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The birth of the theory of dynamics of nonholonomic systems
occurred at the time when the universal and brilliant
analytical formalism created by Euler and Lagrange was
found, to general amazement, to be inapplicable to the very
simple mechanical problems of rigid bodies rolling without
slipping on a plane. Lindelof’s error, detected by Chaplygin,
became famous and rolling systems attracted the attention
of many eminent scientist of the time...

Neimark and Fufaev, 1972
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What is nonholonomic mechanics?

Nonholonomic constraints

(g™), 1 < A < n coordinates on a configuration space Q
Constraints ¢i(g”, g, 1) =0,1<i<m

time-dependent (rheonomic)
time-independent (scleronomic)
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Holonomic or Nonholonomic

© Holonomic. A holonomic constraint is derived from a
constraint in configuration space.

- Example: particle constrained to move on a sphere has the
n

constraint Z(qA)2 =1, q-q=0.
A=1
@ Semi-Holonomic. The constraint is integrable. These
constraints typically imply conservation laws given by a
foliation of Q by integral manifolds.

- Example: vertical disk rolling on a straight line without
slipping. Constraint ¢ = %, implies ¢ = x + constant.

@ Nonholonomic. The constraint is not integrable. Cannot
be reduced to semi-holonomic constraints and does not
impose restrictions on the configuration space.

- Example: Nonholonomic particle ¢ =z —yx =0.
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Geometrizing...

The constraints are globally described by a submanifold M of
the velocity phase space TQ.

im
M - TQ

(TQ)im TQ

Q

Linear constraints : M is a vector subbundle of TQ — D
Affine constraints : M is an affine subbundle of TQ
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Lagrange-d’Alembert principle

J. L. Lagrange (1736-1813) Jean Le Rond d’Alembert (1717-1783)

¢t =ph(q)gt 1<i<m
Admissible infinitesimal virtual variation §q* — pt 5q* =0.

Definition

A nonholonomic constraint is said to be ideal if the
infinitesimal work of the constraint force vanishes for
any admissible infinitesimal virtual displacement.
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Lagrange-D’Alembert’s equations

L:TQ > R

(Q,L, D) anonholonomic mechanical system

Lagrange-D’Alembert’s equations

d oL AL \_ A
(o g ) 597 0

with 6q € D.
d oL oL ;
it WY
dtogA  aqA iha
mia(g)gt = 0
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Nonlinear constraints. Chetaev’s principle

i

P. Appell (1855-1930) N.G. Chetaev (1902-1959)

P. Appell: Sur les liaisions exprimées par des real-
tions non linéaires entre les vitesses, C. R. Acad. Sci.
Paris 152 (1911), 1197-1200.

P. Appell: Exemple de mouvement d’un point as-
sujetti a une liasion exprimée par une relation non
linéaire entre les composantes de la vitesse, Rend.
Circ. mat. Palermo 32 (1911), 48-50.
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dtt,q,4) =0, 1<i<m

Some physical properties of the constraints should impose
restrictions to the set of possible values of the constraint forces.

d oL oL 09"
dtagh  9gqA  togA
d'(t,q,q) = 0
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Simple examples show that Chetaev’s rule cannot be used in
general.

C.-M. Marle: Various approaches to nonholonomic
systems. Rep. Math. Phys. 42 No 1/2 (1998), 211-229.
Cendra, Herndn; Ibort, Alberto; de Le6n, Manuel;
Martin de Diego, David A generalization of
Chetaev’s principle for a class of higher order non-
holonomic constraints. J. Math. Phys. 45 (2004), no.
7,2785-2801.

Cendra, H.; Grillo, S.: Generalized nonholonomic
mechanics, servomechanisms and related brackets.
J. Math. Phys. 47 (2006), no. 2, 022902, 29 pp.
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The principle of least constraint

“The motion of a system of particles
connected together in any way, and
whose motions are subject to arbitrary
external restrictions , always takes place
in the most complete agreement possible
with free motion or under the weakest
possible constraint. The measure of the
constraint applied to the system at each
elementary interval of time is the sum o
products of the mass of each particle with

the square of its departure from the free motion”

£ K. E Gauss (1777-1855)

) K. F. Gauss
Uber ein neues Grundgesetz der Mechanik,
Journal de Crelle, Vol. IV (1829)
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free motion q¢(t)

nonholonomic motion qnh(t)

admissible motion qq(t)
qdo, Vo (initial conditions) t = to

92L

Z(dalto)) = 5 gergas (46 — 47 (@ — 4P

measure of deviations of motions

Gauss’s principle of least constraint

Among admissible motions the one that deviates least
from the free motion is the nonholonomic motion
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Holder’s principle

O. Holder (1859-1937)

€ (x,y) ={c:[0,1] — Q| cis C%¢c(0) =x, and c(1) =y}

Ve ={X € T.C(x,y) / X(t) € Dy, Vt € [0,1]}
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Action functional

J : Gz(x,y)—HR

1
c > J L(¢(t))dt
0

Holder’s principle

An admissible path c (¢(t) € D)), is a solution of
the nonholonomic problem if

dJ(c)(X) =0, forall X € V.
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Using the Differential Geometry on the tangent bundle

A. M. Vershik and L.D. Faddeev: Differential Geometry and
Lagrangian mechanics with constraints. Soviet Physics -
Doklady 17 (1) (1972), 34-36.
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On the geometry of non-holonomic Lagrangian systems

Manuel de Led
Instituto de Matematicas y Fisica Fundamental, Conscjo Sperior de bivestgaciones
Cientifcas, Serrano 123, 25006 Madrid, Spain
Dav\d M. de Diego?

to de Economia Aplicada Cuantitativa
Pt Ciocios Eoomomiets  Empresyites UNED,

40 Madrid, Spain
(Received 29 January 1996; accepted for publication 10 April 1996)

We present a geometric framework for non-holonomic Lagrangian systems in terms
of distributions on the configuration manifold. If the constrained system is regular,
an almost product structure on the phase space of velocities is constructed such that
the constrained dynamics is obtained by projecting the free dynamics. If the con-
strained system s singular, we develop a constraint algorithm which is very similar
10 that developed by Dirac and Bergmann, and later globalized by Gotay and
Nester. Special attention to the case of constrained systems given by connections is
paid. In particular, we extend the results of Koiller for Caplygin systems.
tion to the so-called non-holonomic geometry is given. © 1996 American
it of Physics. [S0032.348506)024073]

1. INTRODUCTION

A non-holonomic Lagrangian system consists of a regular Lagrangian L(g*,¢")
pr ol ok o & g xRl § wilt 1l coordirates
(g dim cted to constraints defined by m local functions ¢(¢*,q"). That
means that the only onabe velocaic e thase verifying that ¢, =0, We ony consider the case
of linear constraints, say those of the form 6,(q*,q )4(9)q". By applying a suitable
Hamilton's principle, we arrive to the constrained Euler-Lagrange equations,

where N, 15, are some Lagrange muliplicr o be determined (e, for insance, Valcovici!

Pars? Neimark and Fufaev? Vershik and Faddeev
Pironneau Vershik and Gershkovich® Massa and Pagans
ype of consrais was discusoed. We noic that Hamiltn's pencipe in xm non holonomic
framework is not a variational principle. We remit to the excellent book by Rosenberg!! for
detailed discussion on that subject

Tn the last years, there is an increasing interest in non-holonomic mechanics, and ather ap-
proaches from a geomeica point of view have appeared: Weber,!* Ptanga,* Marle!* Massa
and Pagani**® Bates and Sniat Giachetta,"” Koiller,”* Carifiena and Rafiada,”” Raiada;
Dazord " Carifiena and Rafada, ™ Sarlet, Canrijn and Saunders** Serlet *3* de Leén and M.
& i

ur approach s a globalization of the one by Carifena and Rafiada.'® In order to globalize
iy picture, we will consider a distribution D of codimension m defined on Q. The constraints

e nal miden Gy s
Electronc mal: ceeddoSiace cic 5.

0022-2488/96/37(7)3385726/510.00
3. Math. Phys. 37 (7). July 1996 1896 American Insttute of Physics 3389
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Unconstrained Lagrangian systems

TQ ze TQ (9%, q™)

TQ
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Vertical lift z € T, Q

Vertical endomorphism S

T.TQ — T.TQ

Q — T.TQ
X — (XY),
(in coordinates) X = XAaqLA — X=XA
Liouville vector field A
Az) = (2Y):  A=grel
z)=(zY), =q 3k
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L:TQ — R

Poincaré-Cartan 1-form «; = S*(dL)
Poincaré-Cartan 2-form wi; = —do
Energy function E; = AL —L

L isregular — i is regular
8 04704® 8

irwr =dEL I Euler-Lagrange vector field
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Q@ ST = A (I} is a SODE)

0 0
_ LA A
I =4q an—i—F an
qu:qA
dt 2. A A
(_)dq2 — TA( A/dq )
dg™ A A A at at
F_r (9™,9™)

@ The solutions of I are the solutions of Euler-Lagrange

equations
d oL\ oL 0
dt \ ogA g

Euler-Lagrange equations

D. Martin de Diego — ICMAT (CSIC-UAM-UC3M-UCM)




Nonholonomic constraints

im

(TQ)im TQ

M submanifold of TQ.
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Admissibility condition

(oL, ..., ™)

rank ——"———
agL, ..., g™

—me=VYxeM, dimTM° = dim S*(T,M°)

gt =viqt, g%, 1<i<Kmm+l<a<nandl<A<n
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Linear constraints on the velocities

d'(q™, q™) = ui(q) g™ — vectorsubbundle
M=D - Q

D distribution on Q, r = dim Q — m.

DO = (uhdg?, 1 <i<m)
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Nonholonomic mechanics

L:TQ — Rregular, regular distribution D on Q

d /oL oL . ) . o
d?(a?)faqﬁ:““f* :»{ xiw, —dEcim € 5 (TM?)
@¥(q,q) = pia* =0 ™
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Compatibility condition

Compatibility condition: F«t N TM =0
F distribution along M which annihilator is $*(TM°) and Flo
its symplectic orthogonal

TTQ=F“r &TM, xeM

P T, TQ — TM,
Qi TeTQ — Fy“t.

"M =P m)

where
irL(l)]_ == dE]_

D. Martin de Diego — ICMAT (CSIC-UAM-UC3M-UCM)



Vol. 32 (1993) RrvoRrs ox surEATIAL PSS N1

NONHOLONOMIC REDUCTION®

LARRY BATES and JEDRZE) SNiATvokiT
Deprtment of Mathematic, Univesity of Calgay, Calgary, Alrt, Canada

(Received May 29, 1992 — Revised Sepiember 15, 1992)

eproduced

unde redustion by symmetry is descrived

1. Introduction

“The theory of classical mechanical systems with constraints is an old and venerable
topic dating back into the last century. In this theory one may view the constraints as
a differential system on configuration space, which may or may not be integrable. In
the latter case the constraints are said to be nonholonomic. These constraints are linear
restritions on velocities, and naturally occur in such mechanical problems as a penny
rolling without sliding on a plane.

For the sake of simpliity, we will only consider such constraints in this paper. There
are numerous difficultis involved with nonlincar constraints, not the least of which is
deciding what the correct mechanical principles are that give the cquations of motion.
These difficulties are discussed at length in the book of Neimark and Fufacv (7], and
the artcle by Weber [12]. More importantly for mechanics, there scems to be known
mechanical system tha necessitates such a theor

“The plan of this paper is to describe the structure of Hamiltonian systems wi
straints in a way it the problem
of symmetry. We look only at Hamiltonian systems that come from a Lagrangian system
of the form kinetic minus potential where the Legendre transformation is  diffeomor-
‘phism, and the Lagrangian and the constraints are independent of time. We do this for
the sake of simplicity of exposition. As the generalization to time-dependent constraints,
terms linear i the velocitics in the Lagrangian, magnetic terms in the symplectic structure
etc. involves no new ideas and is only notationally more complex, it is not done here.

“The reduction of these systems by symmetry is formulated in such a way that it looks as
much as possible like a nonholonomic version of the standard theory of reduction of sym-
plectic manifolds with symmetry. This is one good reason to work with the Hamiltonian
formalism, but there is another, more subtle reason, and this s that the constraints in the

con-

Mathematics Subject Classifcation: S8F0S, 70H
Rescarch partaly suppartcd by NSERC grants OGPOO2A16 and AN
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Bates and Sniatycki’s formalism
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TTQ = (F, NTM) @ (Fx N TuM) et x e M

Py TTQ — (F, N TxM),
0, : TeTQ — (Fx N TeM)Fer

bt ~
22 0= M =P )
0q M

H=FNTM, symplectic vector bundle on M
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ix(wr)g = dgcErL

L. Bates, J. Sniatycki:
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Reduction of the dynamics of nonholonomic system

Avch. Ratonal Mech Anal. 136 (1996)21.99. © SpringerVetlag 1996

Nonholonomic Mechanical Systems
with Symmeltry

ANTHONY M. BLOCH, P. . KRISHNAPRASAD,
JERROLD E. MARSDEN & RICHARD M. MURRAY

Commumicated by P HOLMES

“Table of Contents
Absrct 2
1 Innodheton 2
2. Consirat Distrbusionsand Ebresmann Cormections 0
3. Systems with Symanetry 3
4. The Momentum Equaton =
5. A Reviewof Lagrangian Rducton 5
5. The Nonholonomic Connecton and Reconstucion @
7. The Reduced Lagrange-d AlembertEquatons o

o »

Abstract

This work develops the geometry and dynamis of mechanical systems with
onholonomic constraints and symmetry rom the perspective of Lagrangian me-

it of gt mechancs sppi o e Logrange Alembor ot

pencralizing iors and momentum maps associated witha given :
ety o o hiscne. We begin by ormulting o mechanicsof nrol. &
andshow

o the curvature of this connection enters into Lagrange’s cquations. Unlike the

 or may Howeves, the
momentum map determined by the symmetry group sill satistie a useful diffr-

which plays an import problems,
y in coordinates.
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Y:G x Q — Q free and proper

0 L is G-invariant

Y:.GxTQ —T > ) i
Q Q M is G-invariant

ar,wr, B, I, F, I m are G-invariant.

Objective Taking into account the symmetries, reduce the
number of degrees of freedom
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TQ TQ =TQ/G
im BV
pm N
M M = M/G

V =kerTp, Vi = Tx(Gx),x € TQ

Vy CTuM, Vx e M
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For unconstrained systems, Noether’s theorem states that
invariance of the Lagrangian implies a momentum
conservation law, but, in nonholonomic mechanics is necessary
to account the effect of constraint forces.

Let ] : TQ — g* the canonical momentum map associated
with the G-action

MmJe) = =i wwr(Em) = —Em(EL) + B(Em) = B(Em)

with p € FO = S*(TMO).

Horizontal symmetry: Ep € T(VNF) = T m(Je) =0.
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Classification of nonholonomic systems with

symmetry

Principal or purely kinetical case : {0} =V|pm NF

Case of Horizontal symmetries : Vipy N F = V)

General case : {0} S Vs NF, €V,
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Bates and Sniatycki approach

U=(FNTM)N (VNF)ter, vector subbundle of TTQ

D. Martin de Diego — ICMAT (CSIC-UAM-UC3M-UCM)



Proposition

[Bates-Sniatycki 1992]

The projection I of 'y onto M is a section of U
satisfying the equation

wﬁ = (,1\]/5

11—
I',m
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The momentum equation

gi={&ecg/&rqlvg) €Fy,, forallvg € T;Q N M}

oM =Ugqeqg? — Q

Nonholonomic momentum map

The nonholonomic momentum map is the mapping
J*hTQ — (gM)* defined by

(™ (vq), &) = aL(E1Q) (vq)
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A global section & of the vector bundle gM — Qinduces a
vector field = on Q as follows

Z(q) = (&(9))q(q) € T4Q

Momentum equation

I',ml( gh) =Z°(1)
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Principal case

i~— @7 = dEr
Vil dEr

@1 is an almost symplectic 2-form on M.
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™ ~TTQ
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Theorem

The reduced equation of motion can be written in the

form
1]/:;7\—//l w = dE]_ — X
where W = —d« is a symplectic form, & is the pro-

jection on M of h* (i} 1) and & is the projection of
o = iy (h*d(ij ar) — dh* (i3, xr)). Moreover, we
have

iﬁ M& =0.

’
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Caplygin systems

By a Caplygin system

we mean a mechanical system given

by a lagrangian function L : TQ — R
with a configuration manifold Q which is
a principal G-bundle, say : Q — Q/G.

TQ=HaoW

where W denotes the vertical bundle.

S.A. Caplygin (1869-1942)
L*:T(Q/G) — R L*(Yg) =L((Y)™")

1=

rL/Mw]_* = dE]_* — X.
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’\7|MQF:V‘M

P =7:TQ — g* Tum(Je) =0 forallé e g
w7 ) — (TQ)u =] ' (W)/Gy
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The projection (I ,m)y of the restriction of I am to
M’ = MNJ~!(p) isasolution of the reduced equations
of motion

Y (@) —d(EL), € FR
(rL,M)pL S TMH

where (Ey ), is the reduced energy.
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Y Y

M, HTQ) (W) F——— TO
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The General case

{0} S Vi NFx © Vi

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, R. M. Murray

J. Cortés, M. de Ledn:
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Hamiltonian description of nonholonomic mechanics

Admissibility condition

dim TM® = dim S*(TM°).

Leg oL
T*Q (q™, q™) A pa = an)

Q\ /Q N "q

Q (a™)
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Leg

EL - H
wr > wQ
M - M
i _ i A 4 i( A OH
0] P (q /PA)—d) (q ’apA)
$*(TM®) Fo
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Compatibility condition (H™B) = (3%H/0pAdps)

Pt )

_ _ . j
FrNTM = {0} < (CY) = | —/—Hap— | is regular
opa opB

T (T*Q) — TM

- . P:
TM & Fy =Tu(TQ) — Q Ty (T*Q) —s FL.

.ot
ut = 1<i<m
810
Lis generated by ZHL1<i<mizwg =t
; GIUE 0
7' =— .
opa” P opg

=id+ CyZ' @ dp) — [P(Xn) = Xy m
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(FNTM)&(FNTM)* = T (T*Q) — gf

P = id— Cij Ci/j/{ll)j,l.l)j/}zi &® Hi/ — Ci]-Xw-l X l«lj + CijZi X dll)j,

If A|M eETM — | P(Xn) = XH,M .
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The nonholonomic bracket

Vol. 34 (1994) REPORTS ON MATHENATICAL PHYSICS No. 2

ON THE HAMILTONIAN FORMULATION OF NONHOLONOMIC
MECHANICAL SYSTEMS

A. J. VAN DER SCHAFT
Dept. of Applied Mathematics, University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands
and
B. M. MASCHKE
Lab. d"Automatique, Conservatoire National des Arts et Metiers, 21 Rue Pincl, 75013 Paris, France
(Received February 11, 1944 ~ Revised May 4, 1994))
A simple procedure s provided 1o write the cquations of motion of mechanical systems
with constraints as Hamiltonian cquations with respect to a “Poisson” bracket on the con:

strained state space, which does not necessarily satisfy the Jacobi identity. I s shown that
the Jacobi identity is satisfied if and only if the constraints are holonomic.

1. Introduction

‘The theory of mechanical systems with nonholonomic constraints has a long history
in classical mechanics; sce eg. the books by Neimark & Fufaev [14], Edelen [6],
Rosenberg (16], Amold [1] and the references quoted in there. In this literature,
nonholonomic mechanical systems are described within the variational framework by
Euler-Lagrange equations with extra terms corresponding to the constraint forces.

The present note is largely influenced by a recent paper of Bates & Sniatycki
[4], see also Stanchenko (17), where it is shown that the dynamics of mechanical
systems with nonholonomic constraints may be alternatively described within a Ha-
miltonian framework. However, the two-form with respect to which the Hamiltonian

consequence, the resulting equations of motion, albeit of a Hamiltonian format, need
not admit canonical coordinates and | thus need not be transformable (0 the sandard
Hamiltonian equations: 4, = G4 i=1,..n In the present note we will
use, instead of the notion of's (nul necessarily closed) two-form, the dual object of

a “Poisson” bracket not necessarily satisfying the Jacobi identity. We will show in a
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Alternative constructions of nonholonomic brackets

Let A be the bivector induced by wg and n, v two arbitrary
sections of Ty, T*Q

Bivector bracket
/\1 (T]/ V) - A(P* (Tl)/ P*(V)) 7 {f/ 9}1 - /\l(df/ dg) .
Aa(m, v) = A(P* (), P*(v)) = wq(P(Xy), P(Xy)) | {f, gh = Ax(df,dg) .

Proposition

Along the constraint submanifold M we have that

A=Ay (Annand {, Jnn).
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Homogeneous case— | f = Xy x1(f) = {f, Hlnp .

Almost Poisson bracket on the constraint submanifold

Ap () (Mm (%), v (%)) = Ann(x)(n(x), v(x))

{f, gl = Am(df, dg) = Ann(dF, dG) = {F, Glnn |
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Van der Shaft and Maschke construction

L=T-V, 0%:=u%(q)qg*=0,(A=1,...,m),

,1<i<m.

1 : . OH
- AB V i i
H—29 papPB + V(q) U _HATPA

f)a:Xé\pA, m+l<asn
Pi=Y pa, 1<i<m

1Y1
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{q%,q®}=0 {q*pt=X2 {q*pd=Y]

o, }—XA aXE _ XA aXE
PasPes = praqé\ “pBanA {qA,q;‘} {a™, Po} {a%,P5)
~ oY; oX {f’ /q } {ﬁﬂlf’b} {ﬁﬂlf) }
iy = Xpp—- YA b — Fa Past P ~f5
(PPl =XoPsggx = ViPr 48 Pua®)  Bupel (o)
aYiB A an

i, Pt =Y —Y!
{Pu, 5} P PBagx ~ YiPEga
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iy @ dP) {ah e
JaldPa) = ( {Pa,q®) {Pa, Do) >

{qA/ qB}nh =0 {qA/f)a}nh = Xé\ {qA/f)i}nh =0

o axg oxEB L L
{pa/pb}nh = X@PB an - XQPB an\’ {pi/pb}nh =0 {P‘tu}nh =0.

(o]

[STPN
ol _QL?
< o
v

o= (29" (35) ) &

D. Martin de Diego — ICMAT (CSIC-UAM-UC3M-UCM)




General case (no homogeneous)

f= X0 () = Ru () +{f, Hlnn
donde Ry = P(XH) — {P(XH)

f = Ru(f) +{f, Hlnn
= (~CyZ P (1) + (1 HY+ Cy ZH (M), )

—CyZHF){H, W} + Cyj ci/j,{lpi,qﬂ/}zi(f)zi/(H))

f = Ru(f) +{f, Hulm
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Standard Mechanical Lagrangian System

@ an n-dimensional configuration manifold Q,

@ a Riemannian metric ' Q on Q describing the kinetic
energy,

@ a function V on Q describing the potential energy,

GTQ be a Riemannian metric on Q

U
Levita-Civita connection V9" : ¥(Q) x X(Q) — X(Q)

25TQ(VE'?Y,Z) = X(STR(Y,Z))+ Y(§TR(X,Z)) — Z(3TQ(X,Y))
+S5TQ(X,(Z,Y)) +GT(Y, [Z,X])
—5TQ(Z,[v,X])

for X,Y,Z € X(Q).
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Alternatively, v9'? is determined by

X, Y] = V;JZTQY — V;J;TQX (symmetry)
X(GTR(Y,2)) = §TR(VE'YY, Z) + §T(Y, V' ° Z) (metricity) ,
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The solutions of the mechanical problem with Lagrangian
L:TQ — R

L(v) = 257w, v) ~ ViTro(v)

are the curves 0 : I C R — Q such that

VSTQ)G(’L) + gradgTQV(G(t)) =0.

ot

)

d /oL oL
Euler-Lagrange equations n (an> -~ =0
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Local description

Local coordinates (q*) on Q, then
572 = (5" apdq™ @ dq®

The Christoffel symbols of the connection v59'? are obtained
from the following expression

TQ
VS, dc =T§coa.
The equations of motion are locally written as

A OV

4 =—TRpa"a" — (ST 5 %
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The nonholonomic connection

T. L. Synge in Dublin (Irland).

Synopsis:

Introduction.

The constraint.

Equations of constrained geodesics derived from a variational
principle.

Seeond form of the equations of constrained geodesics.
Parallel (I") propagation.

Geodesic stability for a general correspondence.

Isometric and normal correspondences.

Dynamieal significance of the paper.

"o

S

1. Introduetion.

The stability of geodesics in Riemenisn space Was first discussed
simultaneously and independently by Levi-Civita!) and myself?). The
tensorial cquation obtained may be written
(1)
where 7 is the infinitesimal vector joining a point on the nmdmeml

e gr W
i+ Gl '

0

geodesic to the corresponding point of a neighbouring geodesic, a7 =% ,
where 27 is the coordinate system, Glms, is the mixed curvature tensor

4 ,Sur Pécart géodésique,* Math. dnnalen 97 (1926), p. 201—320. C¥. also Levi-
Civita, ,The Absolute Differential Caloulus,* Eoglish Translation (1927).

4 ,0n the Geometry of Dynamics Phil. Trans, Roy. Soc., A, 226 (1926),
 81—106. That paper will be referred to 48 GD. The dynamical problem of ,Stabi-
lity in the action sense,* disoussed in GD., Chap. IX, is precisely the geometrical
problem of the stability of geodeics in Riemsmnian space.
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The nonholonomic connection

© an n-dimensional configuration manifold Q,

@ a Riemannian metric ' on Q describing the kinetic
energy,

@ a function V on Q describing the potential energy,

© a distribution D of feasible velocities describing the linear
velocity constraints

VY 0t +gradgroV(o(t)) € DE,, (D€ Der), where
DL is the STQ—orthogonal complement of D

P:TQ » D
Q:7TQ — Dt
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Nonholonomic equations %iTQY = VETQY + (V>9<TQ Q)(Y)

VS(TtQ)C'(t)—HP (gradgTQV(TD (é(t)))) =

C

Proposition:

Forall Z € X(Q) and X, Y € D we have that

z <9TQ(X, Y)) =5TQVI X, V) + 57X, VI Y
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Is it possible to derive a Levi-Civita connection for
nonholonomic dynamics?

IDEA: Modify the Lie bracket!!

D. Martin de Diego — ICMAT (CSIC-UAM-UC3M-UCM)



We induce, by restriction,

Q@ abundle metric G2 : D xQqD—R
@ an induced bracket

X, Y]p = Plip(X),in(Y)]

where X, Y € I'(1p) (vector fields on Q taking values on D).
@ anchormap pp =ip: D —=TQ
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Skew-symmetric algebroids

An skew-symmetric algebroid structure on the vector bundle
Tp : D — Qis a R-linear bracket

[,-]p : T(tp) x T(tp) — T'(Ttp) on the space I'(Tp) and a vector
bundle morphism pp : D — Q, the anchor map, such that:

@ [, Ip is skew-symmetric, that is,
[X,Y]]D = —[[Y, X]]@, for X,Y € F(TrD).

@ If we also denote by pp : I'(1p) — X(Q) the morphism of
C*(Q)-modules induced by the anchor map then

[X, fYlp = f[X, Ylp+pn (X)(f)Y, for X,Y € I'(D) and f € C*(Q)

If the bracket [, -]p satisfies the Jacobi identity, we have that
the pair ([, -]p, pp) is a Lie algebroid structure on the vector
bundle tp : D — Q.
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The “differential”

If ([-, 1o, pp) is an skew-symmetric algebroid structure on the
vector bundle tp : D — Q then we may define an almost

differential da? by
K
(dP ) (Xo, X1, .., Xk) = }_(~1D)'pp (XD)(a(Xo, ..., X1, ..., Xk))
1=0
+Z I_H(X |IX1 X]]]@,Xo,xl,...,XI,...,X],...,XK)
I<J

for x € T(AXtp.) and Xo, X1,..., Xk € T'(Tp).
In general (d?)2 # 0. Indeed, ([-, ], pp) is a Lie algebroid
structure on the vector bundle T : D — Q if and only if
(dP)?2 =0
Linear almost Poisson structures and
Hamilton-Jacobi equation. Applications to

nonholonomic Mechanics. M. de Leon, |.C. Marrero,
DMdD. Journal of Geometric Mechanics 2011.
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Some coordinate expressions

Suppose that (q*) are local coordinates on Q and that {e,}is a
local basis of the space of sections I'(Tp ) then

feaseuls = Syee, polea) = (o) 5o (1
The local functions C¢ , (pp)2 € C®(Q) are called the local
structure functions of the skew-symmetric algebroid
Tp D — Q
If {e?} (e® € T'(tp+), where Tp« : D* — R) is the dual basis of
{eq} then

oF
_ A
dpF = (pD)aWea/

0 1
é\aqK;l\ — ze(clec} e Neb,

P - {(p@)

where F € C®(Q) and k € I'(tp-) where k = kpeP.
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Given a section X € I'(tp) the curves 0 : I C R — Q which
verify the equations:

6=pp(X)oo

are called integral curves of the section X, that is, they are the
integral curves of the associated vector field pp (X) € X(Q).
Locally are written as

™ = (pp)AX® o o or in other words g™ = (pp) A X%(x)

where X = X%e,.
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A Typical example: The Chaplygin sleigh.

As an example of nonholonomic system on a Lie algebra, we
study the Chaplygin sleigh which describes a rigid body
sliding on a plane. The body is supported in three points, two
of which slides freely without friction while the third point is a
knife edge.

center
of mass

Ska\te
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A Typical example: The Chaplygin sleigh.

The configuration space before reduction is the Lie group

G = SE(2) of the Euclidean motions of the 2-dimensional plane
R?.

We will need in the sequel to fix some notation about the Lie
algebra se(2). First of all its elements are matrices of the form

R 0 & &
E=1 & 0 &
0 0 0

and a basis of the Lie algebra s¢(2) = R® is given by

0 01 00O 0 -1 0
Et=10 0 0 |, Eb=|1 00 1], Es=]1 0 0

0 0O 00O 0 0 O
We have that

[Es,E1] =E», [Ep E3]l=FE;, [E, Eal =0.
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The Chaplygin system is described by the kinetic Lagrangian
function

L: se(2) — R

(vi, v, w) — % [(] + m(a? + b?))w? + mv? + mv3 — 2bmwv

where m and | denotes the mass and moment of inertia of the
sleigh relative to the contact point and (a, b) represents the
position of the center of mass with respect to the body frame
determined placing the origin at the contact point and the first
coordinate axis in the direction of the knife axis.
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A Typical example: The Chaplygin sleigh.

Additionally, the system is subjected to the nonholonomic
constraint determined by the linear subspace of se(2):

D ={(v1,v2, w) € se(2) | v2 = 0}.
Instead of {Eq, E», E3} we take the basis of s¢(2):
{e1 = E3,ex = E1,e3 = —maks — mabky + (] + ma?)Ey}

which is a basis adapted to the decomposition D @ D+;
D = span {ey, e} and D+ = span {e3}.

In the induced coordinates (y',y?) on D the restricted
lagrangian is

Wy w?) = 5 [+ mie + b))y + miy?)? — 2omy'y?] |

and moreover,

: | ma . mab

ey, erp = e €2

T T ma T ma?
1 _  _ma 2 _ _mab_

Therefore, €}, = 7 and €7, = 7517
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The snakeboard

As a mechanical system the snakeboard has as configuration
space Q = SE(2) x T2 with coordinates (x,y, 0,1V, $)
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The nonholonomic dynamics is described by
o The Lagrangian

L(q,4) = y M +92) + 3+ 2106 + Jo(8 + b2 + 17,

where m is the total mass of the board, ] > 0 is the moment
of inertia of the board, Jo > 0 is the moment of inertia of
the rotor of the snakeboard mounted on the body’s center
of mass and J; > 0 is the moment of inertia of each wheel
axles. The distance between the center of the board and the
wheels is denoted by r. For simplicity, we assume that
J+Jo+2J; = mr2.

@ The nonholonomic constraints induced by the non sliding
condition in the sideways direction of the wheels:

—%sin(0 4+ ¢) +ycos(0 + ) — 1m0 cosp =0
—%sin(0 — ¢) + 1y cos(0 — ¢) + 8 cos p = 0.
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Observe that the Lagrangian is induced by the riemannian
metric G on Q,

G = mdx>+mdy+mr2do’+Jod0p+]Jo dp@do+Jodp?+2]; dd?.

The constraint subbundle T : D —— Q is

D =span< e *i e *ie *ai+bi+ci
TP T Sy 2 T 3 P T Yo T Yoy T 00 )
where
a = —r(cosdcos(®— )+ cosdcos(0+ ¢)) = —2rcos® d cos O
b = —r(cosdpsin(0 — )+ cosdpsin(0+ ¢)) = —2rcos® P sin O

¢ = sin(2¢).
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In the induced coordinates (x,y,0,V, $,y',y% y>) on D the
restricted lagrangian is

1%y, 0,0, 6,y v y%) = 2mrcos? d(y®)? + Jocy'y?
1
+§Jo(yl)2 + J1(yH)%
where now the nonholonomic constraints are rewritten as:

y* = 0and y® = 0. After some straightforward computations
we deduce that

le1, ealp = 0,
le1,eslp = 0,
2mr? cos? ¢ (mr? + cos2¢) tan ¢
le2, e3lp = 5 5 €1~ -~ es.
mr2 — Josin® ¢ mr2 — Josin® ¢
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Levi-Civita connection on a skew-symmetric algebroid

with a bundle metric

Let G2 : D x oD —R be a bundle metric on a skew-symmetric
algebroid (D, [-, -]p, pp ). Given this bundle metric we can

construct a unique connection v5” on D which is torsion-less
and metric with respect to gD,

The Levita-Civita connection V5" : MNtp) X T(tp) = T'(Ttp)
associated to the bundle metric G2 is defined by the formula:

X, Ylp = VE"Y — V"X (symmetry)
o (X)(SP(Y,2)) = §2(VE"Y, Z) + §2(Y, V" Z) (metricity) ,
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A pp-admissible curve is a curvey : I — D such that

d(tp OY)(

i t) = pp(y(t)).

Given a potential function V : Q — RR, the solutions of the
mechanical problem with Lagrangian L : D — R:

L(v) = 267 (wv) ~ V(Tn(v)

are the pp-admissible curves vy : I — D such that

VY Y (0 + gradgs V(Ta (1)) = 0.
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Given local coordinates (q”,y®) associated with the basis {eq}
of sections of D the Equations can be written as

9t = (pp)ay°
) oV
ye = _rgbyayb - (QDJCb(PD)@aqﬁ .

where (G?)2? are the entries of the inverse matrix of ((G?)qp)
(5P =GP ape® @ eb).

The geodesics are just the integral curves of a vector field on D,
called the geodesic spray &gb, whose local expression is

d d
_ A b
&gy = (pp)cycfan —Tavy?y dye
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Reduction of Nonholonomic systems with Symmetries

Arch. Rational Mech. Anal. {18 (1992) 113-148. © Springer-Verlag 1992

Reduction of Some Classical
Non-Holonomic Systems with Symmetry

JAR Korrer

Communicated by R. McGEREE

Abstract

“Two types of nonholonomic systems with symmetry are treated: (i) the con-
rgummn space is a total space of a G-principal bundle and the constraints

are given by a connection; (i) the configuration space is G itself and the con-
straints are given by left-invariant forms. The proofs are based on the method
of quasicoordinates. In passing, a derivation of the Maurer-Cartan equations
for Lie groups is obtained. Simple examples are given to illustrate the
algorithmical character of the main results.

Contents
LSTMROn 1 i sie win i e de W R AR SR 114
2. Reviow of some facts sbout comnections . . . | 5 1
3. Main resulis . . . . . . R ———T
4. Examples . . . X o . LS
5. Hamel's approach to mecharics . . . i ) ST
6. Proofs of Theorems A 8132 . + 2 v v v v v vt s e 136
7. Factorization of more gencral classical nonholonomic systems . . . . . . 13§
8. Natural Caplygin systems: affine connections svepasanee 139,
9. Final comments 1

One of the inferesting ocurrences of symmetry in mechanics is the ralling of @ solid body
without slipping along a two dimensional surface (possibly of a complex profile). The results of
this process arc sudied by the mechanics of nonholonomic systems ... Receny, deep and
interesting connections of this sublect with Lie groups were discovered ... .

A.T. Fourxxo, Visual and hidden Symmetry in geometry, ia Comp. Mark. Appl., 17, 1959,
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The symmetric product

The associated symmetric product is defined as follows:

X:YV)go =VIY4+VI'X, X Yel(tp).
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Euler-Poincaré-Suslov equations

(1, d) is a nonholonomic Lagrangian system on g, where
1: g — Ris a Lagrangian function defined by 1(£) = 3(I¢, &),
I:g — g* is a symmetric positive definite inertia operator and d
is a vector subspace of g. We have the orthogonal
decomposition
g=d®d",

where b ={&’ € g|(I&/, &) = 0 V& € ). Take now an adapted
basis to this decomposition {eq, e} Where d = span {eq} and
b1 = span {ey}. Then, the Euler-Poincaré-Suslov equations for
(1,0) are

Uy = —Teoyy®,
where {y¢,y*} are the global coordinates on g induced by the
basis {eq, e}
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Chaplygin sleigh

W1 ma 4 1.2
v I—i—maZy (by Y )
5 ma

myl ((] +m(a® + b))y — byz> .
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Lagrange-D’Alembert-Poincaré equations

Nonholonomic systems on Atiyah algebroids associated with
principal G-bundles.

TA:A=gxTM — M,

where g is the Lie algebra of the Lie group G and M is a smooth
manifold. The Lie bracket of the space I'(ta ) is characterized
by the following condition

[(&,X), (&', XA = ([& &4, X, XT),

for &, &’ € gand X, X’ € ¥(M). The anchor map pa is the
canonical projection onto the second factor.

D. Martin de Diego — ICMAT (CSIC-UAM-UC3M-UCM)



Suppose now that D is a vector subbundle of A over M of
constant rank (the constraint bundle) such that

Mex — Dy(x): =D(x)N(gx{0r,m}) € gx M

is a vector subbundle of A. Then we can choose a local basis
{E€ahicagr of T(tpy ), with £ : U € M — g smooth maps, and
a local basis {Xa} = {£a, Ma, Y& )} Of T(Tp), with

Ne: UCM — gand Y, € ¥(U).

Moreover if (q”) are local coordinates on U C M and

Yo = Yi2 5.t the Lagrange-D’Alembert-Poincaré equations are:
at = YZu®,
ye = —Fﬁbyayb—%Yé(SD)c“,
6" = Tyt - YR e™)

where (g7, y¢,y%) are the corresponding local coordinates on
D.
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Construction of nonholonomic integrators

o Lg:Q x Q — Raregular discrete Lagrangian
@ The constraint distribution D

@ The discrete constraint embedded submanifold M
in, : M = Q x Q is an embedded submanifold of Q x Q

Assumption
dimM. =dim D

(La, M, D) = a discrete nonholonomic Lagrangian system on Q x Q
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(do, q1) € Mc
((qo,91), (g1, 92)) is a solution

)

(g1, q2) € M
D>L4(qo0,q1) + D1Lla(qi, q2) = Aant™(q1)
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