

(β + sη) ∈ Tβ(T ∗N). (8.7)
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Then we have the following result:

Theorem 8.1. Let λ0 be fixed as λ0 = 1 or λ0 = 0. An extremal (normal if λ0 =

1, abnormal if λ0 = 0) for the embedded optimal control problem as given by applying

Pontryagin’s maximum principle is a solution of

∂H

∂u
= 0, α̇ = XP(Xu)(α) + λ0verα

(
δ`

δq

)
, (8.8)

for α ∈ T ∗Q. The pullback bundle i∗N(T ∗Q) is invariant under the flow of (8.8).

An extremal (normal if λ0 = 1, abnormal if λ0 = 0) for the associated optimal control

problem is a solution of

∂H̄

∂u
= 0, β̇ = XP̄(Xu|N )(β) + λ0v̄erβ

(
δ̄`

δ̄q

)
, (8.9)

for β ∈ T ∗N .

If α(t) ∈ i∗N(T ∗Q) is a solution to (8.8) then β(t) := T ∗iN
(
α(t)

)
∈ T ∗N is a solution

to (8.9).

Proof uses Pontryagin.
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Note: The canonical symplectic structure on T ∗Q and T ∗N giving the two different extremal

generating Hamiltonian vector fields can be very different, and thus it is not obvious that a

solution to the equations for the embedded optimal control problem can be “projected” via

T ∗iN to a solution of the equations for the associated problem.

Also this theorem shows that normal extremals “project” to normal extremals and abnormal

extremals “project” to abnormal extremals. Since N is an immersed submanifold of Q we have

that for any solution β(t) to the associated optimal control problem there exists a solution α(t)

to the embedded optimal control problem which “projects” via T ∗iN to β(t).
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Therefore we can find solutions to the associated optimal control problem in terms of the

optimal trajectory q(t) and control u(t) by instead finding solutions (in terms of the optimal

trajectory q(t) and control u(t)) to the embedded optimal control problem. For example if

Q is a linear space and N is a nonlinear space it will most likely be much easier to solve the

embedded optimal control problem than the associated optimal control problem.

If D, where D(q) = span{X1(q), . . . , Xm(q)}, is completely integrable then the extremal

generating equations for the embedded optimal control problem gives the solution to any as-

sociated optimal control problem for N being a maximal integral manifold of D. This means

that the embedded optimal control problem prescribes a foliation of solutions to all associated

optimal control problems on leaves of D.
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