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Kinetic and fluid models in continuum dynamics

• Fluid models have a long standing tradition in geometric mechanics,

starting from [Arnold(1966)]

• They arise from a microscopic (kinetic) approach by an averaging process

• This averaging process is known in statistics as ‘the moment method’
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Hybrid kinetic-fluid models for plasma physics

• Plasma simulations are mostly based on fluid (MHD) models

• These are invalidated by the presence of energetic particles

• Then, small-scale processes may control large-scale phenomenology

Energetic Solar wind interacts with Earth’s magnetosphere



• Microscopic effects need to be considered along with fluid macro-scales

• Hybrid philosophy: a fluid interacts with a hot particle gas

Multi-physics approach!

→ MHD fluid models need to be coupled to kinetic-like equations
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• Microscopic effects need to be considered along with fluid macro-scales

• Hybrid philosophy: a fluid interacts with a hot particle gas

Multi-physics approach!

→ MHD fluid models need to be coupled to kinetic-like equations

• Several coupling options are available, which need special care

• These usually arise by inserting assumptions in the equations of mo-

tion, cf [Park et al. (1992); Kim et al. (1994); Todo et al. (1995)]

Formulating hybrid models require powerful and general methods

ciao . . . we shall use geometry!
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Plasma models

• Particle trajectories on phase space (Liouville):

traces particles (x(t),p(t)) → solves all details.

• Kinetic approach (Vlasov, Boltzmann):

probability distribution f(x,p, t) → retains most details.

• Fluid approach (MHD, Hall-MHD):

local averages (momentum m(x, t), density ρ(x, t)) → forget details.



From particle motion to kinetic theory

• Particle simulations for (xs,ps) solve all details, but at huge costs.
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From particle motion to kinetic theory

• Particle simulations for (xs,ps) solve all details, but at huge costs.

• Kinetic theory: spread particles across phase-space → probability

• Averaging processes (BBGKY) lead to the particle distribution f(x,p).

• A kinetic equation is an evolution equation for f(x,p).

• Collisional : no energy conservation → Boltzmann (H-theorem)

• Collisionless: energy is conserved → Vlasov (mean field model)

∂tf + {f,H} = 0
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Kinetic approaches are expensive!

Better forget details? Fluid approaches are very convenient!



Magnetohydrodynamics (MHD)

• Fluid plasma model in which the magnetic field B is ‘frozen in’:

∂t(B ·dS) +£u(B ·dS) = 0 , or, equivalently, ∂tB+∇× (B×u) = 0
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where ρ is the transported mass density and p denotes pressure

• J = ∇×B is an electric current, so J×B arises as a Lorentz force



Magnetohydrodynamics (MHD)

• Fluid plasma model in which the magnetic field B is ‘frozen in’:

∂t(B ·dS) +£u(B ·dS) = 0 , or, equivalently, ∂tB+∇× (B×u) = 0

• Fluid equation is

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p−

1

µ0ρ
B×∇×B

where ρ is the transported mass density and p denotes pressure

• J = ∇×B is an electric current, so J×B arises as a Lorentz force

• Most plasma studies are based on this Hamiltonian (Lie-Poisson) model!



Still, energetic particles require kinetic theory!

Hybrid Kinetic MHD
Lorentz particle traces in FRC

Conclusions
Giant Sawtooth

Preliminary comments on FRC’s
the equilibrium FRC
3 categories of particles
surprising observations

Low energy particles exhibit drifting cyclotron motion

! gyromotion and drift motion (from ∇B drift) are apparent

! particles are colored with vφ

! orbits are probably volume filling but on a very long time scale

Charlson C. Kim, PSI-Center Hybrid Kinetic MHD

Hybrid Kinetic MHD
Lorentz particle traces in FRC

Conclusions
Giant Sawtooth

Preliminary comments on FRC’s
the equilibrium FRC
3 categories of particles
surprising observations

Highest energy particle orbit entirely outboard

! orbit characterized by n = 0, 1

! n = 0 axisymmetric orbit, shelll has no width

! n = 1 offset orbit, shell of small but finite width

! commensurate (wrt vz) and non-commensurate orbits exist

! highest energy particles confined to outboard midplane!

Charlson C. Kim, PSI-Center Hybrid Kinetic MHD

Field Reversed Configuration experiments (FRCs) for nuclear fusion require kinetic de-
scriptions as ordinary fluid approximations do not apply. No particular phenomenon is
observed for low energy particles (right), while certain patterns emerge at high ener-
gies (left). In particular, hot particles confine to the outboard region (higher magnetic
gradients) and never cross the origin.



Kinetic theory & electromagnetism: Maxwell-Vlasov

• Vlasov kinetic equation for f(x,p, t). . .

∂f

∂t
+

p

m
·
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∂x
+ q

(
E +

p

m
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)
·
∂f
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= 0
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Kinetic theory & electromagnetism: Maxwell-Vlasov

• Vlasov kinetic equation for f(x,p, t). . .

∂f

∂t
+

p

m
·
∂f

∂x
+ q

(
E +

p

m
×B

)
·
∂f

∂p
= 0

• . . . coupled to Maxwell’s equations

ε0µ0
∂E

∂t
= ∇×B− µ0

q

m

∫
p f d3p

∂B

∂t
= −∇× E

ε0∇ · E = q
∫
f d3p , ∇ ·B = 0

• Again, this is a Lie-Poisson system!
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Geometric mechanics for

fluid and kinetic models



Geometric fluid dynamics

Lagrangian and Eulerian variables are related by the relabeling symmetry,

which produces an intrinsic geometric description [Arnold (1966)] captur-

ing essential features such as circulation laws and dynamical invariants.

Ex. Incompressible ideal fluids move along geodesics on G = Diffvol(M)

Geometric approach possesses variational and Hamiltonian formulations!



Lagrangian fluid dynamics of η(a, t) on the Lie group G possesses the

canonical Poisson bracket: {F,G} =
∫ (

δF

δη
·
δG

δψ
−
δF

δψ
·
δG

δη

)
d3a ,

Eulerian dynamics on the (dual) tangent space at identity possesses the

Lie-Poisson bracket : {F,G}(σ) =
〈
σ,
[
δF

δσ
,
δG

δσ

]〉



Lagrangian fluid dynamics of η(a, t) on the Lie group G possesses the

canonical Poisson bracket: {F,G} =
∫ (

δF

δη
·
δG

δψ
−
δF

δψ
·
δG

δη

)
d3a ,

Eulerian dynamics on the (dual) tangent space at identity possesses the

Lie-Poisson bracket : {F,G}(σ) =
〈
σ,
[
δF

δσ
,
δG

δσ

]〉
Fluids: (η,ψ) are Lagrangian coordinates, while σ = fluid momentum m.
Vlasov: (η,ψ) are Lagrangian coordinates, while σ = distribution function f.
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Symmetry is everywhere in mechanics

• Rotational symmetry for vectors (rigid body motion):

[g,k] = g × k → {F,G} = µ ·
dF

dµ
×

dG

dµ

• Relabeling symmetry for velocities (Euler fluid dynamics):

[v,u] = (v · ∇)u− (u · ∇)v → {F,G} =
∫
µ(x) ·

[
δF

δµ
,
δG

δµ

]
d3x

• Canonical (symplectic) symmetry for matrices (beam optics):

[A,B] = AB −BA → {F,G} = Tr
(
XT

[
dF

dX
,

dG

dX

])
• Canonical symmetry for phase-space functions (Vlasov equation):

[h, k] =
∂h

∂x
·
∂k

∂p
−
∂h

∂p
·
∂k

∂x
→ {F,G} =

∫
f(x,p)

[
δF

δf
,
δG

δf

]
d3x d3p



Intermezzo: geometry of Vlasov kinetic theory

• Let ζt : (S,w) ↪→ (P, ω) be an embedding from a volume manifold

(S,w) to the symplectic manifold (P, ω). Vlasov has the following soln

f(z, t) =
∫
S
w δ(z − ζ(s, t))

• In more generality, the following Lie groups act on Emb(S,P):

– Canonical transformations on P: ψ · ζ = ψ ◦ ζ (left action)

– Volume preserving diffeomorphisms on S: η·ζ = ζ◦η (right action)
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• Let ζt : (S,w) ↪→ (P, ω) be an embedding from a volume manifold

(S,w) to the symplectic manifold (P, ω). Vlasov has the following soln

f(z, t) =
∫
S
w δ(z − ζ(s, t))

• In more generality, the following Lie groups act on Emb(S,P):

– Canonical transformations on P: ψ · ζ = ψ ◦ ζ (left action)

– Volume preserving diffeomorphisms on S: η·ζ = ζ◦η (right action)

• The actions of DiffHam and DiffVol on Emb(S,P) produce the (dual

pair of) momentum maps [Marsden&Weinstein(1983), Holm&CT(2009)]

JL : Emb(S,P)→ X∗Ham(P) ; JR : Emb(S,P)→ X∗Vol(S)

ζ(s) 7→
∫
S
w δ(z − ζ(s, t)) ; ζ(s) 7→ ζ∗ω = dQi(s) ∧ dPi(s)

• Moments
∫
pn f d3p are also momentum maps [Gibbons, Holm&CT(2008)]
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Let’s apply geometric mechanics

to formulate our hybrid models!
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A geometric hybrid model: assumptions

• Consider a plasma of a fluid (MHD) bulk and an energetic component

• Express the dynamics in terms of the total momentum M = m + K,
where K =

∫
pf d3p. Then one wants to assume a rarefied energetic

component so that K-contributions can be neglected.

• In plasma literature, one replaces ∂tK ' 0 in the equation for the total
momentum M. This breaks Hamiltonian structure: no Kelvin-Noether!

• The geometric Hamiltonian approach neglects K-contributions by re-
placing m 'M in the Hamiltonian, which is then given by

H =
1

2

∫ |m|2
ρ

d3x +
1

2mh

∫
f |p|2 d3x d3p +

∫
ρ U(ρ) d3x +

1

2µ0

∫
|B|2 d3x ,



A geometric hybrid model: equations

• This process returns the same fluid equation as in the literature while

inserting new transport term and circulation force in the kinetic equation

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p−

1

mh ρ
∇ ·

∫
ppf d3p−

1

µ0ρ
B×∇×B

∂f
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(
u+

p
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)
·
∂f

∂x
−(p · ∇u) ·

∂f

∂p
+ ah p× (B−∇× u) ·

∂f

∂p
= 0

∂ρ

∂t
+∇ · (ρu) = 0 ,

∂B

∂t
= ∇× (u×B) ,
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A geometric hybrid model: equations

• This process returns the same fluid equation as in the literature while

inserting new transport term and circulation force in the kinetic equation

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p−

1

mh ρ
∇ ·

∫
ppf d3p−

1

µ0ρ
B×∇×B

∂f

∂t
+

(
u+

p

mh

)
·
∂f

∂x
−(p · ∇u) ·

∂f

∂p
+ ah p× (B−∇× u) ·

∂f

∂p
= 0

∂ρ

∂t
+∇ · (ρu) = 0 ,

∂B

∂t
= ∇× (u×B) ,

• Dropping all u-terms in the second equation and replacing p ×B by

(p−mhu)×B yields the (non-Hamiltonian) model from the literature

• Unlike previous models, the fluid interaction terms do NOT vanish in

the absence of magnetic fields

• Circulation force terms emerge since hot particle trajectories are now

computed in the cold fluid frame.
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• We get magnetic and cross helicity invariants:

H =
∫

A ·B d3x , Λ =
∫ (

u−mh
K

ρ

)
·B d3x

• Circulation laws (see also Euler-Poincaré approach [Holm&Tronci(2011)])

d

dt

∮
γt
u · dx = −

∮
γt

1

ρ

(
1

µ0
B×∇×B +mh∇ · P

)
· dx

d

dt

∮
γt

K

ρ
· dx =

∮
γt

1

ρ

(
ahK×B−∇ · P

)
· dx

d

dt

∮
γt

(
1 +

n

ρ

)
A · dx = −

∮
γt

1

ρ
(∇ ·K) A · dx ;

where n =
∫
f d3p is the hot particle density, while the pressure tensor

P =
∫

ppf d3p

emerges as a geometric forcing term in the cold fluid dynamics



Geometry of hybrid pressure-coupling schemes

• The momentum shift M = ρu + K corresponds to an entangling

Poisson map [Krishnaprasad&Marsen(1984); Holm(1986)]
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Geometry of hybrid pressure-coupling schemes

• The momentum shift M = ρu + K corresponds to an entangling

Poisson map [Krishnaprasad&Marsen(1984); Holm(1986)]

E :
(
X(R3)⊕ Xcan(R6)

)∗
→
(
X(R3) s XHam(R6)

)∗
(ρu,K) 7→ (ρu+ K,K)

• Semidirect-product arises from cotangent-lifts of Diff(R3) acting on

Diff(R6) (subgroup action), whose momentum map is K =
∫
p f d3p

• Denote two-forms by Ω2(R3). Hybrid model is written on the Lie group(
Diff(R3) s Diff(R6)

)
︸ ︷︷ ︸

cold & hot flows (Lagrangian variables)

s
(
C∞(R3)× Ω2(R3)

)
︸ ︷︷ ︸

dual to advected quantities: (ρ,A)

• Other momentum map properties underlying flows on semidirect-products

were presented in [Holm&CT(2008); Gay-Balmaz,Vizman&CT(2010)]



Next steps

• Nonlinear stability in toroidal geometry (fusion devices): Casimir method

• Application of hybrid models in MHD turbulence [Cowley et al. (2011)]

• New hybrid models for space plasmas. (Collisionless reconnection)

• Extend the hybrid philosophy to complex fluids and quantum plasmas
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