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Classical transport theorem

(ft ∶ E Ð→ E ∣ t ∈ I) family of diffeomorphisms — flow

M(t) = ft(M) time-dependent manifold

˙
∫
M
ω = ∫

M
ω̇ + ∫

M
ivdω + ∫

∂M
ivω

v velocity of flow



What if the evolution of the domain is not given by a flow?

develop holes

split into pieces

boundary could develop corners



Differential chains

differential chain ∼ domain of integration

J ∈ B̂rk = differential k-chains of class r

ω ∈ (B̂rk)′= differential k-forms of a certain regularity

(ω, J)z→ −∫
J
ω

Theorem

LetM be a k-dimensional, compact, Lipschitz submanifold. There
is a J ∈ B̂1k that representsM, in the sense that

∫
M
ω = −∫

J
ω for all ω ∈ (B̂1k)′.



Constructing the space

1 start simple

(q;α) q point, α simple skew k-form

−∫
(q;α)

ω ∶= ω(q) ⋅α

2 linear combinations

A =∑
i∈I

(qi ;αi) −∫
A
ω ∶=∑

i∈I

ω(qi) ⋅αi

3 introduce the B r norm “the magic”

4 take limits

Am = ∑
im∈Im

(qim ;αim)
Br

Ð→ J ∈ B̂rk

−∫
J
ω = lim

m→∞
∑
im∈Im

ω(qim) ⋅αim Riemann sums!



Operators on chains

Boundary

The boundary ∂ ∈ Lin(B̂rk , B̂r+1k−1) exists and

−∫
∂J
ω = −∫

J
dω for all J ∈ B̂rk , ω ∈ (B̂r+1k−1)′.

∂∗ = d A statement about adjoints!



A space of evolving domains

1 start simple

(q(t);α(t)) t ∈ I

2 linear combinations

A(t) =∑
i∈I

(qi(t);αi(t))

3 introduce the C 1
r norm

4 take limits Am
C1
rÐ→ J ∈ B̂rk[I]

J ∶ I Ð→ B̂rk represents an evolving domain



Generalized transport theorem

Let J ∈ B̂rk[I] and ω ∈ C 1(I, (B̂r+1k )′) be given. The function −∫J ω
is differentiable and for all t ∈ I

(
˙
−∫
J
ω)(t) = −∫

J(t)
ω̇(t) + −∫

EtJ
dω(t) + −∫

Et∂J
ω(t) if k /= 0.

˙
∫
M
ω = ∫

M
ω̇ + ∫

M
ivdω + ∫

∂M
ivω



Possible applications
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FIG. 5. Linear growth speeds for all the patterns, mea-
sured when the outermost portion of each one is 1.5 cm
from the center, as a function of C and 5 V.

FIG. 4. Dendritic pattern found at intermediate concen-
trations (C = 0.03M, 5 V = 6 V).

center. At low C (homogeneous patterns), the veloci-
ty is approximately independent of 5 V. This contrasts
sharply with the behavior at high C, where the growth
speed is strongly nonlinear in 6 V. In that case, the
growth is extremely slow and roughly fractal deposits
are formed if A V is low, while fast-growing stringy pat-
terns occur if 4 V is high. Finally, we note that the
growth speed is quite linear in the voltage for the den-
dritic case (0.03M).
We analyzed the homogeneous patterns quantita-

tively by digitization with a resolution of 512 x 480 pix-
els. The growth zone was found to be confined to the
outer 10% (approximately) of the pattern. We mea-
sured the fractal dimension by dividing the pattern
into boxes of size e, and then counting the number of
boxes containing occupied pixels as a function of e, in
the usual way. This number scales as e, where D is
the fractal dimension. A well-defined scaling range
was not found. Instead, there appears to be a cross-
over from a large value D =1.8+0.2 at scales larger
than a concentration-dependent length 5 to a much
smaller value of roughly 1.4+0.2 at smaller scales.
The patterns may be regarded as fractal on scales
below 5 (but above some microscopic lower cutoff),

and as approximately homogeneous on larger scales
(hence the name). The length scale 5 is only about 1

mm in Fig. 2, but increases strongly as the concentra-
tion is reduced. At a concentration of 0.005M, 5 is
sufficiently large (about 1 cm) that the patterns resem-
ble typical DLA patterns (they show larger gaps of
variable size between growing branches than those
seen in Fig. 2).
What theoretical framework is appropriate for ef-

forts to explain these phenomena~ It is well estab-
lished that electric charge neutrality can be assumed,
except within a thin boundary layer at the surface of
the metal deposit. ' The thickness of this boundary
layer is of the order of 10 A for a static system, but
here it might be thicker, possibly of the order of the
diffusion length given by the ratio of the diffusion
constant to the interfacial velocity. This length would
typically be tens of microns. Outside the boundary
layer, the electric potential is determined by Laplace's
equation. (Certain DLA models can also be regarded
as generators of solutions to Laplace's equation. ) The
rate of mass transport outside the boundary layer is
simply proportional to the gradient of the potential and
to the concentration of the transported species (Zn).
We believe that transport by diffusion can be neglect-
ed outside the boundary layer, because the cell is
Ohmic, as explained earlier. We have also checked for
macroscopic fluid motion in the cell by searching for
enhanced transport of a neutral soluble dye. Motion
on scales larger than the layer depth was not detected
at moderate C and 4 V. However, motion on the scale
of the layer depth near the interface may possibly be
present. The release of latent heat is one mechanism
that could induce such motion, and electric-
field-induced bulk motion is also known. Therefore,
the ionic transport near the surface could involve a
mixture of diffusion, bulk convective motion, and

1262

phase transitions

calculus of variations

fracture mechanics

diffusion

heat conduction



Thanks!


