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Quantum mechanics

>

Hilbert space #. Finite-dimensional Hilbert space H = C"™! «w Systems of
quantum mechanical angular momentum/spin

Notation: Denote elements of H by |¢)). Hermitian conjugate is denoted (¢)|.

Quantum state space given by complex projective space ‘ CP" = (C"' — {0})/C

«~ Normalization: probabilistic nature of quantum mechanics.
Phase invariance: experiments invariant wrt complex phase.

Schrédinger equation describes evolution of state |¢),

| 9u[ve) = —iH]w), |

where the Hamiltonian H is a Hermitian (self-adjoint) matrix assumed trace-free.
Therefore —iH € su(n + 1), skew-Hermitian & trace-free.

Alternative formulation of Schrédinger equation: State evolution | 1) = U (t)|v0)
with U(¢) a curve on the Lie group SU(n+ 1) of special unitary matrices, satisfying

U=—iHU, U0)=1.|
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>

Hilbert space #. Finite-dimensional Hilbert space H = C"™! «w Systems of
quantum mechanical angular momentum/spin

Notation: Denote elements of H by |¢)). Hermitian conjugate is denoted (¢)|.

Quantum state space given by complex projective space ‘ CP" = (C"' — {0})/C

«~ Normalization: probabilistic nature of quantum mechanics.
Phase invariance: experiments invariant wrt complex phase.

Schrédinger equation describes evolution of state |¢),

| 9u[ve) = —iH]w), |

where the Hamiltonian H is a Hermitian (self-adjoint) matrix assumed trace-free.
Therefore —iH € su(n + 1), skew-Hermitian & trace-free.

Alternative formulation of Schrédinger equation: State evolution | 1) = U (t)|v0)
with U(¢) a curve on the Lie group SU(n+ 1) of special unitary matrices, satisfying

U=—iHU, U0)=1.|

Motivation: Want to guide quantum trajectory through a series of given states at given
times. Ideally one would like to do this with a constant Hamiltonian, but this cannot be
done in general ~~ one looks for Hamiltonian H(t) with least change.
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Problem statement

Let a set of quantum states |p1), |¢2), -+, |¢pm) and a set of times t1, t2, - -+, tm be
given. Starting from an initial state |1)o) at time to = 0, find a time-dependent
Hamiltonian H (t) such that the evolution path |1) passes arbitrarily close to |¢;) at
timet =t; forall j =1,...,m, and such that the change in the Hamiltonian (in a sense
defined later), is minimised.

> The mathematical formulation involves a cost
functional made up of two terms: One part
measures the change in the Hamiltonian along
the trajectory. The other one measures the
amount of 'mismatch’ between trajectory and
target states.

» For this purpose, introduce an inner product on
su(n + 1),

(A, B) = —2tr(4B) |

and the standard geodesic distance on CPP",

s [0
D, ¢) = 2avccos | F s (61)
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Cost functional

Given the set of target states |¢1), -, |¢m) and times 1, -+, tm, as well as an initial
state |tpg) and an initial Hamiltonian H(0) = Hy, find the minimiser of the cost
functional

e () RGN+

to

> The minimisation is over curves U(t) € SU(n+ 1) and iH(¢t) , M(t) € su(n + 1).
>

>
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Cost functional
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» Tolerance parameter o used to trade off amount of change vs. quality of matching.
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Cost functional

Given the set of target states |¢1), -, |¢m) and times 1, -+, tm, as well as an initial
state |tpg) and an initial Hamiltonian H(0) = Hy, find the minimiser of the cost
functional

J[U,M,H]:/tm(%(iH,iH) +_)dt+

to

Change of 1) Slvsinger squation. st ety 5 et

> The minimisation is over curves U(t) € SU(n+ 1) and iH(¢), M(t) € su(n + 1).

» Tolerance parameter o used to trade off amount of change vs. quality of matching.

» Require smoothness of U, H, M on open intervals (¢;,t;+1); and the continuity of
U(t) and H(t) is assumed everywhere ~~ allow for discontinuities of H and M at
node times ¢;.
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Euler—Lagrange equations

» On open intervals (¢;,%;41):

iH—-M=0, M+[MUU =0, UU'+iH=0. (1)

At the nodes t = t;:

=L Fy;. ()

At the terminal point:

H(tm) =0, M(tm) + =5 Fpm = 0. (3)

> Here, D; = D(3;, ¢;) and

Fj — J:(le(wtj 7 ¢J)) — <77/1tj |¢J>|wi]><¢J| <¢J|1/’tj>|¢a><'l/’tj | 7
sin(D;)(;¢5) (We; [¥e;)
where J : T*CP"™ — su(n + 1)* is the cotangent lift momentum map of the
action of SU(n + 1) on CP".
» Equations (1) and (2) can be integrated for initial values H(0) and M(0). A local
extremum of the cost functional J satisfies, in addition, equation (3) at final time.
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Geometry of solution curves

1. U(t) is a Riemannian cubic spline

On open intervals (¢;,t4+1), ‘H +i[H, H] =0. ‘

[[ Aside: Lie group G with Riemannian metric v. A Riemannian cubic is a critical curve
of the action functional

B
»7[9] :/ §’Y(DtgyDt!']) dt
A

with respect to variations with fixed initial /final velocities. If v is bi-invariant,
second-order Euler—Poincaré reduction gives

£ —[6,€ =0, g=T.Ry(€)

Compare with ) '
H +i[H, H] =0, U = —iHU.

(More details in the Minisymposium Wednesday 18th.) ]]
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Geometry of solution curves

1. U(t) is a Riemannian cubic spline

On open intervals (¢;,t4+1), ‘H +i[H, H] = 0. ‘

[[ Aside: Lie group G with Riemannian metric v. A Riemannian cubic is a critical curve
of the action functional

B
J[Q] :/ §V(Dt97Dt9) dt
A

with respect to variations with fixed initial /final velocities. If v is bi-invariant,
second-order Euler—Poincaré reduction gives

£ —[6,€ =0, g=T.Ry(€)

Compare with ) )
H+i[H H =0, U=—iHU.

(More details in the Minisymposium Wednesday 18th.) ]]

Indeed, bi-invariant metric associated with the inner product on su(n + 1) (by left or
right translation) ~» U(t) is a Riemannian cubic on the open intervals.
Twice continuously differentiable on the whole interval ~~ Riemannian cubic spline.
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Geometry of solution curves (cont’d)
2. Horizontality of the momentum M(t)

Let su(n + 1)y be the Lie algebra of the stabilizer of |¢) and su(n + 1)¢ its orthogonal
complement, the horizontal space at [¢).

Lemma: ’ M(t) € su(n +1)3,,
Proof.
Strategy: Final time ~ initial time.

where [¢p) = U(t)|v0).

Terminal point: M (tm) = —%ﬂ(le(zptm,qﬁm)) = true at final time, since

(T4 (0),€) = (T (04), ) e o = (@001 €0 () 7cpmxren -

Open intervals: M + [M,UU~'] =0 = M(t) evolves under the Ad-action (conjugation)
of U(t). So does the horizontal space su(n + l)i = true on the open interval
(tm—1,tm)-

Node times: M(t;) = M(tj) — %(]u(V1D('l/th7¢j)) = preserved by jumps at the
nodes = true at all times. W
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2. Horizontality of the momentum M(t)

Let su(n + 1)y be the Lie algebra of the stabilizer of |¢) and su(n + 1)¢ its orthogonal
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Proof.
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Node times: M(t;) = M(tj) — %(]u(V1D('l/th,¢j)) = preserved by jumps at the
nodes = true at all times. W

In particular, | M(0) € su(n + 1)3, . ‘ Search for the optimal M (0) can be restricted to

this 2n-dimensional subspace of the n(n + 2)-dimensional Lie algebra su(n + 1).
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Geometry of solution curves (cont’d)
2. Horizontality of the momentum M(t)

Let su(n + 1)y be the Lie algebra of the stabilizer of |¢) and su(n + 1)¢ its orthogonal
complement, the horizontal space at [¢).

Lemma: ’ M(t) € su(n +1)3,,
Proof.
Strategy: Final time ~ initial time.

where [¢p) = U(t)|v0).

Terminal point: M (tm) = —%J“(VlD(wtm,qﬁm)) = true at final time, since

(T4 (0),€) = (T (04), ) e o = (@001 €0 () 7cpmxren -

Open intervals: M + [M,UU~'] =0 = M(t) evolves under the Ad-action (conjugation)
of U(t). So does the horizontal space su(n + l)i = true on the open interval
(tm—1,tm)-

Node times: M(t;) = M(tj) — %(]u(V1D('l/th,¢j)) = preserved by jumps at the
nodes = true at all times. W

In particular, | M(0) € su(n + 1)3, . ‘ Search for the optimal M (0) can be restricted to

this 2n-dimensional subspace of the n(n + 2)-dimensional Lie algebra su(n + 1).

NB: Still need to optimize H(0) over all of su(n + 1).
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Quantum control of SU(2)-coherent states
So far: Systems of spin. Extend to coherent state submanifolds.
> Introduced by Glauber (1963) as special states of the quantum harmonic oscillator.
Associated with the Heisenberg group. Generalized to arbitrary Lie groups by
Perelomov and Gilmore (1972).
» Coherent states achieve the lower bound in the Heisenberg uncertainty principle
~~ most closely “resemble” classical states.
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Quantum control of SU(2)-coherent states
So far: Systems of spin. Extend to coherent state submanifolds.

> Introduced by Glauber (1963) as special states of the quantum harmonic oscillator.
Associated with the Heisenberg group. Generalized to arbitrary Lie groups by
Perelomov and Gilmore (1972).

» Coherent states achieve the lower bound in the Heisenberg uncertainty principle
~~ most closely “resemble” classical states.

Construction:
» Symmetric n-particle Hilbert space H, = ®gym C? = C"*, projectively CP™.

v

SU(2) acts diagonally (rotations of the system as a whole).

Let e := (0,1) € €? (“spin down state”) and take € Hr. The submanifold
of coherent states is the SU(2)-orbit ,

v

{U(®"e2)|U € SU(2)}

v

Coincides with the image set of the Veronese embedding V/,

V:CP!' - CP", 2+ Q"2
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Quantum control of SU(2)-coherent states
So far: Systems of spin. Extend to coherent state submanifolds.

> Introduced by Glauber (1963) as special states of the quantum harmonic oscillator.
Associated with the Heisenberg group. Generalized to arbitrary Lie groups by
Perelomov and Gilmore (1972).

» Coherent states achieve the lower bound in the Heisenberg uncertainty principle
~~ most closely “resemble” classical states.

Construction:
» Symmetric n-particle Hilbert space H, = ®gym C? = C"*, projectively CP™.

v

SU(2) acts diagonally (rotations of the system as a whole).

Let e := (0,1) € €? (“spin down state”) and take € Hr. The submanifold
of coherent states is the SU(2)-orbit ,

v

{U(®"e2)|U € SU(2)}

v

Coincides with the image set of the Veronese embedding V/,
V:CP!' - CP", 2+ Q"2

= The quantum spline problem on the coherent state submanifold is equivalent to the
problem on CP'. Reason: (1) the Veronese embedding commutes with SU(2)-action,
and (2) the natural metric on the coherent state submanifold is a scalar multiple of the

metric on CP!.
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Two-level system (n=1)

> Spin—% particle in a magnetic field.

» Hamiltonian can be written as H(t) = w(t)n(t) - o = 30, w(t)n;(t)o;
— w(t) strength of the magnetic field
— n(t) direction of the magnetic field

» CP' diffeomorphic to the Bloch sphere S2.
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Two-level system (n=1)

> Spin—% particle in a magnetic field.

» Hamiltonian can be written as H(t) = w(t)n(t) - o = 30, w(t)n;(t)o;
— w(t) strength of the magnetic field
— n(t) direction of the magnetic field

» CP' diffeomorphic to the Bloch sphere S2.

~ this system can be visualized.
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Two-level system (cont’d)

Optimal curve |¢;) on state space:

(a) |¢¢) for o = 0.04 (b) |4¢) for o = 0.01
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Two-level system (cont’d)
Optimal Hamiltonian H(t) = w(t)n(t) - o :

(d) n(t) for o = 0.01

(c) n(t) for c = 0.04
10 11
10
g9 e
39
8

00 0.2 O.4t0.6 0.8 1.0

0.0 02 04 ; 0.6 08 1.0
(f) w(t) for o = 0.01

(e) w(t) for o = 0.04

Quantum splines
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Implementation

Optimization via variational integrator and shooting method. Idea: Pull back the
optimization problem to the space of initial conditions H(0) and M (0).

Advantages of using variational integrator:
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» Conditions at final time: H(t,) = 0 and M (ty,) + Dy Fm/o? = 0.
Exact discrete version = precise test of convergence to local minimum.
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Implementation

Optimization via variational integrator and shooting method. Idea: Pull back the
optimization problem to the space of initial conditions H(0) and M (0).
Advantages of using variational integrator:

» Conditions at final time: H(t,) = 0 and M (ty,) + Dy Fm/o? = 0.
Exact discrete version = precise test of convergence to local minimum.

> Integrator is momentum preserving = M (t) € su(n + l)fp‘t satisfied exactly on
discrete time domain = can restrict search for optimal M (0).

» Adjoint equations can be computed = obtain exact gradient in an efficient way.
Becomes important for systems with n > 1.

» Stability with respect to step-size.
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Thank you

(Fields July 2012) Quantum splines 11 July 19 /19



