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The Euler-Lagrange vector field
• Let (qi) be coordinates on a manifold Q, (qi, q̇i) on its tangent TQ.

•We will always assume that the Lagrangian L(q, q̇) is regular, i.e. the matrix(
∂2L

∂q̇i∂q̇j

)
is everywhere non-singular.

 The E-L eq.
∂2L

∂q̇i∂q̇j
q̈j +

∂2L

∂q̇i∂qj
q̇j − ∂L

∂qi
= 0 may then be written explicitly

in the form q̈i = f i(q, q̇).

We will interpret solutions of the E-L eq. as integral curves of the associated
second-order differential equations field Γ on TQ, namely

Γ = q̇i
∂

∂qi
+ f i(q, q̇)

∂

∂q̇i
.

 This vector field is completely determined by the assumption that it is a

second-order diff. eq. field and by the equations Γ
(
∂L

∂q̇i

)
− ∂L

∂qi
= 0.
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An approach using anholonomic frames
• Two important lifts of a VF Z = Zi∂/∂qi on Q to a VF on TQ:

? Complete (tangent) lift ZC = Zi
∂

∂qi
+
∂Zi

∂qj
q̇j

∂

∂q̇i
∈ X(TQ).

(flow of ZC consists of the tangent maps of the flow of Z)

? Vertical lift ZV = Zi
∂

∂q̇i
∈ X(TQ).

(tangent to the fibres of τ : TQ→ Q and on TqQ coincides with Zq)

• If {Zi} is a basis of VF on Q, {ZC
i , Z

V
i } is a basis of VF on TQ.

• An equivalent expression for the E-L eq:

Γ
(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 ⇔ Γ(ZV

i (L))− ZC
i (L) = 0.

• The frame {Zi} defines quasi-velocities vi, s.t. vq = viZi(q) ∈ TqQ.

 We can write Γ = viZC
i + ΓiZV

i , where the functions Γi(q, v) are to be
determined from Γ(ZV

i (L))− ZC
i (L) = 0.



3

Hamel’s equations
• For an anholonomic frame: [Zi, Zj] = RkijZk.

• In general, for any VF Z on Q, function f on Q and 1-form θ on Q,

ZC(f) = Z(f), ZV(f) = 0, ZC~θ =
−−→
LZθ, ZV~θ = τ∗θ(Z)

where ~θ is the fibre-linear function on TQ defined by the 1-form θ.
(If {ϑi} is the dual basis of {Zi}, then ~ϑi = vi.)

• In terms of (not-natural) coordinates (qi, vi) on TQ we may write, for
Zi = Zji ∂/∂q

j ∈ X(Q), that

ZC
i = Zji

∂

∂qj
−Rjikv

k ∂

∂vj
, ZV

i =
∂

∂vi
,

 The EL eq Γ(ZV
i (L))− ZC

i (L) = 0 are then Hamel’s equations:

Γ
(
∂L

∂vi

)
− Zji

∂L

∂qj
+Rjikv

k ∂L

∂vj
= 0.
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Frames adapted to the action of a symmetry group
Let ψQ : G×Q→ Q be a (free and proper) action of a Lie group G on Q.
 Then πQ : Q→ Q/G is a principal G-bundle.

A vector field Z on Q is invariant if [Z, ξ̃] = 0, for all infinitesimal generators ξ̃
corresponding to ξ ∈ g. Z then defines Ž ∈ X(Q/G).

We introduce a local frame {Zi} = {Êa, Xα} of G-invariant VFs on Q, where
1. Êa, a = 1 . . . dim(G) are tangent to the fibres of Q→ Q/G;
2. Xα, α = 1 . . . dim(Q/G) are transverse to the fibres.

1. Let {Ea} be a basis of g and Ẽa (not-inv.) inf. gen.: [Ẽa, Ẽb] = −CcabẼc.

 Êa = AbaE
Q
b is invariant if [Ẽa, Êb] =

(
EQa (Acb)− CcadAdb

)
Ẽc = 0

(integrability = Jacobi identity).
 There are local solutions, for which A = (Aba) is non-singular, and for
which A is the identity on some chosen local section of πQ : Q→ Q/G.
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 Let U ⊂ Q/G be an open set over which Q is locally trivial and let (xα)
be coordinates on Q/G. Then πQ : U ×G→ U , and ψQg (x, h) = (x, gh)

and Êa : (x, g) 7→ ( ˜adg−1Ea)(x, g) = TψQg
(
Ẽa(x, e)

)
.

2. Assume a principal connection on Q→ Q/G given; take Xα to be the
horizontal lift of a member of a coordinate basis of vector fields on Q/G.

Reduction of an invariant Z ∈ X(Q). Then Z = ZaÊa + ZαXα.

 Z is invariant if [Z, Ẽa] = 0, for all a. Z then defines Ž ∈ X(Q/G).

 Since Z, Ea and Xα are all invariant, so also are Za and Zα.

 In particular, Zα can be regarded as functions on Q/G, and we have

Ž = Zα
∂

∂xα
∈ X(Q/G),

where the xα are coordinates on Q/G.

 The reduced equations are simply ẋα = Zα(x).
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The Lagrangian vector field Γ in case of symmetry
ψQ induces an action ψTQg = TψQg on TQ. Let πTQ : TQ→ TQ/G.

We assume L is invariant: L(ψTQg v) = L(v).

We have two frames for X(Q) at our disposal:

1. {Zi} = {Xα, Ẽa} (moving frame = non-invariant frame).

2. {Zi} = {Xα, Êa} (body-fixed frame = invariant frame).

And two equivalent sets of equations from which we can determine Γ:{
Γ(XV

α(L))−XC
α(L) = 0,

Γ(ÊV
b (L))− ÊC

b (L) = 0.
⇔

{
Γ(XV

α(L))−XC
α(L) = 0,

Γ(ẼV
b (L))− ẼC

b (L) = 0.

Proposition 1. Γ is an invariant vector field on TQ.
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Proof: • Infinitesimal condition? Take ξ ∈ g.
 The fundamental VF ξ̃ of the action ψQ on Q is the infinitesimal
generator of the 1-par. group of transformations ψQexp(tξ).

 The fundamental VFs of the induced action TψQg on TQ is the infin.
generator of TψQexp(tξ), and is thus ξ̃C, the complete lift of ξ̃!

 To prove: If ẼC
a (L) = 0, then [ẼC

a ,Γ] = 0, {Ea} basis of g.

• The Euler-Lagrange equations become:{
Γ(XV

α(L))−XC
α(L) = 0,

Γ(ÊV
b (L))− ÊC

b (L) = 0.
It follows that

0 = ẼC
b (Γ(XV

α(L)))− ẼC
b (XC

α(L))

= [ẼC
b ,Γ](XV

α(L)) + Γ(ẼC
b (XV

α(L)))− [ẼC
b , X

C
α](L)−XC

α(ẼC
b (L))

= [ẼC
b ,Γ](XV

α(L)) + Γ([ẼC
b , X

V
α ](L)) + Γ(XV

α(ẼC
b (L)))

= [ẼC
b ,Γ](XV

α(L)).
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Thus, [ẼC
b ,Γ](XV

α(L)) = 0. Likewise, [ẼC
b ,Γ](ÊV

c (L)) = 0.

• Since Γ is a second-order differential equation field:
[ẼC
b ,Γ] = BαbX

V
α +Bab Ê

V
a , for some functions Bαb , B

a
b on TQ

Therefore: BαbX
V
α(XV

β (L)) +Bab Ê
V
a (XV

β (L)) = 0
BαbX

V
α(ÊV

c (L)) +Bab Ê
V
a (ÊV

c (L)) = 0,

and thus, due to the regularity of L, Bαb = 0 and Bab = 0.
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Explicit expression of the reduced VF Γ̌ on TQ/G

• Reduction? L reduces to a function Ľ on TQ/G L = Ľ ◦ πTQ;
Γ reduces to a VF Γ̌ on TQ/G TπTQ ◦ Γ = Γ̌ ◦ πTQ.

 The defining relation for the reduced vector field Γ̌ are simply :{
Γ̌(X̌V

α(Ľ))− X̌C
α(Ľ) = 0,

Γ(ĚV
b (Ľ))− ĚC

b (Ľ) = 0.

• Denote the quasi-coordinates w.r.t. {Xα, Êa} by (vα, wa) and let (xα) be
coordinates on Q/G.

 Since xα, vα and wa are invariant functions on TQ, they induce
coordinates on TQ/G.

 Any VF W̌ on TQ/G is determined by its action on xα, vα and wa.
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• If we set [Êa, Êb] = CcabÊc, [Xα, Xβ] = Ka
αβÊa, [Xα, Êa] = Υb

αaÊb, then,

ĚC
a =

(
Υb
αav

i + Cbacw
c
) ∂

∂wb
, ĚV

a =
∂

∂wa
,

X̌C
α =

∂

∂xα
−

(
Ka
αβv

β + Υa
αbw

b
) ∂

∂wb
, X̌V

α =
∂

∂vα
.

•We have Γ = waÊC
a + vαXC

α + ΓaÊV
a + ΓαXV

α .

 Each term is invariant, so Γa and Γα define functions on TQ/G.
 We have

Γ̌ = wa(Υb
αav

α + Cbacw
c)

∂

∂wb
+ vα

∂

∂xα

− vα
(
Ka
αβv

β + Υa
αbw

b
) ∂

∂wb
+ Γa

∂

∂wa
+ Γα

∂

∂vα

= vα
∂

∂xα
+ Γα

∂

∂vα
+ Γa

∂

∂wa
.
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The reduced equations become

Γ̌
(
∂l

∂vα

)
− ∂l

∂xα
= (Ka

αγv
γ + Υa

αbw
b)
∂l

∂wa

Γ̌
(
∂l

∂wa

)
= (Υb

αav
α + Cbacw

c)
∂l

∂wb
.

 This is Lagrange-Poincaré reduction! (see e.g. [Cendra et al, 2001])

 The two equations correspond to splitting the equations according to the
so-called Atiyah sequence,

0→ (Q× g)/G→ TQ/G→ T (Q/G)→ 0.
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Routh reduction
• Take now {Ẽa, Xα} as the basis for VF on Q.

 The E-L eq. are now
{

Γ(XV
α(L))−XC

α(L) = 0,
Γ(ẼV

b (L))− ẼC
b (L) = 0

.

 Put, in short, pa = ẼV
b (L) for the momentum.

• Since L is invariant (ẼC
b (L) = 0) solutions lie on a fixed level set Tµ of the

momentum: pa = µa.

• From the second eq., Γ is tangent to all level sets Tµ.
 The G-action on TQ restricts to a Gµ-action on Tµ.
 When restricted to Tµ, Γ is Gµ-invariant ([ξ̃C,Γ] = 0,∀ξ ∈ gµ).
 It reduces to a VF Γ̌ on Tµ/Gµ.
 The equations for the integral curves of Γ̌ are differential equations in
all variables on Q, except for those associated with Gµ!

• Let R = L− vapa be the Routhian, and Rµ its restriction to Tµ. One may
rewrite the reduced equations in terms of Řµ (the Routh equations).
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Systems with linear nonholonomic constraints
The constraints define a distribution D on Q (and associated subman of TQ).

Choose a frame {Zi} = {Xα, Xa} whose first m members {Xα} span D.
Denote the corresponding quasi-velocities by (vα, va).

 vq ∈ D iff va = 0.

 A VF Γ on D is tangent to D if and only if Γ(va) = 0.

 A VF Γ on D is of second-order type (i.e. satisfy τ∗(q,u)Γ = u, ∀(q, u) ∈ D)
and is tangent to D iff it is of the form Γ = vαXC

α + ΓαXV
α .

Proposition 2. If L is regular w.r.t. D (if
(
XV
α(XV

β (L))
)

is nonsingular on D),
there is a unique Γ on D which is of second-order type, is tangent to D, and is
such that on D

Γ(ZV(L))− ZC(L) = 0, ∀Z ∈ D.
It may be determined from the equations Γ(XV

α(L))−XC
α(L) = 0 (on D).

 The non-zero functions λa := Γ(XV
a (L))−XC

a (L) are Lagrangian multipliers.
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We will always assume that L is regular with respect to both D and TQ.
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Invariance of nonholonomic systems
Assume that L and D are invariant under the induced action of G on TQ.

Proposition 3. The VF Γ is invariant under the induced action of G on D.

 Since Γ is invariant, it reduces to a vector field Γ̌ on D/G.

How to define a frame adapted to this situation? What is the analogue of the
Atiyah sequence?

• Since D is invariant it defines a distribution D̄ on Q/G by D̄π(q) = π∗(Dq).
Let us assume that D̄ has constant dimension.

• Let Vq = kerπ∗q and Sq := kerπ∗q|Dq = Dq ∩ Vq.
? We may identify Sq with gq = {A ∈ g | Ãq ∈ Sq} ⊂ g.
? Consider gD = {(q, A) |A ∈ gq}.
? There is an action of G on gD given by (q, A) 7→ (ψg(q), ad(g−1)A).
? Its quotient gD/G is a vector subbundle of (Q× g)/G→ Q/G.
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Proposition 4. We have the following short exact sequence of vector bundles
over Q/G:

0→ ḡD → D/G→ D̄ → 0.

(This is a version for nonholonomic systems of the so-called Atiyah sequence,

0→ (Q× g)/G→ TQ/G→ T (Q/G)→ 0.)

We can use this to divide the reduced nonhol equations into two sets.

We can choose an invariant frame {Xi} = {Xα, Xa} with the next properties:
• {Xα} a basis of D and is of the form {Xρ, Xκ} where {Xρ} is a basis for S.
• {Xa} takes the form {Xc, Xk} where the Xc are vertical.
• {Xρ, Xc} is a basis {Xr} of the vertical vector fields (as {Êa} was in the
unconstrained case).
• {Xκ, Xk} = {XI} is transverse to the fibres of Q→ Q/G and is invariant,
e.g. the horizontal lifts of VFs YI on Q/G w.r.t. some principal connection.
• The vector fields Yκ form a basis for D̄.
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The Lagrange-d’Alembert equations Γ(XV
α(L))−XC

α(L) = 0 reduce to the
following equations on D/G:

Γ̌
(
∂l

∂vρ

)
=

(
Υr
κρv

κ − C̄rρσvσ
) ∂l

∂vr

Γ̌
(
∂l

∂vκ

)
− Yκ(l) +RIκλv

λ ∂l

∂vI
=

(
Kr
κλv

λ −Υr
κρv

ρ
) ∂l

∂vr
.

The constrained Lagrangian Lc is invariant, and defines a function lc on D/G.

Proposition 5. The Lagrange-d’Alembert-Poincaré equations are given by

Γ̌
(
∂lc
∂vρ

)
=

(
Υr
κρv

κ − C̄rρσvσ
) ∂l

∂vr

∣∣∣∣
D/G

Γ̌
(
∂lc
∂vκ

)
− Yκ(lc) +Rλκµv

µ ∂lc
∂vλ

= −Rkκλvλ
∂l

∂vk

∣∣∣∣
D/G

+
(
Kr
κλv

λ −Υr
κρv

ρ
) ∂l

∂vr

∣∣∣∣
D/G

.

The first eq. is (a version of) the reduced momentum equation (see e.g. [Bloch
et al, 1996]).
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Routh type reduction for nonholonomic systems
Assume there exists H ⊂ G, such that Ã ∈ D for all A ∈ h and Sq(= Dq ∩ Vq)
is given by {Ã(q) |A ∈ h, q ∈ Q}
(i.e. assume there is a horizontal symmetry group, [Bloch et al, 1996], [Cortes,
2002]).

 Then h = ad(g−1)h, i.e. h is an ideal (or H is a normal subgroup).

As before: all one needs to do is to choose an appropriate frame:
(assume (for simplicity) that Vq +Dq = TqQ.)

• Let {Xκ} be the invariant vector fields we had before.

• let {Er} = {Eρ, Ec} be a basis of g whose first members {Eρ} span h

 We can use {Xα} = {Xκ, Ẽρ} as a (now not-invariant) frame for D.
 We can use {Xa} = {Ẽρ, Ẽc} as a basis of V.
 We can use {Xα, Xa} = {Xκ, Ẽρ, Ẽc} as a complete basis for vector fields
on Q (with corresponding quasi-velocities (vκ, ṽρ, ṽc)).
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In this frame, the Lagrange-d’Alembert equations Γ(XV
α(L))−XC

α(L) = 0 are{
Γ(XV

κ (L))−XC
κ(L) = 0,

Γ(ẼV
ρ (L))− ẼC

ρ (L) = 0.

 Given that ẼC
ρ (L) = 0, we get ẼV

ρ (L) = µρ, on D. Denote a level set by Nµ.
 The remaining equations can be rewritten in terms of a Routhian.

Reduction.
• Restrict Γ to a level set Nµ.

• The action of G on D restricts to an action of Hµ on Nµ in D. Indeed:
0 = AσẼC

σ(ẼV
ρ (L)) = AσCτρσẼ

V
τ (L) = AσCτρσµτ ⇔ A = AσEσ ∈ hµ.

 We can reduce Γ to a vector field Γ̌1 on Nµ/Hµ.

• But: Since H is normal, the G-action on D restricts to a Gµ-action on Nµ:
0 = ArẼC

r (ẼV
ρ (L)) = ArCsρrẼ

V
s (L) = ArCσρrẼ

V
σ (L) = ArCσρrµσ ⇔ A = ArEr ∈ gµ.

 Γ restricts to a Gµ-invariant vector field on Nµ, which we can reduce to a
vector field Γ̌2 on Nµ/Gµ.
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The link with Γ̌1? There are two choices:

(1) Do a direct reduction by Gµ,

(2) Do a reduction in two stages. One may define an induced action of Gµ/Hµ

on Nµ/Hµ. The vector field Γ̌1 will be invariant under that action and we can
do a 2nd reduction.

(We will not give expressions for these reduced vector fields and their
corresponding differential equations.)
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The Cartan form approach to symmetries

• Let θL =
∂L

∂vi
dxi, ωL = dθL be the Cartan 1- and 2-form of a Lagrangian L.

• Let D̃ be the distribution on D which is projectable to Q, and τ|D∗D̃ = D.
• For f a function on D, let Zf be the unique (Hamiltonian-type) vf on D

such that Zf ∈ D̃ and Zf ι∗ωL − df ∈ D̃◦.

Proposition 6. The function f is a first integral of Γ if and only if Zf(ι∗EL) = 0.

Proposition 7. Let Z ∈ D̃ be such that D̃ LZ(ι∗ωL) ⊂ D̃◦, LZ(D̃) ⊂ D̃,
LZ(ι∗ωL) ∈ d(D̃◦), and Z(ι∗EL) = 0.

 Then Z is a symmetry of Γ, and there is, at least locally, a function f on D
such that Z = Zf and Γ(f) = 0.

 The set of vector fields Z satisfying these conditions forms a Lie algebra S.

 For Z1, Z2 ∈ S, with first integrals f1, f2, we have Z1(f2) = −Z2(f1), and
the first integral of [Z1, Z2] is (up to an additive constant) Z1(f2).

(related results: [Bates and Śniatycki, 1993],[Cushman et al, 1995],[Giachetta,
2000], [Zenkov, 2002], ...)
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The nonholonomic Noether theorem
Let ε(X) = Γ(XV(L))−XC(L) for X a vector field on Q.

The next statement is the nonholonomic Noether theorem of e.g. [Fasso et al,
2007].

Proposition 8. For a vector field Z on Q any two of the following three
conditions imply the third: (1) ZC(L) = 0 on D; (2) ε(Z) = 0; (3) ZV(L)|D is a
first integral of Γ.

An analogue of Proposition 8, that makes use of Proposition 6:

Proposition 9. For any vector field Z tangent to D and for any function f on D
such that Z ι∗ωL − df ∈ D̃◦, we have

Γ(f) = Z(ι∗EL)− ι∗ε(Z);

and if any two of the terms vanish so does the third.
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Application
Let (M, g) be a Riemannian manifold, with Levi-Civita connection ∇.

Set KZ(u, v) = g(∇uZ, v).

Proposition 10. Any two of the following conditions implies the third:

1. Z is orthogonal to the second fundamental form of N ;

2. the restriction of KZ to TN is skew;

3. g(Z, ċ) is constant along every geodesic of N .

This result is a special case of the nonholonomic Noether theorem where the
constraints are actually holonomic!
We have also extended this proposition to Lagrangians of mechanical type
and we have given conditions for quadratic first integrals.
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Some of our papers:

• M. Crampin and T. Mestdag, Routh’s procedure for non-Abelian symmetry
groups, J. Math. Phys. 49 (2008) 032901.

• T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical
connections and the Lagrange-Poincaré equations, J. Phys. A: Math.
Theor. 41 (2008) 344015.

• M. Crampin and T. Mestdag, Reduction of invariant constrained systems
using anholonomic frames, Journal of Geometric Mechanics 3 (2011)
23-40.

• M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian
systems and the nonholonomic Noether theorem. Int. J. Geom. Methods.
Mod. Phys. 8 (2011) 897-923.

See: http://users.ugent.be/∼tmestdag
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