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Motivation: application to real data

Fixed points, periodic orbits, or other invariant sets
and their stable and unstable manifolds

Many systems defined from data or large-scale simulations
— experimental measurements, observations

e.g., from fluid dynamics, biology, social sciences

Data-based, aperiodic, finite-time, finite resolution

— generally no fixed points, periodic orbits, etc. to organize phase space

Perhaps can find appropriate analogs to the objects; adapt previous
results to this setting

Let's first look at for analytically defined systems



Phase space transport via lobe dynamics

Suppose our dynamical system is a discrete map'
f-M— M,

eg., [ = ¢!, flow map of time-periodic vector field

and M is a differentiable, orientable, two-dimensional
manifold e.g., R?, S°

To understand the transport of points under the f, con-
sider invariant manifolds of unstable fixed points

Let p;,7 =1, ..., Np, denote saddle-type hyperbolic fixed points of f.

IFollowing Rom-Kedar and Wiggins [1990]



Partition phase space into regions

Natural way to partition phase space
Pieces of W"(p;) and W?*(p;) partition M.
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Unstable and stable manifolds in red and green, resp.



Partition phase space into regions

e Intersection of unstable and stable manifolds define boundaries.




Partition phase space into regions

o These boundaries divide the phase space into regions




Label mobile subregions: ‘atoms’ of transport

o Can label mobile subregions based on their past and future whereabouts
under one iterate of the map, e.g., (..., Ry, Ry, Ry, Ry}, Ro, .. .)




Lobe dynamics: transport across a boundary

Wl f=(q), ql | UW?*[f~q), q] forms boundary of two
lobes; one in Ry, labeled L;5(1), or equivalently (| Ry], Ro),
where f((|R1], Ro)) = (Ry, | R>]), etc. for Ly (1)

Ly (1) Ry




Lobe dynamics: transport across a boundary

Under one iteration of f, only points in L;5(1) can
move from R, into Ry by crossing their boundary, etc.

['he two lobes L 5(1) and Lo (1) are called a turnstile.

Ly (1) Ry
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Lobe dynamics: transport across a boundary

Essence of lobe dynamics: dynamics associated with
crossing a boundary is reduced to the dynamics
of turnstile lobes associated with the boundary.

Ly (1) Ry
S (Ly1(1))

d

J (Lo (D) bj



Identifying ‘atoms’ of transport by itinerary

In a complicated system, can still identify manifolds ...

Unstable and stable manifolds in red and green, resp.



Identifying ‘atoms’ of transport by itinerary

. and lobes
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Significant amount of fine, filamentary structure.



Identifying ‘atoms’ of transport by itinerary

e.g., with three regions { R, Ry, R3},
label lobe intersections accordingly.
Denote the intersection (R3, |Ro]) ()([R2], R1) by (R3, |Ral, R;)

([R2], R1)

/

(Rs, [Ra], R1) =

(Rs3, [R2] )ﬂ [R2], R1)

(Rs, [R2])




Identifying ‘atoms’ of transport by itinerary

Longer itineraries...



Identifying ‘atoms’ of transport by itinerary

([R2], R1, R5)

(R2, R3, [R2])

... correspond to smaller pieces of phase space; symbolic dynamics, horseshoes, etc



Lobe dynamics intimately related to transport



Lobe Dynamics: example

Restricted 3-body problem: chaotic sea has unstable fixed points.
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Compute a boundary
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Transport between two regions

The evolution of a lobe of species S into R9

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Physical Review Letters



Transport between two regions

Species Distribution: Species S1 in Region Ft2

Il F. , = flux of species S, into region R, on the nth iterate
[ T1 5= total amount of S1 contained in R2 immediately after the nth iterate

Phase Space Volume

1 10
n = lterate of Poincare Map



Lobe dynamics: fluid example

Fluid example: time-periodic Stokes flow

streamlines for 7¢ = 1 tracer blob (7 > 1)

Lid-driven cavity flow
Model for microfluidic mixer

System has parameter 7r, which we treat as a bifurcation parameter
— critical point T}k = 1: above and next few slides show Tf> 1

Computations by Mohsen Gheisarieha and Mark Stremler



Lobe dynamics: fluid example

Poincaré map for 74 > 1

period-3 points bifurcate into groups of elliptic and saddle points, each of period 3



Lobe dynamics: fluid example

Structure associated with saddles

some invariant manifolds of saddles



Lobe dynamics: fluid example

Can consider transport via lobe dynamics

pips, regions and lobes labeled



Stable/unstable manifolds and lobes in fluids

material blob at t = 0



Stable/unstable manifolds and lobes in fluids

material blob at t =5



Stable/unstable manifolds and lobes in fluids

some invariant manifolds of saddles



Stable/unstable manifolds and lobes in fluids

material blob at ¢t = 10



Stable/unstable manifolds and lobes in fluids

material blob at t = 15



Stable/unstable manifolds and lobes in fluids

material blob and manifolds



Stable/unstable manifolds and lobes in fluids

material blob at t = 20



Stable/unstable manifolds and lobes in fluids

material blob at t = 25



Stable/unstable manifolds and lobes in fluids

Saddle manifolds and lobe dynamics provide template for motion



Stable/unstable manifolds and lobes in fluids

Concentration variance; a measure of homogenization

OrF
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t

Homogenization has two exponential rates: slower one related to lobes

Fast rate due to braiding of ‘ghost rods’ (discussed later)



Transport in aperiodic, finite-time setting

Data-driven, finite-time, aperiodic setting
— e.g., non-autonomous ODEs for fluid flow

How do we get at transport?
Recall the flow map, = — ¢§+T($), where ¢ : R" — R"

B ()



Identify regions of high sensitivity of initial conditions

Small initial perturbations () grow like

Sa(t+T) = ¢ (v + 0x(t) — ¢ (2)

t+1
_ do} dgf Js2(t) + O( 15|12

q)ttoJrT(x + 0x)

X+ 0x Sx(ty+T)
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Identify regions of high sensitivity of initial conditions

Small initial perturbations () grow like

Sa(t+T) = ¢ (v + 0x(t) — ¢ (2)

t+1
_ do} dgf Js2(t) + O( 15|12




Invariant manifold analogs: FTLE-LCS approach

The finite-time Lyapunov exponent (FTLE) for Euclidean manifolds,
T
AT d:c
measures maximum stretching rate over the interval I’ of trajectories
starting near the point x at time ¢

Ridges of 0? are candidate hyperbolic codim-1 surfaces; analogs of
stable /unstable manifolds; ‘Lagrangian coherent structures’ (LCS)?

2cf. Bowman, 1999; Haller & Yuan, 2000; Haller, 2001; Shadden, Lekien, Marsden, 2005



Invariant manifold analogs: FTLE-LCS approach
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Autonomous double-gyre flow



Invariant manifold analogs: FTLE-LCS approach

FTLE: 0.00 1.36 271 407 5.43 6759 5.14 8.50
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Invariant manifold analogs: FTLE-LCS approach

Use your intuition about ridges, e.g., a mountain ridge

Pacific Crest Trail in Oregon



Invariant manifold analogs: FTLE-LCS approach
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Time-periodic oscillating vortex pair flow



Invariant manifold analogs: FTLE-LCS approach

We can define the FTLE for Riemannian manifolds?®
1 laaCal

log | max

[T vyl

ot (@) = 7 o [ Do 7] =

with y a small perturbation in the tangent space at x.

P;

Lekien & Ross [2010] Chaos



Transport barriers on Riemannian manifolds

repelling surfaces for T' > 0, attracting for T' < 0°

cylinder Moebius strip

Each frame has a different initial time ¢

Lekien & Ross [2010] Chaos



Atmospheric flows: Antarctic polar vortex

ozone data



Atmospheric flows: Antarctic polar vortex

ozone data + LCSs (red = repelling, blue = attracting)



Atmospheric flows: Antarctic polar vortex

air masses on either side of a repelling LCS



Atmospheric flows: continental U.S.

LCSs: orange = repelling, blue = attracting



Atmospheric flows and lobe dynamics

orange = repelling LCSs, blue = attracting LCSs satellite

Andrea, first storm of 2007 hurricane season

cf. Sapsis & Haller [2009], Du Toit & Marsden [2010], Lekien & Ross [2010], Ross & Tallapragada [2011]



Atmospheric flows and lobe dynamics

Andrea at one snapshot; LCS shown (orange = repelling, blue = attracting)



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold),  blue = attracting (unstable manifold)



Atmospheric flows and lobe dynamics

orange = repelling (stable manifold),  blue = attracting (unstable manifold)



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out



Atmospheric flows and lobe dynamics

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out



Atmospheric flows and lobe dynamics

Sets behave as lobe dynamics dictates



Stirring fluids, e.g., with solid rods



Topological chaos through braiding of stirrers

Topological chaos is ‘built in’ the flow due to
the topology of boundary motions



Thurston-Nielsen classification theorem (TNCT)

Thurston (1988) Bull. Am. Math. Soc.

A stirrer motion f is isotopic to a stirrer motion g of one of three
types (i) finite order (f.0.): the nth iterate of g is the identity (ii)
pseudo-Anosov (pA): g has Markov partition with transition matrix A,
topological entropy hpn(g) = log(App(A)), where App(A) > 1 (iii)
reducible: ¢ contains both f.o. and pA regions

hN computed from ‘braid word’, e.g., 01_102

log(App(A)) provides a lower bound on the
true topological entropy



Topological chaos in a viscous fluid experiment



Topological chaos in a viscous fluid experiment



Stirring fluids with coherent structures (?)



Stirring with periodic orbits, i.e., ‘ghost rods’



Identifying periodic points in cavity flow example

tracer blob for 74 > 1

At 7y = 1, parabolic period 3 points of map

7¢ > 1, elliptic / saddle points of period 3
— streamlines around groups resemble fluid mo-
tion around a solid rod =-

7t < 1, periodic points vanish



Identifying periodic points in cavity flow example

period-7¢ Poincaré map for 7 > 1

At 7y = 1, parabolic period 3 points of map

7¢ > 1, elliptic / saddle points of period 3
— streamlines around groups resemble fluid mo-
tion around a solid rod =-

7t < 1, periodic points vanish



Stirring protocol = braid = topological entropy

period-7¢ Poincaré map for 7 > 1

Periodic points of period 3 = act as ‘ghost rods’
Their braid has hpy = 0.96242 from TNCT
Actual hgy, ~ 0.964 obtained numerically

= hTy is an excellent lower bound




Topological entropy continuity across critical point

Consider 74 < 1

1.00 -

0.95 -

0.85 0.90 095 7f 1.00 1.05

topological entropy as a function of 7



Identifying ‘ghost rods’?

Poincaré section for 7r < 1 = no obvious structure!

Note the absence of any elliptical islands
No periodic orbits of low period were found

In practice, even when such low-order periodic orbits exist, they can be
difficult to identify

But phase space is not featureless



Almost-invariant / almost-cyclic sets

Identify almost-invariant sets (AlSs) using probabilistic point of view
Relatedly, almost-cyclic sets (ACSs) (Dellnitz & Junge [1999])
Create box partition of phase space B = { By, ... B}, with ¢ large
Consider a ¢-by-¢ transition (Ulam) matrix, P, where
P m(B; N f_l(Bj))7
m(B;)

B;

the transition probability from B; f (B))

to Bj using, e.g., | = gb?T, com- B;
puted numerically B, F1(B))
2 J

|dentify AlSs and ACS via spectrum of P

P approximates P, Perron-Frobenius operator
— which evolves densities, v, over one iterate of f, as Pv




Almost-invariant / almost-cyclic sets

A set B is called almost invariant over the interval [t, ¢ + T if

BN f1(B))

m(B) ~ 1.

p(B) = il

Can maximize value of p over all possible combinations of sets B € B.

0.8
0.6
0.4

0.2

In practice, AIS identified from o
spectrum of P or graph-partitioning

example spectrum of P

Dellnitz, Froyland, Sertl [2000] Nonlinearity



Identifying AlSs by spectrum of P
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Invariant densities are those fixed under P, Pv = v, i.e., eigenvalue 1

Essential spectrum lies within a disk of radius » < 1 which depends on
the weakest expansion rate of the underlying system.

The other real eigenvalues identify almost-invariant sets

Dellnitz, Froyland, Sertl [2000] Nonlinearity



Identifying AlSs by graph-partitioning
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P has graph representation where nodes correspond to boxes B, and
transitions between them are edges of a directed graph

use graph partitioning methods to divide the nodes into an optimal
number of parts such that each part is highly coupled within itself and
only loosely coupled with other parts

by doing so, we can obtain AlSs and transport between them



Identifying ‘ghost rods’: almost-cyclic sets

For 74 > 1 case, where periodic points and manifolds exist...
Agreement between ACS boundaries and manifolds of periodic points

Known previously! and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,
Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos



Identifying ‘ghost rods’: almost-cyclic sets

For 74 > 1 case, where periodic points and manifolds exist...
Agreement between ACS boundaries and manifolds of periodic points

Known previously! and applies to more general objects than periodic
points, i.e. normally hyperbolic invariant manifolds (NHIMs)

Dellnitz, Junge, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Phys. Rev. Lett.; Dellnitz, Junge,
Koon, Lekien, Lo, Marsden, Padberg, Preis, Ross, Thiere [2005] Int. J. Bif. Chaos



Identifying ‘ghost rods’: almost-cyclic sets

Poincaré section for 7r < 1 = no obvious structure!

Return to Tr < 1 case, where no periodic orbits of low period known

What are the AlISs and ACSs here?

t t
Consider P, i induced by family of period-7 maps gb;Tf, t € |0, Tf)



Identifying ‘ghost rods’: almost-cyclic sets

Top eigenvectors for 74 = 0.99 reveal hierarchy of phase space structures

2

V3 vy

V5 Y6



Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

Three-component AlS made of 3 ACSs of period 3
ACSs, in effect, replace periodic orbits for TNCT



Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

Three-component AlS made of 3 ACSs of period 3
ACSs, in effect, replace periodic orbits for TNCT

Also: we see a remnant of the ‘stable and unstable manifolds’
of the saddle points, despite no saddle points — ‘ghost manifolds’?



Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’
— works even when periodic orbits are absent!

. . . t+
Movie shown is second eigenvector for P, Tfort € 0,7¢)



Identifying ‘ghost rods’: almost-cyclic sets

RS

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of fluid

— But, theorems apply only to periodic points!

— Stremler, Ross, Grover, Kumar [2011] Phys. Rev. Lett.




Topological entropy vs. bifurcation parameter
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topological entropy as a function of 7

hN shown for ACS braid on 3 strands



Eigenvalues/eigenvectors vs. bifurcation parameter
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Eigenvalues/eigenvectors vs. bifurcation parameter




Eigenvalues/eigenvectors vs. bifurcation parameter
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Movie shows change in eigenvector along
branch marked with ‘-0-" above (a to f),

as Ty decreases =



Bifurcation of ACSs

For example, braid on 13 strands for 7p = (.92
_ _ _ LTy
Movie shown is second eigenvector for P, fort € [0,7¢)

Thurson-Nielsen for this braid provides lower bound on topological entropy



Sequence of ACS braids bounds entropy

1 | ]
0.98 .
0.96- 3 strands

R 16 strands
0.94 -
10 strands
0.92- - h |
- hbraid

0.9 .
8 strands

L | | | | | | | _

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Tf

For various braids of ACSs, the calculated entropy is given, bounding from
below the true topological entropy over the range where the braid exists



Speculation: trends in eigenvalues/vectors for prediction

L — tnow

Different eigenvectors can correspond to dramatically different behavior.
Some eigenvectors increase in importance while others decrease

Can we predict dramatic changes in system behavior?

e.g., splitting of the ozone hole in 2002, using only data before split



Applications: Atmospheric transport networks

Skeleton of large-scale
horizontal transport

relevant for large-scale
spatiotemporal patterns
of important biota

e.g., plant pathogens

orange = repelling LCSs, blue = attracting LCSs

Tallapragada, Schmale, Ross [2011] Chaos



2D curtain-like structures bounding air masses



2D curtain-like structures bounding air masses




Pathogen transport: filament bounded by LCS
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Pathogen transport: filament bounded by LCS
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Optimal navigation in an aperiodic setting?

Selectively 'jumping’ between coherent air masses using control

Moving between mobile subregions of different finite-time itineraries




Optimal navigation in an aperiodic setting?

o Selectively 'jumping’ between coherent air masses using control

e Moving between mobile subregions of different finite-time itineraries




Optimal navigation in an aperiodic setting?

o Selectively 'jumping’ between coherent air masses using control

e Moving between mobile subregions of different finite-time itineraries




Optimal navigation in an aperiodic setting?

Selectively 'jumping’ between coherent air masses using control

Moving between mobile subregions of different finite-time itineraries

FTLE shown in grayscale; bright lines are LCS separating coherent sets; green=passive; red=control



Final words on coherent structures

What are robust descriptions of transport which work in
data-driven aperiodic, finite-time settings?

Possibilities: finite-time lobe dynamics / symbolic dynamics may work
— finite-time analogs of homoclinic and heteroclinic tangles

Probabilistic, geometric, and topological methods
— invariant sets, almost-invariant sets, almost-cyclic sets, coherent
sets, stable and unstable manifolds, Thurston-Nielsen classification,

FTLE ridges/LCS

Many links between these notions — e.g., FTLE ridges locate analogs
of stable and unstable manifolds

— boundaries between coherent sets are FTLE ridges

— periodic points = almost-cyclic sets for TNCT, braiding, mixing
— their ‘stable/unstable invariant manifolds’ = 777



The End

For papers, movies, etc., visit:
www.shaneross.com
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