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Motivation: application to real data

• Fixed points, periodic orbits, or other invariant sets
and their stable and unstable manifolds organize phase space

•Many systems defined from data or large-scale simulations
— experimental measurements, observations

• e.g., from fluid dynamics, biology, social sciences

• Data-based, aperiodic, finite-time, finite resolution

— generally no fixed points, periodic orbits, etc. to organize phase space

• Perhaps can find appropriate analogs to the objects; adapt previous
results to this setting

• Let’s first look at lobe dynamics for analytically defined systems
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Phase space transport via lobe dynamics

� Suppose our dynamical system is a discrete map1

f : M−→M,

e.g., f = φt+T
t , flow map of time-periodic vector field

and M is a differentiable, orientable, two-dimensional
manifold e.g., R2, S2

� To understand the transport of points under the f , con-
sider invariant manifolds of unstable fixed points
• Let pi, i = 1, ..., Np, denote saddle-type hyperbolic fixed points of f .

1Following Rom-Kedar and Wiggins [1990]
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Partition phase space into regions

� Natural way to partition phase space
• Pieces of Wu(pi) and W s(pi) partition M.
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Unstable and stable manifolds in red and green, resp.
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Partition phase space into regions

• Intersection of unstable and stable manifolds define boundaries.
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Partition phase space into regions

• These boundaries divide the phase space into regions

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1

vi



Label mobile subregions: ‘atoms’ of transport

• Can label mobile subregions based on their past and future whereabouts
under one iterate of the map, e.g., (. . . , R4, R4, R1, [R1], R2, . . .)

R1

R5

R4

R3

R2

q2

q1
q4

q5

q6

q3

p2
p3

p1

vii



Lobe dynamics: transport across a boundary

� W u[f−1(q), q]
⋃

W s[f−1(q), q] forms boundary of two
lobes; one in R1, labeled L1,2(1), or equivalently ([R1], R2),
where f (([R1], R2)) = (R1, [R2]), etc. for L2,1(1)
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Lobe dynamics: transport across a boundary

� Under one iteration of f , only points in L1,2(1) can
move from R1 into R2 by crossing their boundary, etc.

� The two lobes L1,2(1) and L2,1(1) are called a turnstile.

R1

R2

q

pi
pj

f -1(q)
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f (L1,2(1))

f (L2,1(1))
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Lobe dynamics: transport across a boundary

� Essence of lobe dynamics: dynamics associated with
crossing a boundary is reduced to the dynamics
of turnstile lobes associated with the boundary.
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L1,2(1)

f (L1,2(1))

f (L2,1(1))
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Identifying ‘atoms’ of transport by itinerary

� In a complicated system, can still identify manifolds ...

Unstable and stable manifolds in red and green, resp.
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Identifying ‘atoms’ of transport by itinerary

� ... and lobes

R1

R2

R3

Significant amount of fine, filamentary structure.
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Identifying ‘atoms’ of transport by itinerary

� e.g., with three regions {R1, R2, R3},
label lobe intersections accordingly.

• Denote the intersection (R3, [R2])
⋂

([R2], R1) by (R3, [R2], R1)
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Identifying ‘atoms’ of transport by itinerary

Longer itineraries...
xiv



Identifying ‘atoms’ of transport by itinerary

... correspond to smaller pieces of phase space; symbolic dynamics, horseshoes, etc
xv



Lobe dynamics intimately related to transport

n = 0 n = 1 n = 2

n = 3 n = 5 n = 7
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Lobe Dynamics: example

• Restricted 3-body problem: chaotic sea has unstable fixed points.
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Compute a boundary
April 8, 2005 16:9 01254

716 M. Dellnitz et al.
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Fig. 6. Transport using lobe dynamics for the same Poincaré surface of section shown in Fig. 2(b). (a) The boundary B
between two regions is shown as the thick black line, formed by pieces of one branch of the stable and unstable manifolds of
the unstable fixed point p. We can call the region inside of the boundary R1 (in cyan) and the outside R2 (in white). The pips
q and f−1(q) are shown as black dots along the boundary and the turnstile lobes that will determine the transport between
R1 and R2 are shown as colored regions. In (b), we see more details of the turnstile lobes. This is a case of a multilobe,
self-intersecting turnstile discussed in Sec. 3.1. A schematic of this situation is shown in Fig. 4. In this case we define the

turnstile lobes to be L1,2(1) = L
(a)
1,2(1) ∪ L

(b)
1,2(1) ∪ L

(c)
1,2(1) and L2,1(1) = L

(a)
2,1(1) ∪ L

(b)
2,1(1) ∪ L

(c)
2,1(1).

the distance between each point increases exponen-
tially. Since the manifold experiences rapid stretch-
ing as it grows in length, it is necessary to check
the distance between adjacent points and insert new
points if necessary to insure that sufficient spatial
resolution is maintained [Lekien, 2003]. The soft-
ware package mangen is used to implement the
adaptive conditioning of the mesh of points approx-
imating the manifold [Lekien & Coulliette, 2004;
Lekien, 2003]. More points are added where curva-
ture or stretching is high.

4.1.4. Defining the regions and finding
the relevant lobes

The symmetry (28) is useful for defining the regions
and lobes. The first intersection of W u

+(p) with the
axis of symmetry is the natural choice for the pip
q defining the boundary, shown in Fig. 6(a). We
define R1 (in cyan) to be the region bounded by
B = U+[p, q] ∪ S+[p, q], where U+[p, q] and S+[p, q]
are segments of W u

+(p) and W s
+(p), respectively,

between p and q. We define R2 (in white) to be
the complement of R1.

mangen can then be used to compute the turn-
stile lobes L1,2(1) ∪ L2,1(1). The turnstile lobes are
shown as colored regions in the upper half plane of

Fig. 6(a). The first iterate of the turnstile lobes is
shown in the lower half plane of Fig. 6(a) in cor-
responding colors. In the enlarged view, Fig. 6(b),
the turnstile lobes are shown in greater detail. This
is a case of a multilobe, self-intersecting turnstile,
discussed in Sec. 3.1.

The area of the turnstile lobes, i.e. the flux of
phase space across the boundary B (and the trans-
port of species across B for just the first iteration
of the map f), is summarized in Table 1.

4.1.5. Higher iterates of the map

To compute all the transport quantities
T1,1(n), T1,2(n), T2,1(n), and T2,2(n), it is only

Table 1. Flux of phase space across the bound-
ary in terms of canonical area per iterate. Note,

µ(L1,2(1)) is the sum µ(L
(a)
1,2(1)) + µ(L

(b)
1,2(1)) +

µ(L
(c)
1,2(1)). This is the flux in both directions, i.e.

µ(L1,2(1)) = µ(L2,1(1)), since the map f is area-
preserving on M .

µ(L
(a)
1,2(1)) µ(L

(b)
1,2(1)) µ(L

(c)
1,2(1)) µ(L1,2(1))

0.000956 0.000870 0.000399 0.002225
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Transport between two regions

• The evolution of a lobe of species S1 into R2

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Physical Review Letters

xix



Transport between two regions

1
n = Iterate of Poincare Map
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Species Distribution: Species S1 in Region R2
F1,2 = flux of species S1 into region R2 on the nth iterate
T1,2 = total amount of S1 contained in R2 immediately after the nth iterate
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Lobe dynamics: fluid example

� Fluid example: time-periodic Stokes flow

streamlines for τf = 1 tracer blob (τf > 1)

Lid-driven cavity flow
•Model for microfluidic mixer

• System has parameter τf , which we treat as a bifurcation parameter
— critical point τ∗f = 1; above and next few slides show τf > 1

Computations by Mohsen Gheisarieha and Mark Stremler
xxi



Lobe dynamics: fluid example

� Poincaré map for τf > 1

period-3 points bifurcate into groups of elliptic and saddle points, each of period 3

xxii



Lobe dynamics: fluid example

� Structure associated with saddles

some invariant manifolds of saddles

xxiii



Lobe dynamics: fluid example

� Can consider transport via lobe dynamics

pips, regions and lobes labeled

xxiv



Stable/unstable manifolds and lobes in fluids

material blob at t = 0

xxv



Stable/unstable manifolds and lobes in fluids

material blob at t = 5

xxvi



Stable/unstable manifolds and lobes in fluids

some invariant manifolds of saddles
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Stable/unstable manifolds and lobes in fluids

material blob at t = 10

xxviii



Stable/unstable manifolds and lobes in fluids

material blob at t = 15

xxix



Stable/unstable manifolds and lobes in fluids

material blob and manifolds

xxx



Stable/unstable manifolds and lobes in fluids

material blob at t = 20

xxxi



Stable/unstable manifolds and lobes in fluids

material blob at t = 25

xxxii



Stable/unstable manifolds and lobes in fluids

• Saddle manifolds and lobe dynamics provide template for motion

xxxiii



Stable/unstable manifolds and lobes in fluids

� Concentration variance; a measure of homogenization
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• Homogenization has two exponential rates: slower one related to lobes

• Fast rate due to braiding of ‘ghost rods’ (discussed later)
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Transport in aperiodic, finite-time setting

• Data-driven, finite-time, aperiodic setting
— e.g., non-autonomous ODEs for fluid flow

• How do we get at transport?

• Recall the flow map, x 7→ φt+T
t (x), where φ : Rn → Rn

x
φ
t0      

(x)
.

.

t0+T

xxxv



Identify regions of high sensitivity of initial conditions

• Small initial perturbations δx(t) grow like

δx(t + T ) = φt+T
t (x + δx(t))− φt+T

t (x)

=
dφt+T

t (x)

dx
δx(t) + O(||δx(t)||2)

x
φ
t0      

(x)
.

.

x + δx δx(t0+T)

.

.

t0+T

φ
t0      

(x + δx)t0+T

δx(t0)
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Identify regions of high sensitivity of initial conditions

• Small initial perturbations δx(t) grow like

δx(t + T ) = φt+T
t (x + δx(t))− φt+T

t (x)

=
dφt+T

t (x)

dx
δx(t) + O(||δx(t)||2)

xxxvii



Invariant manifold analogs: FTLE-LCS approach

• The finite-time Lyapunov exponent (FTLE) for Euclidean manifolds,

σT
t (x) =

1

|T |
log

∥∥∥∥∥dφt+T
t (x)

dx

∥∥∥∥∥
measures maximum stretching rate over the interval T of trajectories
starting near the point x at time t

• Ridges of σT
t are candidate hyperbolic codim-1 surfaces; analogs of

stable/unstable manifolds; ‘Lagrangian coherent structures’ (LCS)2
280 S.C. Shadden et al. / Physica D 212 (2005) 271–304

(a)σ =
3x4

−4x3
−12x2

+18
12(1+4y2)

. (b) Side view.

(c) Curvature measures evaluated along thex-axis (i.e.,y = 0). (d) Close-up.

Fig. 1. Comparison between ridge definitions. Notice that the second-derivative ridge is slightly shorter than the curvature ridge.

Therefore we can expect the difference between the two measures to be identically zero or non-existent for all
practical purposes. For autonomous systems,σ is constant along a ridge (asymptotically), hence the two definitions
of ridge are always identical for such systems.

2.5. Lagrangian coherent structures

Given the graph of a function, the Hessian only represents the curvature of the graph at local extrema,
therefore defining a ridge in terms of principal curvatures gives a better physical interpretation and is more
intrinsic. However, the notion of a second-derivative ridge is somewhat simpler and more convenient, as we
shall see later in this work. Also, we have shown that a second-derivative ridge is always a subset of a
principal curvature ridge, and moreover the two definitions are nearly identical for all practical purposes. In
addition, the second-derivative definition facilitates computational implementation. Therefore, we define LCS as
follows:

pij pi+1 jpi−1 j

pi j−1

pi j+1

p
′

ij

p
′

i+1 j

p
′

i−1 j

p
′

i j−1

p
′

i j+1

2cf. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005
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Invariant manifold analogs: FTLE-LCS approach

Autonomous double-gyre flow
xxxix



Invariant manifold analogs: FTLE-LCS approach
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Invariant manifold analogs: FTLE-LCS approach

Use your intuition about ridges, e.g., a mountain ridge

Pacific Crest Trail in Oregon

xli



Invariant manifold analogs: FTLE-LCS approach

x

y

0 1-1-2  2

 2

1

0

Invariant manifolds LCS

Time-periodic oscillating vortex pair flow
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Invariant manifold analogs: FTLE-LCS approach

•We can define the FTLE for Riemannian manifolds3

σT
t (x) =

1

|T |
log

∥∥∥Dφt+T
t

∥∥∥ .
=

1

|T |
log

max
y 6=0

∥∥∥Dφt+T
t (y)

∥∥∥
‖y‖


with y a small perturbation in the tangent space at x.

pi

p1

p2

p3

pj
pN

p
′

i

p
′

1

p
′

2

p
′

3

p
′

j

p
′

N pi

p1 p2

pj

v1

v2

vj

p
′

i

p
′

1

p
′

2

p
′

j

v
′

1

v
′

2

v
′

j

M

Tpi
M

Tp
′

i
M

3Lekien & Ross [2010] Chaos
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Transport barriers on Riemannian manifolds

• repelling surfaces for T > 0, attracting for T < 03

cylinder Moebius strip
Each frame has a different initial time t

3Lekien & Ross [2010] Chaos
xliv



Atmospheric flows: Antarctic polar vortex

ozone data
xlv



Atmospheric flows: Antarctic polar vortex

ozone data + LCSs (red = repelling, blue = attracting)
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Atmospheric flows: Antarctic polar vortex

air masses on either side of a repelling LCS
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Atmospheric flows: continental U.S.

LCSs: orange = repelling, blue = attracting
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Atmospheric flows and lobe dynamics

orange = repelling LCSs, blue = attracting LCSs satellite

Andrea, first storm of 2007 hurricane season

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Ross & Tallapragada [2011]
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Atmospheric flows and lobe dynamics

Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)
l



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
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Atmospheric flows and lobe dynamics

orange = repelling (stable manifold), blue = attracting (unstable manifold)
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Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
liii



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
liv



Atmospheric flows and lobe dynamics

Sets behave as lobe dynamics dictates
lv



Stirring fluids, e.g., with solid rods
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Topological chaos through braiding of stirrers

� Topological chaos is ‘built in’ the flow due to
the topology of boundary motions

lvii



Thurston-Nielsen classification theorem (TNCT)

• Thurston (1988) Bull. Am. Math. Soc.

• A stirrer motion f is isotopic to a stirrer motion g of one of three
types (i) finite order (f.o.): the nth iterate of g is the identity (ii)
pseudo-Anosov (pA): g has Markov partition with transition matrix A,
topological entropy hTN(g) = log(λPF (A)), where λPF(A) > 1 (iii)
reducible: g contains both f.o. and pA regions

• hTN computed from ‘braid word’, e.g., σ−1
1 σ2

• log(λPF (A)) provides a lower bound on the
true topological entropy

lviii



Topological chaos in a viscous fluid experiment

lix



Topological chaos in a viscous fluid experiment

lx



Stirring fluids with coherent structures (?)Modeling the atmosphere

Hurricane Andrew
4
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Stirring with periodic orbits, i.e., ‘ghost rods’

lxii



Identifying periodic points in cavity flow example

tracer blob for τf > 1

• At τf = 1, parabolic period 3 points of map

• τf > 1, elliptic / saddle points of period 3
— streamlines around groups resemble fluid mo-
tion around a solid rod ⇒

• τf < 1, periodic points vanish

lxiii



Identifying periodic points in cavity flow example

period-τf Poincaré map for τf > 1

• At τf = 1, parabolic period 3 points of map

• τf > 1, elliptic / saddle points of period 3
— streamlines around groups resemble fluid mo-
tion around a solid rod ⇒

• τf < 1, periodic points vanish

lxiv



Stirring protocol ⇒ braid ⇒ topological entropy

period-τf Poincaré map for τf > 1

• Periodic points of period 3 ⇒ act as ‘ghost rods’

• Their braid has hTN = 0.96242 from TNCT

• Actual hflow ≈ 0.964 obtained numerically

• ⇒ hTN is an excellent lower bound

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b

lxv



Topological entropy continuity across critical point

� Consider τf < 1

1.00

0.95

0.950.900.85 1.00 1.05

topological entropy as a function of τf
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Identifying ‘ghost rods’?

Poincaré section for τf < 1 ⇒ no obvious structure!

• Note the absence of any elliptical islands

• No periodic orbits of low period were found

• In practice, even when such low-order periodic orbits exist, they can be
difficult to identify

• But phase space is not featureless

lxvii



Almost-invariant / almost-cyclic sets

• Identify almost-invariant sets (AISs) using probabilistic point of view

• Relatedly, almost-cyclic sets (ACSs) (Dellnitz & Junge [1999])

• Create box partition of phase space B = {B1, . . . Bq}, with q large

• Consider a q-by-q transition (Ulam) matrix, P , where

Pij =
m(Bi ∩ f−1(Bj))

m(Bi)
,

the transition probability from Bi
to Bj using, e.g., f = φt+T

t , com-
puted numerically

• Identify AISs and ACS via spectrum of P

• P approximates P , Perron-Frobenius operator
— which evolves densities, ν, over one iterate of f , as Pν

lxviii



Almost-invariant / almost-cyclic sets

• A set B is called almost invariant over the interval [t, t + T ] if

ρ(B) =
m(B ∩ f−1(B))

m(B)
≈ 1.

• Can maximize value of ρ over all possible combinations of sets B ∈ B.

• In practice, AIS identified from
spectrum of P or graph-partitioning

example spectrum of P

Dellnitz, Froyland, Sertl [2000] Nonlinearity
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Identifying AISs by spectrum of P

• Invariant densities are those fixed under P , Pν = ν, i.e., eigenvalue 1

• Essential spectrum lies within a disk of radius r < 1 which depends on
the weakest expansion rate of the underlying system.

• The other real eigenvalues identify almost-invariant sets

Dellnitz, Froyland, Sertl [2000] Nonlinearity

lxx



Identifying AISs by graph-partitioning

Using the Underlying Graph
(Froyland-D. 2003, D.-Preis 2002)

Boxes are vertices
Coarse dynamics represented by edges

Use graph theoretic algorithms in
combination with the multilevel structure

• P has graph representation where nodes correspond to boxes Bi and
transitions between them are edges of a directed graph

• use graph partitioning methods to divide the nodes into an optimal
number of parts such that each part is highly coupled within itself and
only loosely coupled with other parts

• by doing so, we can obtain AISs and transport between them

lxxi



Identifying ‘ghost rods’: almost-cyclic sets

• For τf > 1 case, where periodic points and manifolds exist...

• Agreement between ACS boundaries and manifolds of periodic points

• Known previously1 and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

1Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,

Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos
lxxii



Identifying ‘ghost rods’: almost-cyclic sets

• For τf > 1 case, where periodic points and manifolds exist...

• Agreement between ACS boundaries and manifolds of periodic points

• Known previously1 and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

1Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,

Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos
lxxiii



Identifying ‘ghost rods’: almost-cyclic sets

Poincaré section for τf < 1 ⇒ no obvious structure!

• Return to τf < 1 case, where no periodic orbits of low period known

•What are the AISs and ACSs here?

• Consider P
t+τf
t induced by family of period-τf maps φ

t+τf
t , t ∈ [0, τf )

lxxiv



Identifying ‘ghost rods’: almost-cyclic sets

Top eigenvectors for τf = 0.99 reveal hierarchy of phase space structures

ν2

ν3 ν4

ν5 ν6
lxxv



Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

• Three-component AIS made of 3 ACSs of period 3

• ACSs, in effect, replace periodic orbits for TNCT

lxxvi



Identifying ‘ghost rods’: almost-cyclic sets

ghost 
manifolds

The zero contour (black) is the boundary between the two almost-invariant sets.

• Three-component AIS made of 3 ACSs of period 3

• ACSs, in effect, replace periodic orbits for TNCT

• Also: we see a remnant of the ‘stable and unstable manifolds’
of the saddle points, despite no saddle points – ‘ghost manifolds’?

lxxvii



Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )

lxxviii



Identifying ‘ghost rods’: almost-cyclic sets

(a)

(b)

(c)

(d)

x

y

x

t

f

f

f b

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid
— But, theorems apply only to periodic points!
— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.

lxxix



Topological entropy vs. bifurcation parameter

1.00

0.95

0.950.900.85 1.00 1.05

topological entropy as a function of τf

• hTN shown for ACS braid on 3 strands

lxxx



Eigenvalues/eigenvectors vs. bifurcation parameter

lxxxi



Eigenvalues/eigenvectors vs. bifurcation parameter

lxxxii



Eigenvalues/eigenvectors vs. bifurcation parameter

Movie shows change in eigenvector along

branch marked with ‘−�−’ above (a to f),

as τf decreases ⇒

lxxxiii



Bifurcation of ACSs

For example, braid on 13 strands for τf = 0.92

Movie shown is second eigenvector for P
t+τf
t for t ∈ [0, τf )

Thurson-Nielsen for this braid provides lower bound on topological entropy
lxxxiv



Sequence of ACS braids bounds entropy

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

0.9

0.92

0.94

0.96

0.98

1

10 strands

13 strands
16 strands 3 strands

8 strands

For various braids of ACSs, the calculated entropy is given, bounding from
below the true topological entropy over the range where the braid exists

lxxxv



Speculation: trends in eigenvalues/vectors for prediction

• Different eigenvectors can correspond to dramatically different behavior.

• Some eigenvectors increase in importance while others decrease

• Can we predict dramatic changes in system behavior?

• e.g., splitting of the ozone hole in 2002, using only data before split

lxxxvi



Applications: Atmospheric transport networks

Skeleton of large-scale
horizontal transport

relevant for large-scale

spatiotemporal patterns

of important biota

e.g., plant pathogens

orange = repelling LCSs, blue = attracting LCSs

Tallapragada, Schmale, Ross [2011] Chaos
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2D curtain-like structures bounding air masses
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2D curtain-like structures bounding air masses
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Pathogen transport: filament bounded by LCS
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Pathogen transport: filament bounded by LCS
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Optimal navigation in an aperiodic setting?

• Selectively ’jumping’ between coherent air masses using control

•Moving between mobile subregions of different finite-time itineraries
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Optimal navigation in an aperiodic setting?

• Selectively ’jumping’ between coherent air masses using control

•Moving between mobile subregions of different finite-time itineraries
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Optimal navigation in an aperiodic setting?

• Selectively ’jumping’ between coherent air masses using control

•Moving between mobile subregions of different finite-time itineraries
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Optimal navigation in an aperiodic setting?

• Selectively ’jumping’ between coherent air masses using control

•Moving between mobile subregions of different finite-time itineraries

FTLE shown in grayscale; bright lines are LCS separating coherent sets; green=passive; red=control

xcv



Final words on coherent structures

� What are robust descriptions of transport which work in
data-driven aperiodic, finite-time settings?

• Possibilities: finite-time lobe dynamics / symbolic dynamics may work
— finite-time analogs of homoclinic and heteroclinic tangles

• Probabilistic, geometric, and topological methods
— invariant sets, almost-invariant sets, almost-cyclic sets, coherent
sets, stable and unstable manifolds, Thurston-Nielsen classification,
FTLE ridges/LCS

•Many links between these notions — e.g., FTLE ridges locate analogs
of stable and unstable manifolds
— boundaries between coherent sets are FTLE ridges
— periodic points ⇒ almost-cyclic sets for TNCT, braiding, mixing
— their ‘stable/unstable invariant manifolds’ ⇒ ???
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The End

For papers, movies, etc., visit:
www.shaneross.com
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