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Kinetic and fluid models in continuum dynamics

e Fluid models have a long standing tradition in geometric mechanics,
starting from [Arnold(1966)]

e They arise from a microscopic (kinetic) approach by an averaging process
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Hybrid kinetic-fluid models for plasma physics

e Plasma simulations are mostly based on fluid (MHD) models
e These are invalidated by the presence of energetic particles

e Then, small-scale processes may control large-scale phenomenology

Energetic Solar wind interacts with Earth’'s magnetosphere
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e Hybrid philosophy: a fluid interacts with a hot particle gas
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Multi-physics approach!

— MHD fluid models need to be coupled to kinetic-like equations

e Several coupling options are available, which need special care

e These usually arise by
, cf [Park et al. (1992); Kim et al. (1994); Todo et al. (1995)]

Formulating hybrid models require powerful and general methods

... we shall use geometry!



Fluid and kinetic modaels
for plasmas



Plasma models

o on phase space (Liouville):
traces particles (x(t), p(t)) — solves all details.

o (Vlasov, Boltzmann):
probability distribution f(x,p,t) — retains most details.

o (MHD, Hall-MHD):
local averages (momentum m(x,t), density p(x,t)) — forget details.
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From particle motion to kinetic theory

Particle simulations for (xs, ps) solve all details, but at huge costs.
Kinetic theory: spread particles across phase-space — probability
Averaging processes (BBGKY) lead to the

A kinetic equation is an evolution equation for f(x,p).

Collisional: no energy conservation — Boltzmann ( H-theorem)

— Vlasov (mean field model)



For more info, look at these guys’ work...
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Kinetic approaches are expensive!

Better forget details? Fluid approaches are very convenient!
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e Fluid plasma model in which the magnetic field B is ‘frozen in':

0(B-dS)+ £Lu(B-dS) =0, or, equivalently, 0:B+V x(Bxu)=0

e Fluid equation is
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where p is the transported mass density and p denotes pressure

e J =V x B is an electric current, so J x B arises as a Lorentz force

e Most plasma studies are based on this Hamiltonian (Lie-Poisson) model!



Still, energetic particles require kinetic theory!

NIMROD particle traces in FRC : NIMROD particle traces in FRC
Charlson C. Kim - PSI Center Charlson C. Kim - PS| Center

Field Reversed Configuration experiments (FRCs) for nuclear fusion require kinetic de-
scriptions as ordinary fluid approximations do not apply. No particular phenomenon is
observed for low energy particles (right), while certain patterns emerge at high ener-
gies (left). In particular, (higher magnetic
gradients) and never cross the origin.



Kinetic theory & electromagnetism: Maxwell-Vlasov
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Kinetic theory & electromagnetism: Maxwell-Vlasov

e Vlasov kinetic equation for f(x,p,t)...
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e ...coupled to Maxwell's equations

OE
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ot
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e Again, this is a Lie-Poisson system!



Geometric mechanics for
fluid and kinetic modaels



Geometric fluid dynamics

Lagrangian and Eulerian variables are related by the relabeling symmetry,
which produces an intrinsic geometric description [Arnold (1966)] captur-
ing essential features such as circulation laws and dynamical invariants.

Ex. Incompressible ideal fluids move along geodesics on G = Diff,, (M)

Geometric approach possesses variational and Hamiltonian formulations!



Lagrangian fluid dynamics of m(a,t) on the Lie group G possesses the
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Eulerian dynamics on the (dual) tangent space at identity possesses the
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Lagrangian fluid dynamics of n(a,t) on the Lie group G possesses the
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Eulerian dynamics on the (dual) tangent space at identity possesses the
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Fluids: (7),)) are Lagrangian coordinates, while o = fluid momentum m.
Vlasov: (7),1)) are Lagrangian coordinates, while o = distribution function f.
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Symmetry is everywhere in mechanics

e Rotational symmetry for vectors ( ):
dFf dG
g, kl=gxk — {F,.G}=p- X
du  dp
e Relabeling symmetry for velocities ( ):
OF 6G
vou] = (v V)u—(u- V)v — {F,G} = [n(x): [— —] d3x
op Op
e Canonical (symplectic) symmetry for matrices ( ):
dF' d
[A,B] = AB—~ BA — {F, G}—Tr<XT[ GD
dX’ dX

e Canonical symmetry for phase-space functions (Vlasov equation):

oh Ok Oh Ok S5F 5G] Pxdp

h Kl = 5% a0 ~ op ox {FG}_/f(X P) 5757




Intermezzo: geometry of Vlasov kinetic theory

e Let (; : (S,w) — (P,w) be an embedding from a volume manifold
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e The actions of Diffy,,, and Diffy, on Emb(S,P) produce the (dual
pair of ) momentum maps [Marsden&Weinstein(1983), Holm&CT(2009)]

Jr: Emb(S,P) — X{,m(P); Jpr  Emb(S,P) — Xy(S)
() = [ wdz = C(s:1) C(5) — C*w = dQi(s) A dP(s)

e Moments [ p™ f d3p are also momentum maps [Gibbons, Holm&CT(2008)]



Let's apply geometric mechanics
to formulate our hybrid models!
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e Consider a plasma of a fluid (MHD) bulk and an energetic component
e Express the dynamics in terms of the total momentum M = m + K,
where K = [ pfd3p. Then one wants to assume a rarefied energetic

component so that K-contributions can be neglected.

e In plasma literature, one replaces 9K ~ 0 in the equation for the total
momentum M. This breaks Hamiltonian structure: no Kelvin-Noether!

e The geometric Hamiltonian approach neglects K-contributions by re-
placing m ~ M in the Hamiltonian, which is then given by
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A geometric hybrid model: equations

e This process returns the same fluid equation as in the literature while

inserting new and circulation force in the kinetic equation
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A geometric hybrid model: equations

e This process returns the same fluid equation as in the literature while

inserting new and circulation force in the kinetic equation
0
—u—l—(u V)u———Vp——V/ppfd3p——BxVxB
ot p mp p pop
0 0 0 0

f—l— + P f—(p Vu) - —f+a,hp><(B V X u) - of =0
ot my, 0X p p
8,0 oB
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e Dropping all u-terms in the second equation and replacing p X B by
(p —mpu) x B yields the (non-Hamiltonian) model from the literature

e Unlike previous models, the fluid interaction terms do NOT vanish in
the absence of magnetic fields

e Circulation force terms emerge since hot particle trajectories are now
computed in the cold fluid frame.



e We get magnetic and cross helicity invariants:
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e We get magnetic and cross helicity invariants:
3 K 3
H:/A-Bd X /\:/ w—mp—) - Bd3x
I

e Circulation laws (see also Euler-Poincaré approach [Holm&Tronci(2011)])

d 1/1
— ¢ u-dx = — —(—BxVxB+mhv-]P’>-dX
dt Jy "t P \HO
d K 1
—j{ —.dx:jf —(athB—V~P)-dX
dt Jy: p Yt P
d 1
- <1—|—E>A-dX:— —(V-K)A -dx;
dt Jy P Yt P

where n = [ f d3p is the hot particle density, while the

IP’=/ppfd310

emerges as a geometric forcing term in the cold fluid dynamics



Geometry of hybrid pressure-coupling schemes

e The momentum shift M = pu + K corresponds to an entangling
Poisson map [Krishnaprasad&Marsen(1984); Holm(1986)]
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Geometry of hybrid pressure-coupling schemes

e The momentum shift M = pu + K corresponds to an entangling
Poisson map [Krishnaprasad&Marsen(1984); Holm(1986)]

£ (X(R3) & Xcan(R%)) " — (X(R?) ® Xpam(R%))
(pu, K) — (pu + K, K)

e Semidirect-product arises from cotangent-lifts of Diff(R3) acting on
Diff(R®) (subgroup action), whose momentum map is K = [p fd3p

e Denote two-forms by Q2(R3). Hybrid model is written on the Lie group
(Diff(R*) ®Diff(R%)) ® (C®(R?) x Q*(R?))

cold & hot flows (Lagrangian variables)  dual to advected quantities: (p, A)

e Other momentum map properties underlying
were presented in [Holm&CT(2008); Gay-Balmaz,Vizman& CT(2010)]



Next steps

Nonlinear stability in toroidal geometry (fusion devices): Casimir method
Application of hybrid models in MHD turbulence [Cowley et al. (2011)]
New hybrid models for space plasmas. (Collisionless reconnection)

Extend the hybrid philosophy to complex fluids and quantum plasmas
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