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Arnold (1966) observed that the geodesic equation on the group of
volume-preserving diffeomorphisms of a space M

Dµ(M) = {η : M → M | Jac(η) ≡ 1}

are precisely the equation of ideal fluid mechanics, written in
Lagrangian coordinates:

ηtt = −∇p ◦ η, Jac(η) ≡ 1,

equivalent to the Euler equation

ut + u · ∇u = −∇p, ηt = u ◦ η.

The Riemannian metric is just the L2 inner product (which
happens to be right-invariant).

This helps us understand stability (by relating it to curvature), and
gives us a sometimes easier way to prove local existence (by using
Picard iteration). The latter approach was used by Ebin-Marsden
(1970).



Whether this works rigorously depends on whether one can treat
the geodesic equation as an ordinary differential equation on an
infinite-dimensional manifold.

Typically we do this by enlarging to the group Ds
µ(M) of Sobolev

Hs diffeomorphisms (s > dim(M)/2 + 1 to ensure C 1), which is a
Hilbert manifold, and prove that the geodesic equation is smooth
on this manifold.

Usually this all works out as long as the Lagrangian equation
doesn’t lose derivatives. (Note that the Euler equation always loses
derivatives, but this may be canceled out in Lagrangian
coordinates.)

If the equation is a genuine ODE, then curvature computations
give rigorous results on stability. Otherwise they may be useless.



Other PDEs for which a geodesic interpretation has been found:

I Burgers’ equation on D(S1);

I Korteweg-de Vries equation on the Virasoro group;

I Camassa-Holm equation on D(S1);

I Hunter-Saxton equation on D(S1)/S1;

I Magnetohydrodynamics on Dµ(M) n TidDµ(M);

I Landau-Lifschitz equation on C∞(S1, SO(3));

I Inextensible strings on the space of unit-speed curves,

and several others.

For many of these equations, the approach only works formally; the
equation is not a smooth ODE on an infinite-dimensional manifold.
(Typically they are hyperbolic PDE; we get solutions with C 0 but
not C 1 dependence on initial data.)



The classical diffeomorphism groups

Volumorphisms are one of the three “classical” diffeomorphism
groups, with nice algebraic properties. The other two are the
diffeomorphisms preserving a symplectic form (on an
even-dimensional manifold) or a contact structure (on an
odd-dimensional manifold).

I If M has dimension 2n, a symplectic form ω is a 2-form such
that ωn is nowhere zero. The typical example is
ω = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn, and there is a Darboux
coordinate chart for any symplectic form which makes it look
like this.

I If M has dimension 2n + 1, a contact form θ is a 1-form such
that θ ∧ (dθ)n is nowhere zero. The typical example is
θ = dz + x1 dy1 + · · ·+ xn dyn. Again there is always a chart
to make any contact form look like this. The contact
structure is the kernel of the contact form.



Ebin (GAFA, 2011) studied the geodesic equation on the
symplectomorphism group. If the symplectic manifold has trivial
first cohomology and the metric is compatible with the symplectic
form, it takes the form

∂
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where u is the skew-gradient of f , given in Darboux coordinates by

u = − ∂f

∂x1

∂

∂y1
+

∂f

∂y1

∂

∂x1
+ · · · − ∂f

∂xn

∂

∂yn
+

∂f

∂yn

∂

∂xn
.

This is a genuine ODE on the symplectomorphism group, so one
obtains local existence and smooth dependence on initial
conditions. Furthermore the fact that ∆f is conserved along
trajectories implies global existence in the same way as in
two-dimensional hydrodynamics.



There are two possible extensions of this result to contact forms.

I The quantomorphism group:

Dq(M) = {η ∈ D(M) | η∗θ = θ}

I The contactomorphism group

Dθ(M) = {η ∈ D(M) | η∗θ = Λθ for some positive function Λ}

The quantomorphism group may be degenerate depending on
properties of the Reeb field. When it is nondegenerate, it is closely
related to a symplectomorphism group. Its Lie algebra is
isomorphic to functions f such that E (f ) = 0.

The contactomorphism group consists of diffeomorphisms
preserving the contact structure, the kernel of θ, which is often
more interesting than a particular contact form. The Lie algebra is
isomorphic to the space of all functions, so it is never degenerate.



There is a unique vector field E , called the Reeb field, such that
θ(E ) ≡ 1 and ιEdθ = 0. In 3D Darboux coordinates where
θ = dz + x dy , we have E = ∂

∂z .

The Lie algebra for both contactomorphism groups consists of
vector fields on M of the form u = Sθf , where f : M → R is a
function. The operator Sθ is uniquely specified by the conditions
θ(u) = f and ιudθ = E (f )θ − df .

In 3D Darboux coordinates, we have
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Notice that we differentiate f in only two directions, ∂
∂x and

x ∂
∂z −

∂
∂y !



For the full contactomorphism group, any function f will work. For
the quantomorphism group, we must have E (f ) = 0. Thus if E is
not a regular vector field, the quantomorphism group can become
degenerate.

For example on T3, one contact form is θ = sin z dx + cos z dy . Its
Reeb field is E = sin z ∂

∂x + cos z ∂
∂y , for which the orbits are

typically dense in the tori z = constant. Hence any such f is
constant in both x and y , and the resulting quantomorphism group
is abelian. (Thus the geodesic equation is trivial.)

If the Reeb field has all orbits closed and of the same period, there
is a quotient manifold N with a symplectic form ω such that the
pullback of ω is dθ. In this case the quantomorphism group is a
circle bundle over the Hamiltonian diffeomorphism group of N.



Example:

Consider M = S3 ⊂ R4 with θ induced by
−x dw + w dx − z dy + y dz . The Reeb field is just the lift of this
1-form. All orbits are closed and have length 2π.

Use toroidal coordinates on S3, with 0 < δ < π
2 :

w = sin δ cosβ, x = sin δ sinβ, y = cos δ cos γ, z = cos δ sin γ.

Then θ = sin2 δ dβ + cos2 δ dγ, so that
θ ∧ dθ = sin 2δ dδ ∧ dβ ∧ dγ, and the Reeb field is E = ∂

∂β + ∂
∂γ .

The symplectic quotient is N = S2, and the quotient map is given
in standard spherical coordinates (φ, ψ) by φ = 2δ and ψ = β − γ.
This is the Hopf fibration, the prototypical example of a
Boothby-Wang fibration.

The induced symplectic form on S2 is ω = 2 sinφ dφ ∧ dψ. The
projection is a Riemannian submersion from the unit sphere S3 to
the sphere S2 with radius 2. This is also true if we replace the
metric on S3 by the Berger metric (with the length of E rescaled).



Quantomorphism geodesics

In the Sobolev Hs context for s > dim M/2 + 1, Ratiu-Schmid
(1981) proved that if the Reeb field E is regular (all orbits closed
and of the same period), then Ds

q(M) is a C∞ Hilbert submanifold
of Ds

E (M), the diffeomorphisms commuting with the flow of the
Reeb field. They also showed that the fiber bundle map over
Ds

ham(N) onto the symplectic quotient is C∞.

Smolentsev (1994) derived the geodesic equation formally and
computed the Riemannian curvature.

Gay-Balmaz, Gibbons, Holm, Tronci, and Vizman have recently
studied the quantomorphism group physically, in several papers, in
the context of the geodesic Vlasov equation. They focused more
on physical properties and singular solutions than local existence,
and studied a more general model of the form

ωt + {G ? ω, ω} = 0

where G is an operator.



Theorem (Ebin, P.)

If E is regular, then the quantomorphism group Ds
q is a C∞

submanifold of Ds
E ,µ = Ds

E ∩ Ds
µ, and the orthogonal projection is

C∞. Thus the geodesic equation is a C∞ ODE on Ds
q, and has

unique solutions depending smoothly on the initial condition.

Smoothness of the submanifold is proved with the implicit function
theorem for Hilbert spaces, while smoothness of the projection is
proved using the same technique as in Ebin-Marsden (1970). The
difficulty is in showing that an operator like u 7→

(
P(u ◦ η−1)

)
◦ η

is smooth in η, where P is the projection in the identity tangent
space, even though composition is not smooth.

The basic trick is that a differential operator like
Dη : f 7→ d

dx (f ◦ η−1) ◦ η is smooth in η since it looks like
(Dηf )(x) = f ′(x)/η′(x); in other words, all the compositions
cancel out, and multiplications are better behaved.



The geodesic equation is equivalent to the Euler-Arnold equation

∂t∆θf + u · ∇∆θf = 0,

where u = Sθf and ∆θf = S∗θSθf .

This is an active-scalar equation. Since E (f ) = 0, we can view it
as an equation for a function on the symplectic quotient N. If
M = S3 with the Berger metric (|E1| = α and |E2| = |E3| = 1),
the resulting equation on S2 is the quasigeostrophic equation

∂t(∆f − α2f ) + {f ,∆f } = 0.

Theorem (Ebin, P.) Solutions exist for all time.

The proof is similar to Kato (1967) and Ebin (2011), and is based
on the vorticity conservation ∆θf (t, η(t, x)) = ∆θf (0, x), which
leads to a C 1+α estimate on u = Sθf . All Hs norms of u can then
be estimated in terms of the C 1 bound of u, and global existence
follows.



The contactomorphism group

Formally, there are several reasonable choices for a geodesic
equation on Dθ(M). If we simply used the right-invariant metric
induced from D(M), we would obtain the geodesic equation

∆θft + u · ∇∆θf + (n + 2)(E · ∇f )(∆θf ) = 0.

However ∆θ is a subelliptic operator: it does not differentiate in
the Reeb direction. This complicates estimates.

A more serious problem is that Ds
θ(M) is not a smooth submanifold

of Ds(M). Hence the proof that the geodesic equation is an ODE
fails (and in fact the result is false even when M = S1).

To understand this, suppose v is an Hs vector field and v = Sθf
for some function f . Then f = θ(v) is also Hs , but v involves
derivatives of f , so it is only in Hs−1. The problem is that Sθf is
not a first-order operator since it doesn’t differentiate in the Reeb
direction.



This can be easily resolved if we instead view Ds
θ(M) as a

submanifold of the semidirect product Hs
+(M) nDs(M), via

D̃s
θ(M) = {(Λ, η) | η∗θ = Λθ}.

Omori (1974) proved the inclusion is smooth.

The Lie algebra is

TidD̃s
θ(M) = {(E · ∇f ,Sθf ) | f ∈ Hs+1(M)}.

This saves us since the first term differentiates f in the Reeb
direction as well.

A natural right-invariant Riemannian metric is then given by

‖(E · ∇f ,Sθf )‖2 =
∫
M(E · ∇f )2 + |Sθf |2 dµ.

This is equivalent to the H1 metric on functions f .

The geodesic equation then becomes (if E is a Killing field)

∂t∆θf + u · ∇(∆θf ) + (n + 2)(E · ∇f )(∆θf ) = 0,

where ∆θ = ∆θ − (E · ∇)2.



Special case: when n = 0, M = S1, θ = dx , and E = ∂
∂x , the two

geodesic equations become

ft + 3ffx = 0 vs. ft − ftxx + 3ffx − 2fx fxx − ffxxx = 0.

The first (Burgers’ equation) is not an ODE on D(S1), but the
second one (Camassa-Holm equation) is. (Constantin-Kolev 2002).

Theorem (Ebin, P.)

For s > dim(M)/2 + 1, the geodesic equation on D̃s
θ(M) is a

smooth ODE, and hence we have unique solutions for short time
which depend smoothly on the initial conditions.



Algebraic digression: The usual geometric interpretation of the
Camassa-Holm equation is as the geodesic equation on D(S1) with
right-invariant H1 metric

〈〈u, u〉〉 =
∫
S1 u(x)2 + u′(x)2 dx .

(Misio lek 1998, Kouranbaeva 1999).

An alternative interpretation comes from considering D(S1) as a
subgroup of D(S1) n C∞(S1,R), under the identification
u 7→ (u, u′). This is a Lie algebra homomorphism, since the
semidirect product has Lie algebra
[(u, f ), (v , g)] = (−uv ′ + vu′, vf ′ − ug ′). This works because of
the formula ∂x(uv ′ − vu′) = uv ′′ − vu′′. The H1 metric on D(S1)
is then induced as the submanifold metric of the L2 metric on the
semidirect product.

The punch line is that the semidirect product L2 geometry is a lot
simpler. Hence we get a nice curvature formula for Camassa-Holm
geometry using submanifold geometry, which is hard to obtain
directly (Khesin, Misio lek, Lenells, P., PAMQ 2012?).



Global existence for the contactomorphism equation is still open.
For periodic Camassa-Holm, it is known (Constantin-Escher 1998,
McKean 1998) that we have global existence if and only if the
function m0 = f0 − ∂2x f0 is either nonnegative or nonpositive. The
proof uses various conservation laws for m.

We can prove some of the same conservation laws for the
contactomorphism equation. Let m = ∆θf be the momentum.
Then

I
∫
M f dµ = constant.

I
∫
M fm dµ = constant (energy conservation).

I If m+ denotes the positive part of m, then∫
M(m+)(n+1)/(n+2) dµ = constant.

I If η(t)∗θ = Λ(t)θ, then

∂t ln
(
Λ(t, x)

)
= (n + 2)Ef (t, η(t, x))

and
Λ(t, x)n+2m(t, x) = m0(x)

(vorticity conservation).



In many ways this equation seems to have more in common with
Camassa-Holm than EPDiff.

For periodic Camassa-Holm, it is known (Constantin-Escher, 1998;
McKean, 1998) that the solution breaks down in finite time if and
only if the sign of m0 is not constant. We conjecture the same is
true for the contactomorphism equation.

By the same techniques as with the quantomorphism equation, we
get global existence if we have a C 0 bound on m(t). Vorticity
conservation implies that a C 0 bound on Ef (t) is sufficient. Hence
blowup should be a one-dimensional phenomenon.

There are also peakon solutions: solving ∆θf = δ and translating
by the Reeb flow gives the same kind of soliton solution as in the
Camassa-Holm equation. The interactions here are completely
unknown.

Integrability is also unknown. Complete integrability seems unlikely
since the symplectomorphism equation is not integrable, but there
may still be infinitely many conservation laws.



This is the end of the talk. Thanks!




