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Non-holonomic reduction

@ Non-holonomic reduction is the term used for the reduction of
symmetries of non-holonomically constrained Hamiltonian systems.
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Non-holonomic reduction

@ Non-holonomic reduction is the term used for the reduction of
symmetries of non-holonomically constrained Hamiltonian systems.

@ Consider a constrained system with configuration space Q, kinetic
energy metric k : TQ X¢o TQ — R, potential energy V : @ — R, and
a constraint distribution P C TQ.
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Non-holonomic reduction

@ Non-holonomic reduction is the term used for the reduction of
symmetries of non-holonomically constrained Hamiltonian systems.

@ Consider a constrained system with configuration space Q, kinetic
energy metric k : TQ X¢o TQ — R, potential energy V : @ — R, and
a constraint distribution P C TQ.

@ Assumption: the work of the reaction force of the constraints on
virtual motions compatible with constraints vanishes.
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Non-holonomic reduction

@ Non-holonomic reduction is the term used for the reduction of
symmetries of non-holonomically constrained Hamiltonian systems.

@ Consider a constrained system with configuration space Q, kinetic
energy metric k : TQ X¢o TQ — R, potential energy V : @ — R, and
a constraint distribution P C TQ.

@ Assumption: the work of the reaction force of the constraints on
virtual motions compatible with constraints vanishes.

@ Let T: P — Q@ be the restriction to P of the tangent bundle
projection Tg : TQ — Q, and

H={we TP | Tt(w) € PC TQ}.
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Non-holonomic reduction

Non-holonomic reduction is the term used for the reduction of
symmetries of non-holonomically constrained Hamiltonian systems.
Consider a constrained system with configuration space Q, kinetic
energy metric k : TQ X¢o TQ — R, potential energy V : @ — R, and
a constraint distribution P C TQ.

Assumption: the work of the reaction force of the constraints on
virtual motions compatible with constraints vanishes.

Let T: P — @ be the restriction to P of the tangent bundle
projection Tg : TQ — Q, and

H={we TP | Tt(w) € PC TQ}.

The pull-back of the canonical symplectic form wg of T*Q by the
Legendre transformation corresponding to the kinetic energy %k(u, u)
of the system, induces on each fibre H, a linear symplectic form @,,.
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Non-holonomic reduction

Non-holonomic reduction is the term used for the reduction of
symmetries of non-holonomically constrained Hamiltonian systems.
Consider a constrained system with configuration space Q, kinetic
energy metric k : TQ X¢o TQ — R, potential energy V : @ — R, and
a constraint distribution P C TQ.

Assumption: the work of the reaction force of the constraints on
virtual motions compatible with constraints vanishes.

Let T: P — @ be the restriction to P of the tangent bundle
projection Tg : TQ — Q, and

H={we TP | Tt(w) € PC TQ}.

The pull-back of the canonical symplectic form wg of T*Q by the
Legendre transformation corresponding to the kinetic energy %k(u, u)
of the system, induces on each fibre H, a linear symplectic form @,,.

(H, @) is a symplectic distribution on P.
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@ For each f € C®(P), the distributional Hamiltonian vector field of f
is the unique vector field Yf in H such that, for every u € P and
w e H,,
@(Ys(u),w) = (df | w).
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@ For each f € C®(P), the distributional Hamiltonian vector field of f
is the unique vector field Yf in H such that, for every u € P and
w e H,,
@(Ys(u),w) = (df | w).

o If dyf denote the restriction of df to H, then,
Yr 1@ = dyf.

Y is the distributional Hamiltonian vector field of f € C®(P).
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@ For each f € C®(P), the distributional Hamiltonian vector field of f
is the unique vector field Yf in H such that, for every u € P and
w e H,,
@(Ys(u),w) = (df | w).

o If dyf denote the restriction of df to H, then,
Yr 1@ = dyf.

Y is the distributional Hamiltonian vector field of f € C®(P).

@ Motions are given by integral curves of the distributional Hamiltonian
vector field Y}, of the energy function

h(u) = %k(u, W) + V(to(u)).
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@ For each f € C®(P), the distributional Hamiltonian vector field of f
is the unique vector field Yf in H such that, for every u € P and
w e H,,
@(Ys(u),w) = (df | w).

o If dyf denote the restriction of df to H, then,
Yr 1@ = dyf.

Y is the distributional Hamiltonian vector field of f € C®(P).

@ Motions are given by integral curves of the distributional Hamiltonian
vector field Y}, of the energy function

h(u) = %k(u, W) + V(to(u)).

e We say that (P, H, @, h) is a distributional Hamiltonian system.
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Almost Poisson structure

@ On C*®(P), we define a bracket almost Poisson bracket

{fhi o} = Vit
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Almost Poisson structure

@ On C*®(P), we define a bracket almost Poisson bracket
{fhi o} = Vit

@ It is called an almost Poisson bracket. It is skew symmetric and is a
derivation. However, it satisfies Jacobi's identity only if the
distribution P on @ is integrable.
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Almost Poisson structure

@ On C*®(P), we define a bracket almost Poisson bracket
{fhi o} = Vit

@ It is called an almost Poisson bracket. It is skew symmetric and is a
derivation. However, it satisfies Jacobi's identity only if the
distribution P on @ is integrable.

@ The ring C®(P) endowed with an almost Poisson bracket is called an
almost Poisson algebra.
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Almost Poisson structure

@ On C*®(P), we define a bracket almost Poisson bracket
{fhi o} = Vit

@ It is called an almost Poisson bracket. It is skew symmetric and is a
derivation. However, it satisfies Jacobi's identity only if the
distribution P on @ is integrable.

@ The ring C®(P) endowed with an almost Poisson bracket is called an
almost Poisson algebra.

@ We can put equations of motion in the almost Poisson form:

d
S (e(®)) = {h f}(c(t))

for every f € C®(P) and each integral curve of Y},
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o We assume that a Lie symmetry group G of (P, H, @, h) acts
properly on P, preserving H C TP,
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o We assume that a Lie symmetry group G of (P, H, @, h) acts
properly on P, preserving H C TP,
@ Hence, the action of G on P preserves the almost Poisson bracket on

C®(P).
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o We assume that a Lie symmetry group G of (P, H, @, h) acts
properly on P, preserving H C TP,

@ Hence, the action of G on P preserves the almost Poisson bracket on
C®(P).

@ Therefore, the ring C°°(P)G of G-invariant smooth functions on P is
an almost Poisson subalgera of C®(P).
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o We assume that a Lie symmetry group G of (P, H, @, h) acts
properly on P, preserving H C TP,

@ Hence, the action of G on P preserves the almost Poisson bracket on
C®(P).

@ Therefore, the ring C°°(P)G of G-invariant smooth functions on P is
an almost Poisson subalgera of C®(P).

o Let R = P/G be the space of G-orbits on P and p: P — R be the
orbit map.
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o We assume that a Lie symmetry group G of (P, H, @, h) acts
properly on P, preserving H C TP,

@ Hence, the action of G on P preserves the almost Poisson bracket on
C®(P).

@ Therefore, the ring C°°(P)G of G-invariant smooth functions on P is
an almost Poisson subalgera of C®(P).

o Let R = P/G be the space of G-orbits on P and p: P — R be the
orbit map.

@ The differential structure of R is given by

C®(R) = {f: R — R | p*f € C°(P)}.
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o We assume that a Lie symmetry group G of (P, H, @, h) acts
properly on P, preserving H C TP,

@ Hence, the action of G on P preserves the almost Poisson bracket on
C®(P).

@ Therefore, the ring C°°(P)G of G-invariant smooth functions on P is
an almost Poisson subalgera of C®(P).

o Let R = P/G be the space of G-orbits on P and p: P — R be the
orbit map.

@ The differential structure of R is given by

C®(R) = {f: R — R | p*f € C°(P)}.

o C®(R) is isomorphic to C®°(R)®. Hence, it inherits an almost
Poisson bracket such that

P iR} = {ph. 0 h}
for all fi, , € C*(R).
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@ For f € C®(R) define an almost Poisson derivation Y7 of C*(R)
such that
Y A ={f A}
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@ For f € C®(R) define an almost Poisson derivation Y7 of C*(R)
such that
Vi = {7.fi).
@ Then
p*(Yr A1) = Yorrp™fi

which implies that Y7 is a vector field on R.
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@ For f € C®(R) define an almost Poisson derivation Y7 of C*(R)
such that
Vi = {7.fi).
@ Then
p*(Yr A1) = Yorrp™fi
which implies that Y7 is a vector field on R.

@ The Hamiltonian h is G-invariant, hence h = p_h, and integral curves
of Yj are projections to R of integral curves of Y},
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@ For f € C®(R) define an almost Poisson derivation Y7 of C*(R)

such that
Y; A ={f fi}.
@ Then
p* (Y7 i) = Yprp'fy
which implies that Y7 is a vector field on R.

@ The Hamiltonian h is G-invariant, hence h = p_h, and integral curves
of Yj are projections to R of integral curves of Y},

@ The reduced system (R, {.,.}, h) is an almost Poisson system.
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@ For f € C®(R) define an almost Poisson derivation Y7 of C*(R)
such that
Vi = {7.fi).
@ Then
P (Yr i) = Yperp™fy
which implies that Y7 is a vector field on R.

@ The Hamiltonian h is G-invariant, hence h = p_h, and integral curves
of Yj are projections to R of integral curves of Y},

@ The reduced system (R, {.,.}, h) is an almost Poisson system.

@ R is stratified by orbits of the family of all vector fields on R. Each
stratum is an almost Poisson manifold.
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@ For f € C®(R) define an almost Poisson derivation Y7 of C*(R)
such that
Vi = {7.fi).
@ Then
P (Yr i) = Yperp™fy
which implies that Y7 is a vector field on R.

@ The Hamiltonian h is G-invariant, hence h = p_h, and integral curves
of Yj are projections to R of integral curves of Y},

@ The reduced system (R, {.,.}, h) is an almost Poisson system.

@ R is stratified by orbits of the family of all vector fields on R. Each
stratum is an almost Poisson manifold.

@ Each stratum inherits the structure of a constrained Hamiltonian
system.
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Pontryagin bundle

@ The Pontryagin bundle of a manifold Q is the direct sum TQ & T*Q
of the tangent and cotangent bundle of Q. It is naturally isomorphic
to the fibre product P = TQ xo T*Q. Let T7: TQ — Q and
¥: T"Q — Q be the tangent and the cotangent bundle projections,
respectively, and

T:P=TQRXoT'Q— Q:(up)— rt(up)=(t(u),dp)).
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Pontryagin bundle

@ The Pontryagin bundle of a manifold Q is the direct sum TQ & T*Q
of the tangent and cotangent bundle of Q. It is naturally isomorphic
to the fibre product P = TQ xo T*Q. Let T7: TQ — Q and
¥: T"Q — Q be the tangent and the cotangent bundle projections,
respectively, and

T:P=TQRXoT'Q— Q:(up)— rt(up)=(t(u),dp)).

@ The Pontryagin bundle carries a symmetric form ((-,-)) defined as
follows. For each (uy, p1) and (uz, p2) in the same fibre of 7,

{(((ur, p1), (12, p2)}) = (p1 | w2) + (p2 | un).
The form ((-, -)) is indefinite with signature (dim Q, dim Q).
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Pontryagin bundle

@ The Pontryagin bundle of a manifold Q is the direct sum TQ & T*Q
of the tangent and cotangent bundle of Q. It is naturally isomorphic
to the fibre product P = TQ xo T*Q. Let T7: TQ — Q and
¥: T"Q — Q be the tangent and the cotangent bundle projections,
respectively, and

T:P=TQRXoT'Q— Q:(up)— rt(up)=(t(u),dp)).

@ The Pontryagin bundle carries a symmetric form ((-,-)) defined as
follows. For each (uy, p1) and (uz, p2) in the same fibre of 7,

(((u1, p1), (2, p2))) = (p1 | 12) + (p2 | ).

The form ((-,-)) is indefinite with signature (dim Q,dim Q).

@ Moreover, the space I'(P) of smooth sections of the Pontryagin
bundle carries a bilinear skew-symmetric bracket, called the Courant
bracket,

[(X,a), (¥, B)] = (IX. Y], $xB — Sya+ 3 (a(¥) ~ (X))
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Symmetries of a Dirac structure

@ A Dirac structure on Q is a subbundle D of TQ x¢o T*Q, which is
maximal isotropic with respect to the bilinear form ((-,-)). Thus,
rank D = dim Q. We denote by : : D — P the inclusion map and by
d=motr:D — Q the projection of D onto Q.
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Symmetries of a Dirac structure

@ A Dirac structure on Q is a subbundle D of TQ x¢o T*Q, which is
maximal isotropic with respect to the bilinear form ((-,-)). Thus,
rank D = dim Q. We denote by : : D — P the inclusion map and by
d=motr:D — Q the projection of D onto Q.

o Let

P:GxQ— Q: (g x)— Pg(x) = gx
be an action of a connected Lie group G on the manifold Q. It
induces an action

TO:GxTQ— TQ: (g u)— TP (u)
of G on the tangent bundle TQ of Q. The push-forward of a vector
field X on Q by ®, is given by
(CIDg)*X =TP,0Xo0 CDg_1,
where, we treat X as a section of the tangent bundle projection

T:TQ — Q. A vector field X is G-invariant if (®z).X = X for each
g€ G.
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@ Similarly, we have an induced action
T"®:GxTQ— T"Q: (g, p)— T"Py(p),
where
(T"®g(p) | u) = (p | TPg-1(u))
for every pair (u,p) € P = TQ X T*Q. This definition implies that
the action of G on P preserves the evaluation. In other words,

(T"®g(p) | TOg(u)) = (p | u)

for all g € G.
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@ Similarly, we have an induced action
T"e:GxT'Q—T'Q: (g p) — T Pg(p),
where
(T"®g(p) | u) = (p | TPg-1(u))
for every pair (u,p) € P = TQ X T*Q. This definition implies that
the action of G on P preserves the evaluation. In other words,
(T*®g(p) | TOg(u)) = (p|u)
for all g € G.

o If ais a 1-form on @, considered as a section of the cotangent bundle
9: T*Q — @, then

(Pg)stt = T"Pgoao Dy
is a section of @ that we shall also call the push-forward of a by ®.

A form a is G-invariant if (®g).a = a for every g € G. For every
1-form a on Q,

(Pg)s = (Py1)a.
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@ The product of T® and T*® gives rise to an action

Y:GxP—P:(g (up))—Yeg(up)=(TPg(u) T Dg(p)).
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@ The product of T® and T*® gives rise to an action
Y:GxP—P:(g (up))—Yeg(up)=(TPg(u) T Dg(p)).

@ For a section 0 = (X,a) of 1: P — Q, we denote by (®g).0 the
section of 7t given by

(Pg)eo =Tz 000D = ((Pg)X, (Pg)stt) = ((Pg) X, Py 1at).
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@ The product of T® and T*® gives rise to an action
Y:GxP—P:(g (up))—Yeg(up)=(TPg(u) T Dg(p)).

@ For a section 0 = (X,a) of 1: P — Q, we denote by (®g).0 the
section of 7t given by

(Pg)eo =Tz 000D = ((Pg)X, (Pg)stt) = ((Pg) X, Py 1at).

@ A section ¢ of 7T is G-invariant if (®,).0 = o for each g € G.
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@ The product of T® and T*® gives rise to an action
Y:GxP—P:(g (up))—Yeg(up)=(TPg(u) T Dg(p)).

@ For a section 0 = (X,a) of 1: P — Q, we denote by (®g).0 the
section of 7t given by

(Pg)eo =Tz 000D = ((Pg)X, (Pg)stt) = ((Pg) X, Py 1at).

@ A section ¢ of 7T is G-invariant if (®,).0 = o for each g € G.

@ We consider here a Dirac structure D C P that is invariant under the
action of G on P.
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Free and proper action

@ If the action @ of G on @ is free and proper, the action ¥ of G on
the Pontryagin bundle is also free and proper.

@ Therefore, Q is a left principal fibre bundle with structure group G,
the base manifold Q/G and the projection map p, : Q — Q/G.

@ Similarly, P is a left principal G-bundle with base manifold P/ G and
the projection map pp : P — P/G.

@ Since the Pontryagin bundle projection 77 : P — Q intertwines the
action of G in P and Q; that is, foreach g € G, mTo¥; = P, o, it
follows that there exists a map 7T : P/ G — Q/ G such that the
following diagram

Pp
P — P/G
T l T
Q — Q/G
Pq

commutes.
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@ Moreover, the action ¥ on P is linear on fibres of the projection 7.

@ Therefore, 7: P/G — Q/G is a vector bundle.
o Ifor = (X,a): Q — Pisa G-invariant section of 7, there exists a
section ¢ = (X,®) : @/G — P/ G of 7 such that the following

diagram

Pp
P — P/G
c 7 T 0
Q — Q/G
P

commutes.

Singular Reduction
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Principal connection

@ A connection on the principal bundle @ is a G-invariant distribution
hor TQ, that is complementary to the vertical distribution
ver TQ = ker T7t. This implies that we have a direct sum
decomposition

TQ =ver TQ ® hor TQ.

Every vector u € T,Q can be decomposed into the vertical part ver u
and the horizontal part hor u, that is u = ver u + hor u. Similarly,
every covector p € Ty Q can be decomposed into the vertical part
ver p and the horizontal part hor p such that

(p| u) = (verp|veru)+ (horp | horu).
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Principal connection

@ A connection on the principal bundle @ is a G-invariant distribution
hor TQ, that is complementary to the vertical distribution
ver TQ = ker T7t. This implies that we have a direct sum
decomposition
TQ =ver TQ ® hor TQ.

Every vector u € T,Q can be decomposed into the vertical part ver u
and the horizontal part hor u, that is u = ver u + hor u. Similarly,
every covector p € Ty Q can be decomposed into the vertical part
ver p and the horizontal part hor p such that

(p| u) = (verp|veru)+ (horp | horu).

@ The decompositions described here lead to a decomposition of the
Pontryagin bundle P = ver P & hor P, where the vertical Pontryagin
bundle ver P and the horizontal Pontryagin bundle hor P are given by

verP=verTQ®ver T*Q and horP =hor TQ ®hor T*Q.
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@ We get a decomposition of the bilinear form on P into its vertical and
horizontal components

{(-)) = ver ((-,-)) +hor ((,-)).
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@ We get a decomposition of the bilinear form on P into its vertical and
horizontal components

{(-)) = ver ((-,-)) +hor ((,-)).

@ The bracket on the space of sections of P need not decompose into
horizontal and vertical parts because the bracket of a horizontal
section of P with the vertical section of P need not vanish.
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@ We get a decomposition of the bilinear form on P into its vertical and
horizontal components

{(-)) = ver ((-,-)) +hor ((,-)).

@ The bracket on the space of sections of P need not decompose into
horizontal and vertical parts because the bracket of a horizontal
section of P with the vertical section of P need not vanish.

@ The orbit spaces (ver P)/G and (hor P)/G are vector bundles over
P/G. We call (ver P)/G the reduced vertical Pontryagin bundle and
(hor P)/ G the reduced horizontal Pontryagin bundle.
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@ We get a decomposition of the bilinear form on P into its vertical and
horizontal components

{(-)) = ver ((-,-)) +hor ((,-)).

@ The bracket on the space of sections of P need not decompose into
horizontal and vertical parts because the bracket of a horizontal
section of P with the vertical section of P need not vanish.

@ The orbit spaces (ver P)/G and (hor P)/G are vector bundles over
P/G. We call (ver P)/G the reduced vertical Pontryagin bundle and
(hor P)/ G the reduced horizontal Pontryagin bundle.

@ The reduced vertical Pontryagin bundle (ver P)/G is isomorphic to
the direct sum of Q[g] ® Q[g*] of the adjoint and co-adjoint bundles
of Q.
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@ We get a decomposition of the bilinear form on P into its vertical and
horizontal components

{(-)) = ver ((-,-)) +hor ((,-)).

@ The bracket on the space of sections of P need not decompose into
horizontal and vertical parts because the bracket of a horizontal
section of P with the vertical section of P need not vanish.

@ The orbit spaces (ver P)/G and (hor P)/G are vector bundles over
P/G. We call (ver P)/G the reduced vertical Pontryagin bundle and
(hor P)/ G the reduced horizontal Pontryagin bundle.

@ The reduced vertical Pontryagin bundle (ver P)/G is isomorphic to
the direct sum of Q[g] ® Q[g*] of the adjoint and co-adjoint bundles
of Q.

@ The reduced horizontal Pontryagin bundle is isomorphic to the
Pontryagin bundle of the orbit space Q/G.
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@ We get a decomposition of the bilinear form on P into its vertical and
horizontal components

{(-)) = ver ((-,-)) +hor ((,-)).

@ The bracket on the space of sections of P need not decompose into
horizontal and vertical parts because the bracket of a horizontal
section of P with the vertical section of P need not vanish.

@ The orbit spaces (ver P)/G and (hor P)/G are vector bundles over
P/G. We call (ver P)/G the reduced vertical Pontryagin bundle and
(hor P)/ G the reduced horizontal Pontryagin bundle.

@ The reduced vertical Pontryagin bundle (ver P)/G is isomorphic to
the direct sum of Q[g] ® Q[g*] of the adjoint and co-adjoint bundles
of Q.

@ The reduced horizontal Pontryagin bundle is isomorphic to the
Pontryagin bundle of the orbit space Q/G.

@ Note that the adjoint bundle of a principal fibre bundle Q is
Qlg] = (Q x g)/G. Similarly, the co-adjoint bundle of Q is
Qlg*] = (@ xg")/G.
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@ The reduced Pontryagin bundle P/ G is isomorphic to the direct sum
of Qlg] ® Q[g*] and T(Q/G) & T*(Q/G).
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@ The reduced Pontryagin bundle P/ G is isomorphic to the direct sum
of Qg] ® Q[g*] and T(Q/G) ® T*(Q/G).

@ The bilinear form ((-,-)) on P is G-invariant and it gives rise to a
bilinear form ((-,-))p,c on the reduced Pontryagin bundle such that

{(p1. p2)) = ((op(P1). Pp(P2))) P /6

for every p1, p2 in the same fibre of P.
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@ The reduced Pontryagin bundle P/ G is isomorphic to the direct sum
of Qg] ® Q[g*] and T(Q/G) ® T*(Q/G).

@ The bilinear form ((-,-)) on P is G-invariant and it gives rise to a
bilinear form ((-,-))p,c on the reduced Pontryagin bundle such that

{(p1. p2)) = ((op(P1). Pp(P2))) P /6

for every p1, p2 in the same fibre of P.

@ The Courant bracket evaluated on G-invariant sections of P — @
gives a G-invariant section of P — G. Hence, there is a bracket
[,-]p/c on the space I'(P/G) of sections of T: P/ G — @/ G such
that if o1 and o, are G-invariant sections of P — G, then

(01, 72]p/c = [01,02].
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@ Consider now a Dirac structure on Q given by a G-invariant subbundle
D of P, which is maximal isotropic with respect to the bilinear form.
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@ Consider now a Dirac structure on Q given by a G-invariant subbundle
D of P, which is maximal isotropic with respect to the bilinear form.

@ A G-invariant Dirac structure D C P = TQ & T*Q is locally spanned
by G-invariant sections.
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@ Consider now a Dirac structure on Q given by a G-invariant subbundle
D of P, which is maximal isotropic with respect to the bilinear form.

@ A G-invariant Dirac structure D C P = TQ & T*Q is locally spanned
by G-invariant sections.

@ The space D/ G of G-orbits in D is asubbundle of P/ G, which is
maximally isotropic with respect to the bilinear form on P/ G induced
by the bilinear form ((-,*))p,c.
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@ Consider now a Dirac structure on Q given by a G-invariant subbundle
D of P, which is maximal isotropic with respect to the bilinear form.

@ A G-invariant Dirac structure D C P = TQ & T*Q is locally spanned
by G-invariant sections.

@ The space D/ G of G-orbits in D is asubbundle of P/ G, which is
maximally isotropic with respect to the bilinear form on P/ G induced
by the bilinear form ((-,*))p,c.

@ If the Dirac structure D is closed in the sense that for each pair 0
and o, of G-invariant sections of D — Q, the bracket [01, 0] has
values in D, then [0, 02]p /¢ has values in D/ G for every pair of
sections 01,07 of (D/G) — Q/G.
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Reduction for a proper action

@ We drop the assumption that the action of G on @ is free.
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Reduction for a proper action

@ We drop the assumption that the action of G on @ is free.

@ Nevertheless, if a Dirac structure D C P = TQ & T*Q is invariant
under a proper action of a connected Lie group G on Q, D is locally
spanned by G-invariant sections.

@ For each compact subgroup H of G and each connected component L
of

QH:{q€Q|Gq:Q},
consider the intersection D; = DN 7t~ 1(L), where 7w : P — Q is the
Pontryagin bundle projection.
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Reduction for a proper action

@ We drop the assumption that the action of G on @ is free.

@ Nevertheless, if a Dirac structure D C P = TQ & T*Q is invariant
under a proper action of a connected Lie group G on Q, D is locally
spanned by G-invariant sections.

@ For each compact subgroup H of G and each connected component L
of

QH:{q€Q|Gq:Q},
consider the intersection D; = DN 7t~ 1(L), where 7w : P — Q is the
Pontryagin bundle projection.

D is uniquely determined by the collection of all structures D;, as L varies
over connected components of Qy and H varies over compact subgroups
of G.

J. Sniatycki (University of Calgary) Singular Reduction



@ Let Ny C G be a subgroup of G consisting of elements g € G that
preserve the manifold L.
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G -invariant.
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@ Let Ny C G be a subgroup of G consisting of elements g € G that
preserve the manifold L.

@ The action of Gt = N;/H on L is free and proper.
@ Since the Dirac structure D is G-invariant, it follows that D; is
G -invariant.

@ Hence, we need to analyze the structure of D; and apply regular
reduction.
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