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Pendulum: Phase Space
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f = —sin(h)
9:/90
Pe = —sin(f)

The phase space is a two
dimensional cylinder.



Pendulum: Phase Space

f = —sin(h)
b =py
/ Py = — sin(d)

The phase space is a two
dimensional cylinder.

Often: parametrisation is impossible!
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Pendulum: Constrained

z=(91,G2,P1.p5) = (q,p) CR"
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Pendulum: Constrained

z=(01,9,.p1,P,) = (q,p) C R

reaction force
lq*—1=0

constraint
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z=(01,9,.p1,P,) = (q,p) C R
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Pendulum: Constrained

z2=1(91.492.P1,P2) = (q,p) CR"

Hidden constraint:
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Naive Simulation Fail
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Essential Idea on Pendulum

Idea: use the unconstrained flow (we have integrators for that)
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Essential Idea on Pendulum

Idea: use the unconstrained flow (we have integrators for that)

“kick” with the reaction force...

.50 that after free fall (no constraint) during At, one lands
on the constraint manifold.



The Essential Ideas

Pendulum
Ambient space: R*




The Essential Ideas

Constraints
lq)|* =1




The Essential Ideas

Fibres
(@, p+27q) AeR




The Essential Ideas

Pendulum
Hidden Constraints —» Phase Space

q-p=0




The Essential Ideas

- ]




The Essential Ideas

Pendulum
Kick + free fall




Questions

m Are there conditions on the constraints? on H, for this to
work?

m Why is it a good idea?



Motivation
m Backward Error Analysis
m Symplecticity



Motivation
m Backward Error Analysis



Structural Stability

Perturbed
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Structural Stability

Original Perturbed

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0 0

Invariants are destroyed by arbitrary perturbation of the
vector field
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Backward Error Analysis

A numerical method is an exact solution of a modified vector
field

1 2 3 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0
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Backward Error Analysis

A numerical method is an exact solution of a modified vector
field

— h = 1.0e-02

— h = 1.0e-01
L
N

\
\
\
N\
SO

1 2 3 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0

In general, numerical methods destroy the invariants s



Motivation

m Symplecticity



Symplectic Perturbation
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Symplectic Perturbation

Perturbed

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5
0 0

Symplectic perturbations do not destroy all invariants!
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Symplectic Vector Field

Maps a vector field to a “gradient”.

o=l ™

In R*

oH 0OH
Z= (qvp) dH = (%7 a_p>
o O
w(z)=dH <= 8%/_/




Symplectic Vector Field

Maps a vector field to a “gradient”.

o=l ™

In R*

OH OH
z=(q,p) dH = (%7 a_p>
,_ o
. 9= op . :
w(2) =dH <~ oH T Symplectic Vector Field

0q




Symplectic Integrators

m An integrator is Symplectic if its modified vector field is
symplectic.



Symplectic Integrators

m An integrator is Symplectic if its modified vector field is
symplectic.

m Amazingly, it is possible to find such integrators, with no
constraints.



Symplectic Integrators

m An integrator is Symplectic if its modified vector field is
symplectic.

m Amazingly, it is possible to find such integrators, with no
constraints.

Goal: symplectic integrator on the phase space.



Geometry of the Constraints
m Fibration
m Coisotropy



Geometry of the Constraints
m Fibration



Submanifold Fibration

Submanifold M of a symplectic manifold P.



Submanifold Fibration

Submanifold M of a symplectic manifold P.
ker w|pq is defined by:

XeT,M
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Submanifold Fibration

Submanifold M of a symplectic manifold P.
ker w|pq is defined by:

XeT,M

Xek
cherwlu = {(w(X),Y):O W e T, M

These directions are integrable.
fibre Tfibre = kerw|m
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Submanifold Fibration

Submanifold M of a symplectic manifold P.
ker w|pq is defined by:

XeT,M

Xek
cherwlu = {(w(X),Y):O W e T, M

These directions are integrable.
fibre Tfibre = kerw|m

Pendulum
fibre={(a,p+ra):AeR  fgl? =1}
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Geometry of the Constraints

m Coisotropy
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Coisotropy Assumption

We assume that dim fibre is “as big as possible”
Coisotropy Assumption dim fibre = codim M



Coisotropy Assumption

We assume that dim fibre is “as big as possible”
Coisotropy Assumption dim fibre = codim M

Pendulum

g=qll* -1

Fibre dimension = 1 =nb constraints] —> coisotropy
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Why Coisotropy?




Constrained Mechanical Problems
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Constrained Problem

Use a weak formulation:

W (1) = dH

(w(z(0), V) = (dH,Y)
VY



Constrained Problem

On a Constraint Manifold M

Use a weak formulation:

w|m(2(t)) = dH|um

(w(2(1),Y) = (dH, V)
Ve TM
z(t) e M



Lagrange Multipliers

Equivalently, if M ={g; =0}

w(z(t)) — dH € TM* = span{dg,,...,dg,}



Lagrange Multipliers

Equivalently, if M ={g; =0}
w(2(t)) —dH € TM* = span{dg,,...,dg,}

Pendulum
z2=(91,92,P1,P2)
g(a) = llall* -1
-2
450 =0




Lagrange Multipliers

Equivalently, if M ={g; =0}

w(2(t)) —dH € TM* = span{dg,,...,dg,}

Pendulum
z=(41,92,P1,P3) g(q) = llq)* -1
—p+g=\q R

H=1 o,
q-p=0 2 8




Differential Algebraic Equation

Recall the weak form

(w(z(1),Y) =(dH,Y)  YeTM
Z(t) e M

It is a Differential Algebraic Equation



Differential Algebraic Equation

Recall the weak form

(w(z(1),Y) =(dH,Y)  YeTM
Z(t) e M

It is a Differential Algebraic Equation

“Hidden"” Constraint;

M ={ze M:dH=0 inthe fibre direction}



Pendulum

C
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tical point of Hlfipre
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fibre
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Pendulum

C

=

tical point of Hlfipre

L

M N fibre

fibre

+Aq|?
H()\) = H|ﬂbre()\) = HPTq” -£g-q

7—[’()\):0 < pq:O
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Nondegeneracy
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Nondegeneracy Assumption

M ={ze M:dH=0 inthe fibre direction}

The assumption is
Hidden constraint M has no fibres (zero-dimensional)

MH



Pendulum

critical point of Hlfipe

L

fibre

M N fibce

M nfibre = one point
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B The sHAKE and RATTLE Methods
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Essential Idea on Pendulum

Idea: use the unconstrained flow (we have integrators for that)
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Essential Idea on Pendulum

Idea: use the unconstrained flow (we have integrators for that)

“kick” with the reaction force...

.50 that after free fall (no constraint) during At, one lands
on the constraint manifold.



Pendulum
First, “move in the fibre”, or “kick”...

a(;:%
Po =Py + Aqg
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Pendulum
First, “move in the fibre”, or “kick”...

do = 99
Po = Po + A
...and find X such that with the unconstrained problem with
symplectic Euler
q; = g + hHp(do, Ps)

P1 = P — hHg(do; P1)
0=g(qy,py)




How SHAKE Works




How SHAKE Works










How SHAKE Works
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How SHAKE Works

7 € MH no matter where Zp is on the fibre
fibre sliding = SHAKE is (pre)symplectic on M
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How RATTLE Works
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7, € MY, for any z,
RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)



How RATTLE Works

—

7, € MY, for any z,

RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)

fibre sliding = RATTLE is symplectic on M"



Fibre Parametrization

To use SHAKE, we need a parametrization of the fibres (which
are arbitrary manifolds)

In practice, Xg, is exactly solvable = fibres are
parametrizable

Pendulum
This is the group action:

)‘(q’p):(qvp-l')‘q)




Conclusion
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sSummary

Coisotropy (fibres are as big as possible)
Nondegeneracy (hidden constraint has no fibres)
Parametrized Fibres



summary

Coisotropy (fibres are as big as possible)
Nondegeneracy (hidden constraint has no fibres)
Parametrized Fibres

then
M = {z e M :dH=0 inthe fibre direction }
is the phase space
SHAKE/RATTLE methods are symplectic on M/M"



Classical SHAKE Revisited

When the constraints functions g; depend only on position, i.e.,

81(a,p) = 8(q)

then:
m Coisotropy always holds
m Fibres are vector spaces = always parametrizable
m One assumes g'Hppg’ invertible <= nondegeneracy



“Hopt Oscillator”

Example of a new system we can handle

z=(91.,92,p1,p5) € R*

g = llgll* + [Ipll* — 1
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Note that g(q, p) = O is the 3-sphere in R* °.
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“Hopt Oscillator”

Example of a new system we can handle

7=1(q1,92,p1,Pp2) € R*

g = llgll* + [Ipll* — 1

Note that g(q, p) = O is the 3-sphere in R* °.
The fibration is the Hopf Fibration of S in circles over S2.



“Hopf Pendulum”

zZ= (QMQZap17p2)

2
g=lal?+ -1 H=1PE g



“Hopf Pendulum”

Z2=1(41,92,P1,P2)

2
g=lal?+ -1 H=1PE g

—0.29 ————
—— SHAKE P T
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Conclusions

B SHAKE and RATTLE are explained in a geometric way
m We know exactly the assumptions under which they work
m We can solve new systems
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Conclusions

B SHAKE and RATTLE are explained in a geometric way
m We know exactly the assumptions under which they work
m We can solve new systems

m IS it possible to drop the coisotropy assumption?

Thank you for your attention
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