Geometric RATTLE

Geometric Generalisation of SHAKE and RATTLE

Olivier Verdier¹

(with R. McLachlan², K. Modin², M. Wilkins²)

Toronto 2012-07-13

- 1 Introduction
- 2 Motivation
- 3 Geometry of the Constraints
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

$$\ddot{\theta} = -\frac{g}{\ell}\sin(\theta)$$

$$\ddot{\theta} = -\sin(\theta)$$

$$\ddot{\theta} = -\sin(\theta)$$

$$\dot{\theta} = \rho_{\theta}$$

$$\dot{\rho_{\theta}} = -\sin(\theta)$$

The phase space is a two dimensional cylinder.

$$\ddot{\theta} = -\sin(\theta)$$

$$\dot{\theta} = \rho_{\theta}$$

$$\dot{\rho_{\theta}} = -\sin(\theta)$$

The phase space is a two dimensional cylinder.

Often: parametrisation is impossible!

$$z = (q_1, q_2, p_1, p_2) \equiv (\mathbf{q}, \mathbf{p}) \subset \mathbf{R}^4$$

$$z = (q_1, q_2, p_1, p_2) \equiv (\mathbf{q}, \mathbf{p}) \subset \mathbf{R}^4$$

$$H = \frac{\|\mathbf{p}\|^2}{2} - \mathbf{g} \cdot \mathbf{q}$$
$$\begin{cases} \dot{\mathbf{q}} = \mathbf{p} \\ \dot{\mathbf{p}} = \mathbf{g} \end{cases}$$

$$z = (q_1, q_2, p_1, p_2) \equiv (\mathbf{q}, \mathbf{p}) \subset \mathbf{R}^4$$

$$H = \frac{\|\mathbf{p}\|^2}{2} - \mathbf{g} \cdot \mathbf{q}$$
$$\begin{cases} \dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}} \\ \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}} \end{cases}$$

$$z = (q_1, q_2, p_1, p_2) \equiv (\mathbf{q}, \mathbf{p}) \subset \mathbf{R}^4$$

$$H = \frac{\|\mathbf{p}\|^2}{2} - \mathbf{g} \cdot \mathbf{q}$$

$$\begin{cases} \dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}} \\ \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}} - \underbrace{\lambda \mathbf{q}}_{\text{reaction force}} \\ \underbrace{\|\mathbf{q}\|^2 - 1}_{\text{constraint}} = 0 \end{cases}$$

$$z = (q_1, q_2, p_1, p_2) \equiv (\mathbf{q}, \mathbf{p}) \subset \mathbf{R}^4$$

Hidden constraint:

$$\begin{cases} \dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}} \\ \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}} - \underbrace{\lambda \mathbf{q}}_{\text{reaction force}} \\ \|\mathbf{q}\|^2 - 1 = 0 \end{cases}$$

 $H = \frac{\|\mathbf{p}\|^2}{2} - \mathbf{g} \cdot \mathbf{q}$

$$z = (q_1, q_2, p_1, p_2) \equiv (\mathbf{q}, \mathbf{p}) \subset \mathbf{R}^4$$

$$H = \frac{\|\mathbf{p}\|^2}{2} - \mathbf{g} \cdot \mathbf{q}$$

$$\begin{cases} \dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}} + \lambda \frac{\partial \mathbf{g}}{\partial \mathbf{p}} \\ \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}} - \lambda \frac{\partial \mathbf{g}}{\partial \mathbf{q}} \\ g(q, p) = 0 \end{cases}$$
constraint

$$\frac{\partial g}{\partial \boldsymbol{q}} \cdot \frac{\partial H}{\partial \boldsymbol{p}} - \frac{\partial g}{\partial \boldsymbol{p}} \cdot \frac{\partial H}{\partial \boldsymbol{q}} = 0$$

Naive Simulation Fail

Essential Idea on Pendulum

Idea: use the *unconstrained* flow (we have integrators for that)

Essential Idea on Pendulum

Idea: use the *unconstrained* flow (we have integrators for that)

1 "kick" with the reaction force...

Essential Idea on Pendulum

Idea: use the *unconstrained* flow (we have integrators for that)

- 1 "kick" with the reaction force...
- 2 ...so that after free fall (no constraint) during Δt , one lands on the constraint manifold.

Pendulum

Ambient space: R⁴

Pendulum

Constraints

 $\|\mathbf{q}\|^2 = 1$

Pendulum

Fibres

$$(\mathbf{q}, \mathbf{p} + \lambda \mathbf{q}) \quad \lambda \in \mathbf{R}$$

Pendulum

Hidden Constraints → Phase Space

$$\mathbf{q} \cdot \mathbf{p} = 0$$

Pendulum

Pendulum

Kick + free fall

Questions

- Are there conditions on the constraints? on *H*, for this to work?
- Why is it a good idea?

- 1 Introduction
- 2 Motivation
 - Backward Error Analysis
 - Symplecticity
- 3 Geometry of the Constraints
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

- 1 Introduction
- 2 Motivation
 - Backward Error Analysis
 - Symplecticity
- 3 Geometry of the Constraints
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

Structural Stability

Structural Stability

Invariants are destroyed by arbitrary perturbation of the vector field

Backward Error Analysis

A numerical method is an exact solution of a modified vector field

Backward Error Analysis

A numerical method is an exact solution of a modified vector field

In general, numerical methods destroy the invariants

- 1 Introduction
- 2 Motivation
 - Backward Error Analysis
 - Symplecticity
- 3 Geometry of the Constraints
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

Symplectic Perturbation

Symplectic Perturbation

Symplectic perturbations do not destroy all invariants!

Symplectic Vector Field

Maps a vector field to a "gradient".

In
$$\mathbf{R}^4$$

$$\omega = \begin{bmatrix} -l_2 \\ l_2 \end{bmatrix}$$

$$z = (\mathbf{q}, \mathbf{p}) \quad dH = \left(\frac{\partial H}{\partial \mathbf{q}}, \frac{\partial H}{\partial \mathbf{p}}\right)$$

$$\omega(\dot{z}) = dH \iff \begin{cases} \dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}} \\ \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}} \end{cases}$$

Symplectic Vector Field

Maps a vector field to a "gradient".

In
$$\mathbf{R}^4$$

$$\omega = \begin{bmatrix} -I_2 \end{bmatrix}$$

$$z = (\mathbf{q}, \mathbf{p}) \quad dH = \left(\frac{\partial H}{\partial \mathbf{q}}, \frac{\partial H}{\partial \mathbf{p}}\right)$$

$$\omega(\dot{z}) = dH \iff \begin{cases} \dot{\mathbf{q}} = \frac{\partial H}{\partial \mathbf{p}} \\ \dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{q}} \end{cases}$$
 Symplectic Vector Field

Symplectic Integrators

An integrator is Symplectic if its modified vector field is symplectic.

Symplectic Integrators

- An integrator is Symplectic if its modified vector field is symplectic.
- Amazingly, it is possible to find such integrators, with no constraints.

Symplectic Integrators

- An integrator is Symplectic if its modified vector field is symplectic.
- Amazingly, it is possible to find such integrators, with no constraints.

Goal: symplectic integrator on the phase space.

- 1 Introduction
- 2 Motivation
- 3 Geometry of the Constraints
 - Fibration
 - Coisotropy
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

- 1 Introduction
- 2 Motivation
- 3 Geometry of the Constraints
 - Fibration
 - Coisotropy
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

Submanifold ${\mathcal M}$ of a symplectic manifold ${\mathcal P}$.

Submanifold \mathcal{M} of a symplectic manifold \mathcal{P} . $\ker \omega|_{\mathcal{M}}$ is defined by:

$$X \in \ker \omega|_{\mathcal{M}} \iff \begin{cases} X \in T_{z}\mathcal{M} \\ \langle \omega(X), Y \rangle = 0 \end{cases} \quad \forall Y \in T_{z}\mathcal{M}$$

Submanifold $\mathcal M$ of a symplectic manifold $\mathcal P$. $\ker \omega|_{\mathcal M}$ is defined by:

$$X \in \ker \omega|_{\mathcal{M}} \iff \begin{cases} X \in T_{Z}\mathcal{M} \\ \langle \omega(X), Y \rangle = 0 \end{cases} \quad \forall Y \in T_{Z}\mathcal{M}$$

These directions are integrable.

- fibre Tfibre = $\ker \omega|_{\mathcal{M}}$

Submanifold $\mathcal M$ of a symplectic manifold $\mathcal P$. $\ker \omega|_{\mathcal M}$ is defined by:

$$X \in \ker \omega|_{\mathcal{M}} \iff \begin{cases} X \in T_{z}\mathcal{M} \\ \langle \omega(X), Y \rangle = 0 \end{cases} \quad \forall Y \in T_{z}\mathcal{M}$$

These directions are integrable.

- fibre Tfibre = $\ker \omega |_{\mathcal{M}}$

Pendulum

fibre =
$$\{ (\mathbf{q}, \mathbf{p} + \lambda \mathbf{q}) : \lambda \in \mathbf{R} \quad ||q||^2 = 1 \}$$

- 1 Introduction
- 2 Motivation
- 3 Geometry of the Constraints
 - Fibration
 - Coisotropy
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

Coisotropy Assumption

We assume that dim fibre is "as big as possible"

Coisotropy Assumption $\dim \text{fibre} = \operatorname{codim} \mathcal{M}$

Coisotropy Assumption

We assume that dim fibre is "as big as possible"

Coisotropy Assumption $\dim \text{fibre} = \operatorname{codim} \mathcal{M}$

Pendulum

$$g = ||q||^2 - 1$$

Fibre dimension $= 1 = \text{nb constraints} \implies \text{coisotropy}$

Why Coisotropy?

- 1 Introduction
- 2 Motivation
- 3 Geometry of the Constraints
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

Constrained Problem

Use a weak formulation:

$$\omega \quad (\dot{z}(t)) = dH$$

$$\iff \langle \omega(\dot{z}(t)), Y \rangle = \langle dH, Y \rangle$$

$$\forall Y$$

Constrained Problem

On a Constraint Manifold M

Use a weak formulation:

$$\omega|_{\mathcal{M}}(\dot{z}(t)) = dH|_{\mathcal{M}}$$

$$\iff \langle \omega(\dot{z}(t)), Y \rangle = \langle dH, Y \rangle$$

$$\forall Y \in T\mathcal{M}$$

$$z(t) \in \mathcal{M}$$

Lagrange Multipliers

Equivalently, if $\mathcal{M} = \{g_i = 0\}$:

$$\omega(\dot{z}(t)) - dH \in T\mathcal{M}^{\perp} = \operatorname{span}\{dg_1, \dots, dg_k\}$$

Lagrange Multipliers

Equivalently, if $\mathcal{M} = \{g_i = 0\}$:

$$\omega(\dot{z}(t)) - dH \in T\mathcal{M}^{\perp} = \operatorname{span}\{dg_1, \dots, dg_k\}$$

Pendulum

$$z = (q_1, q_2, p_1, p_2)$$
$$-\dot{\mathbf{p}} - \frac{\partial H}{\partial \mathbf{q}} = \lambda \mathbf{q}$$
$$\dot{\mathbf{q}} - \frac{\partial H}{\partial \mathbf{p}} = 0$$

$$g(\mathbf{q}) = \|\mathbf{q}\|^2 - 1$$

Lagrange Multipliers

Equivalently, if
$$\mathcal{M} = \{g_i = 0\}$$
:

$$\omega(\dot{z}(t)) - dH \in TM^{\perp} = \operatorname{span}\{dg_1, \dots, dg_k\}$$

Pendulum

$$z = (q_1, q_2, p_1, p_2)$$

$$-\dot{\mathbf{p}} + \mathbf{g} = \lambda \mathbf{q}$$

$$\dot{\mathbf{q}} - \mathbf{p} = 0$$

$$g(\mathbf{q}) = \|\mathbf{q}\|^2 - 1$$

$$H = \frac{\|\mathbf{p}\|^2}{2} - \mathbf{g} \cdot \mathbf{q}$$

Differential Algebraic Equation

Recall the weak form

$$\langle \omega(\dot{z}(t)), Y \rangle = \langle dH, Y \rangle$$
 $Y \in TM$
 $z(t) \in M$

It is a Differential Algebraic Equation

Differential Algebraic Equation

Recall the weak form

$$\langle \omega(\dot{z}(t)), Y \rangle = \langle dH, Y \rangle$$
 $Y \in TM$
 $z(t) \in M$

It is a Differential Algebraic Equation

"Hidden" Constraint:

$$\mathcal{M}^H = \{ z \in \mathcal{M} : dH = 0 \text{ in the fibre direction } \}$$

Pendulum

$$\mathcal{H}(\lambda) := H|_{\text{fibre}}(\lambda) = \frac{\|\mathbf{p} + \lambda \mathbf{q}\|^2}{2} - \mathbf{g} \cdot \mathbf{q}$$
$$\mathcal{H}'(\lambda) = 0 \iff \mathbf{p} \cdot \mathbf{q} = 0$$

- 1 Introduction
- 2 Motivation
- 3 Geometry of the Constraints
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

Nondegeneracy Assumption

$$\mathcal{M}^H = \{ z \in \mathcal{M} : dH = 0 \text{ in the fibre direction } \}$$

The assumption is Hidden constraint \mathcal{M}^H has no fibres (zero-dimensional)

- 1 Introduction
- 2 Motivation
- 3 Geometry of the Constraints
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

Essential Idea on Pendulum

Idea: use the *unconstrained* flow (we have integrators for that)

Essential Idea on Pendulum

Idea: use the *unconstrained* flow (we have integrators for that)

1 "kick" with the reaction force...

Essential Idea on Pendulum

Idea: use the *unconstrained* flow (we have integrators for that)

- "kick" with the reaction force...
- 2 ...so that after free fall (no constraint) during Δt , one lands on the constraint manifold.

Pendulum

First, "move in the fibre", or "kick"...

$$\begin{aligned} \widetilde{\mathbf{q}_0} &= \mathbf{q}_0 \\ \widetilde{\mathbf{p}_0} &= \mathbf{p}_0 + \lambda \mathbf{q}_0 \end{aligned}$$

Pendulum

First, "move in the fibre", or "kick"...

$$\begin{aligned} \widetilde{\mathbf{q}_0} &= \mathbf{q}_0 \\ \widetilde{\mathbf{p}_0} &= \mathbf{p}_0 + \lambda \mathbf{q}_0 \end{aligned}$$

...and find λ such that with the unconstrained problem with symplectic Euler

$$\mathbf{q}_{1} = \widetilde{\mathbf{q}_{0}} + hH_{p}(\mathbf{q}_{0}, \mathbf{p}_{1})$$

$$\mathbf{p}_{1} = \widetilde{\mathbf{p}_{0}} - hH_{q}(\mathbf{q}_{0}, \mathbf{p}_{1})$$

$$0 = g(\mathbf{q}_{1}, \mathbf{p}_{1})$$

 $z_1 \in \widetilde{\mathcal{M}}^H$ no matter where z_0 is on the fibre

How SHAKE Works

 $z_1 \in \mathcal{M}^H$ no matter where z_0 is on the fibre fibre sliding \implies SHAKE is (pre)symplectic on \mathcal{M}

 $z_1 \in \mathcal{M}^H$, for any z_0

 $z_1 \in \mathcal{M}^H$, for any z_0 RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE = RATTLE as fibre mappings)

 $z_1 \in \mathcal{M}^H$, for any z_0 RATTLE is a cosmetic improvement over SHAKE (in fact SHAKE = RATTLE as fibre mappings) fibre sliding \implies RATTLE is symplectic on \mathcal{M}^H

Fibre Parametrization

To use SHAKE, we need a parametrization of the fibres (which are arbitrary manifolds)

In practice, X_{g_i} is exactly solvable \implies fibres are parametrizable

Pendulum

This is the group action:

$$\lambda \cdot (\mathbf{q}, \mathbf{p}) = (\mathbf{q}, \mathbf{p} + \lambda \mathbf{q})$$

- 1 Introduction
- 2 Motivation
- 3 Geometry of the Constraints
- 4 Constrained Mechanical Problems
- 5 Nondegeneracy
- 6 The SHAKE and RATTLE Methods
- 7 Conclusion

Summary

- 1 Coisotropy (fibres are as big as possible)
- 2 Nondegeneracy (hidden constraint has no fibres)
- Parametrized Fibres

Summary

- 1 Coisotropy (fibres are as big as possible)
- 2 Nondegeneracy (hidden constraint has no fibres)
- 3 Parametrized Fibres

then

1

$$\mathcal{M}^H = \left\{ z \in \mathcal{M} : dH = 0 \text{ in the fibre direction} \right\}$$

is the phase space

2 SHAKE/RATTLE methods are symplectic on $\mathcal{M}/\mathcal{M}^H$

Classical SHAKE Revisited

When the constraints functions g_i depend only on position, i.e.,

$$g_i(q,p) = g_i(q)$$

then:

- Coisotropy always holds
- Fibres are vector spaces ⇒ always parametrizable
- One assumes $g'H_{pp}g'$ invertible \iff nondegeneracy

Example of a new system we can handle

$$z = (q_1, q_2, p_1, p_2) \in \mathbf{R}^4$$

$$g = \|\mathbf{q}\|^2 + \|\mathbf{p}\|^2 - 1$$

Example of a new system we can handle

$$z = (q_1, q_2, p_1, p_2) \in \mathbf{R}^4$$

$$g = \|\mathbf{q}\|^2 + \|\mathbf{p}\|^2 - 1$$

Note that $g(\mathbf{q}, \mathbf{p}) = 0$ is the 3-sphere in \mathbf{R}^4 S^3 .

Example of a new system we can handle

$$z = (q_1, q_2, p_1, p_2) \in \mathbf{R}^4$$

$$g = \|\mathbf{q}\|^2 + \|\mathbf{p}\|^2 - 1$$

Note that $g(\mathbf{q}, \mathbf{p}) = 0$ is the 3-sphere in \mathbb{R}^4 S^3 . The fibration is the Hopf Fibration of S^3 in circles over S^2 .

Example of a new system we can handle

$$z = (q_1, q_2, p_1, p_2) \in \mathbf{R}^4$$

$$g = \|\mathbf{q}\|^2 + \|\mathbf{p}\|^2 - 1$$

Note that $g(\mathbf{q}, \mathbf{p}) = 0$ is the 3-sphere in $\mathbb{R}^4 S^3$. The fibration is the Hopf Fibration of S^3 in circles over S^2 .

"Hopf Pendulum"

$$z = (q_1, q_2, p_1, p_2)$$

$$g = \|\mathbf{q}\|^2 + \|\mathbf{p}\|^2 - 1$$
 $H = \frac{\|\mathbf{p}\|^2}{2} - \mathbf{g} \cdot \mathbf{q}$

"Hopf Pendulum"

$$z = (q_1, q_2, p_1, p_2)$$

$$g = \|\mathbf{q}\|^2 + \|\mathbf{p}\|^2 - 1$$
 $H = \frac{\|\mathbf{p}\|^2}{2} - \mathbf{g} \cdot \mathbf{q}$

Conclusions

- SHAKE and RATTLE are explained in a geometric way
- We know exactly the assumptions under which they work
- We can solve new systems

Conclusions

- SHAKE and RATTLE are explained in a geometric way
- We know exactly the assumptions under which they work
- We can solve new systems
- Is it possible to drop the coisotropy assumption?

Conclusions

- SHAKE and RATTLE are explained in a geometric way
- We know exactly the assumptions under which they work
- We can solve new systems
- Is it possible to drop the coisotropy assumption?

Thank you for your attention

