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Pendulum: Phase Space

...

θ

θ̈ = −g
ℓ
sin(θ)

θ̇ = pθ
ṗθ = − sin(θ)

The phase space is a two
dimensional cylinder.

Often: parametrisation is impossible!
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Pendulum: Constrained

z = (q1,q2,p1,p2) ≡ (q,p) ⊂ R4

.

H =
∥p∥2

2
− g · q


q̇ = p

+ λ
∂g
∂p

ṗ = g
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Naive Simulation Fail

..

6 I. Examples and Numerical Experiments

satisfies the variational equation 2

ϕ̇′
t(p, q) =

(
−Hpq −Hqq

Hpp Hqp

)
ϕ′

t(p, q) ,

where the second partial derivatives of H are evaluated at ϕt(p, q). In the case of
one degree of freedom (d = 1), a simple computation shows that

d

dt
det ϕ′

t(p, q) =
d

dt

(∂p(t)
∂p

∂q(t)
∂q

− ∂p(t)
∂q

∂q(t)
∂p

)
= . . . = 0.

Since ϕ0 is the identity, this implies det ϕ′
t(p, q) = 1 for all t, which means that the

flow ϕt(p, q) is an area-preserving mapping.
The last two pictures of Fig. 1.3 show numerical flows. The explicit Euler

method is clearly seen not to preserve area but the symplectic Euler method is (this
will be proved in Sect. VI.3). One of the aims of ‘geometric integration’ is the study
of numerical integrators that preserve such types of qualitative behaviour of the ex-
act flow.

explicit Eulerexplicit Euler symplectic Eulersymplectic Euler Störmer–VerletStörmer–Verlet

Fig. 1.4. Solutions of the pendulum problem (1.13); explicit Euler with step size h = 0.2,
initial value (p0, q0) = (0, 0.5); symplectic Euler with h = 0.3 and initial values q0 = 0,
p0 = 0.7, 1.4, 2.1; Störmer–Verlet with h = 0.6

Numerical Experiment. We apply the above numerical methods to the pendulum
equations (see Fig. 1.4). Similar to the computations for the Lotka–Volterra equa-
tions, we observe that the numerical solutions of the explicit Euler and of the im-
plicit Euler method (not drawn in Fig. 1.4) spiral either outwards or inwards. The
symplectic Euler method shows the correct qualitative behaviour, but destroys the
left-right symmetry of the problem. The Störmer–Verlet scheme, which we discuss
next, works perfectly even with doubled step size.
2 As is common in the study of mechanical problems, we use dots for denoting time-

derivatives, and we use primes for denoting derivatives with respect to other variables.
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Essential Idea on Pendulum

Idea: use the unconstrained flow (we have integrators for that).

1 “kick” with the reaction force…
2 …so that after free fall (no constraint) during ∆t, one lands

on the constraint manifold.
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The Essential Ideas

.

.

.....

z0

.

z1

.
Pendulum..

......

Ambient space: R4
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The Essential Ideas
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Questions

Are there conditions on the constraints? on H, for this to
work?
Why is it a good idea?
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Structural Stability

..
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Backward Error Analysis
A numerical method is an exact solution of a modified vector
field

..
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Symplectic Perturbation
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Symplectic Vector Field
Maps a vector field to a “gradient”.
.
In R4
..

......

ω =

[
−I2

I2

]

z = (q,p) dH =
(∂H
∂q

,
∂H
∂p

)

..ω(ż) = dH ⇐⇒


q̇ =

∂H
∂p

ṗ = −∂H
∂q

. Symplectic Vector Field
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..ω(ż) = dH ⇐⇒


q̇ =

∂H
∂p
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Symplectic Integrators

An integrator is Symplectic if its modified vector field is
symplectic.

Amazingly, it is possible to find such integrators, with no
constraints.

Goal: symplectic integrator on the phase space.
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Submanifold Fibration
Submanifold M of a symplectic manifold P .

kerω|M is defined by:

X ∈ kerω|M ⇐⇒

{
X ∈ TzM
⟨ω(X), Y⟩ = 0 ∀Y ∈ TzM

These directions are integrable.

..

fibre Tfibre = kerω|M

..
Pendulum..

......

fibre =
{
(q,p+ λq) : λ ∈ R ∥q∥2 = 1

}
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Coisotropy Assumption

We assume that dim fibre is “as big as possible”
Coisotropy Assumption dim fibre = codimM

.
Pendulum..

......

g = ∥q∥2 − 1

[
Fibre dimension = 1 = nb constraints

]
=⇒ coisotropy
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Why Coisotropy?

.

.

.....

x0

.

x1
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Constrained Problem

On a Constraint Manifold M

Use a weak formulation:

ω

|M

(ż(t)) = dH

|M

⇐⇒
⟨ω(ż(t)), Y⟩ = ⟨dH, Y⟩

∀Y

∈ TM
z(t) ∈ M
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Lagrange Multipliers

Equivalently, if M = { gi = 0 }:

ω(ż(t))− dH ∈ TM⊥ = span{dg1, . . . , dgk}

.
Pendulum..

......

z = (q1,q2,p1,p2)

−ṗ− ∂H
∂q

= λq

q̇− ∂H
∂p

= 0

g(q) = ∥q∥2 − 1

H =
∥p∥2

2
− g · q
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Differential Algebraic Equation

Recall the weak form⟨
ω
(
ż(t)

)
, Y
⟩
= ⟨dH, Y⟩ Y ∈ TM

z(t) ∈ M

It is a Differential Algebraic Equation

“Hidden” Constraint:

MH = { z ∈ M : dH = 0 in the fibre direction }
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.
Pendulum..

......

.. fibre.

H

..
MH ∩ fibre
..

critical point of H|fibre

H(λ) := H|fibre(λ) =
∥p+ λq∥2

2
− g · q

H′(λ) = 0 ⇐⇒ p · q = 0
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Nondegeneracy Assumption

MH = { z ∈ M : dH = 0 in the fibre direction }

The assumption is
Hidden constraint MH has no fibres (zero-dimensional)

..

MH
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.
Pendulum..

......

.. fibre.

H

..
MH ∩ fibre
..

critical point of H|fibre

.

MH ∩ fibre = one point
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Essential Idea on Pendulum

Idea: use the unconstrained flow (we have integrators for that).

1 “kick” with the reaction force…
2 …so that after free fall (no constraint) during ∆t, one lands

on the constraint manifold.
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.
Pendulum..

......

First, “move in the fibre”, or “kick”…

q̃0 = q0

p̃0 = p0 + λq0

…and find λ such that with the unconstrained problem with
symplectic Euler

q1 = q̃0 + hHp(q0,p1)

p1 = p̃0 − hHq(q0,p1)

0 = g(q1,p1)
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How SHAKE Works

.

.

.

MH

.....

z0

.

z1

.

M̃H

.

z2

z1 ∈ M̃H no matter where z0 is on the fibre
fibre sliding =⇒ SHAKE is (pre)symplectic on M
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How RATTLE Works

.

.

.

MH

.....

z0

.

z1

.

z2

z1 ∈ MH, for any z0
RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)
fibre sliding =⇒ RATTLE is symplectic on MH

36 / 43



How RATTLE Works

.

.

.

MH

.....

z0

.

z1

.

z2

z1 ∈ MH, for any z0
RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)
fibre sliding =⇒ RATTLE is symplectic on MH

36 / 43



How RATTLE Works

.

.

.

MH

.....

z0

.

z1

.

z2

z1 ∈ MH, for any z0
RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)
fibre sliding =⇒ RATTLE is symplectic on MH

36 / 43



How RATTLE Works

.

.

.

MH

.....

z0

.

z1

.

z2

z1 ∈ MH, for any z0
RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)
fibre sliding =⇒ RATTLE is symplectic on MH

36 / 43



How RATTLE Works

.

.

.

MH

.....

z0

.

z1

.

z2

z1 ∈ MH, for any z0
RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)
fibre sliding =⇒ RATTLE is symplectic on MH

36 / 43



How RATTLE Works

.

.

.

MH

.....

z0

.

z1

.

z2

z1 ∈ MH, for any z0

RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)
fibre sliding =⇒ RATTLE is symplectic on MH

36 / 43



How RATTLE Works

.

.

.

MH

.....

z0

.

z1

.

z2

z1 ∈ MH, for any z0
RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)

fibre sliding =⇒ RATTLE is symplectic on MH

36 / 43



How RATTLE Works

.

.

.

MH

.....

z0

.

z1

.

z2

z1 ∈ MH, for any z0
RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE =
RATTLE as fibre mappings)
fibre sliding =⇒ RATTLE is symplectic on MH

36 / 43



Fibre Parametrization

To use SHAKE, we need a parametrization of the fibres (which
are arbitrary manifolds)

In practice, Xgi is exactly solvable =⇒ fibres are
parametrizable
.
Pendulum..

......

This is the group action:

λ · (q,p) = (q,p+ λq)
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Summary

1 Coisotropy (fibres are as big as possible)
2 Nondegeneracy (hidden constraint has no fibres)
3 Parametrized Fibres

then
1

MH =
{
z ∈ M : dH = 0 in the fibre direction

}
is the phase space

2 SHAKE/RATTLE methods are symplectic on M/MH
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Classical SHAKE Revisited

When the constraints functions gi depend only on position, i.e.,

gi(q,p) = gi(q)

then:
Coisotropy always holds
Fibres are vector spaces =⇒ always parametrizable
One assumes g′Hppg′ invertible ⇐⇒ nondegeneracy
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“Hopf Oscillator”
Example of a new system we can handle

z = (q1,q2,p1,p2) ∈ R4

g = ∥q∥2 + ∥p∥2 − 1

Note that g(q,p) = 0 is the 3-sphere in R4 S3.
The fibration is the Hopf Fibration of S3 in circles over S2.

.

... MH

H =
∥p∥2

2
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“Hopf Pendulum”

z = (q1,q2,p1,p2)

g = ∥q∥2 + ∥p∥2 − 1 H =
∥p∥2

2
− g · q

..
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Conclusions

SHAKE and RATTLE are explained in a geometric way
We know exactly the assumptions under which they work
We can solve new systems

Is it possible to drop the coisotropy assumption?

Thank you for your attention

..
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