Differential Geometry of Singular Spaces and Reduction of Symmetries Lecture 4

© Jędrzej Śniatycki

Jędrzej Śniatycki

Department of Mathematics and Statistics University of Calgary

Mechanics and Geometry in Canada Fields Instutute Toronto 19 July 2012

• Non-holonomic reduction is the term used for the reduction of symmetries of non-holonomically constrained Hamiltonian systems.

- Non-holonomic reduction is the term used for the reduction of symmetries of non-holonomically constrained Hamiltonian systems.
- Consider a constrained system with configuration space Q, kinetic energy metric $k: TQ \times_Q TQ \to R$, potential energy $V: Q \to R$, and a constraint distribution $P \subseteq TQ$.

- Non-holonomic reduction is the term used for the reduction of symmetries of non-holonomically constrained Hamiltonian systems.
- Consider a constrained system with configuration space Q, kinetic energy metric $k: TQ \times_Q TQ \to R$, potential energy $V: Q \to R$, and a constraint distribution $P \subseteq TQ$.
- Assumption: the work of the reaction force of the constraints on virtual motions compatible with constraints vanishes.

- Non-holonomic reduction is the term used for the reduction of symmetries of non-holonomically constrained Hamiltonian systems.
- Consider a constrained system with configuration space Q, kinetic energy metric $k: TQ \times_Q TQ \to R$, potential energy $V: Q \to R$, and a constraint distribution $P \subseteq TQ$.
- Assumption: the work of the reaction force of the constraints on virtual motions compatible with constraints vanishes.
- Let $\tau: P \to Q$ be the restriction to P of the tangent bundle projection $\tau_Q: TQ \to Q$, and

$$H = \{ w \in TP \mid T\tau(w) \in P \subset TQ \}.$$

- Non-holonomic reduction is the term used for the reduction of symmetries of non-holonomically constrained Hamiltonian systems.
- Consider a constrained system with configuration space Q, kinetic energy metric $k: TQ \times_Q TQ \to R$, potential energy $V: Q \to R$, and a constraint distribution $P \subseteq TQ$.
- Assumption: the work of the reaction force of the constraints on virtual motions compatible with constraints vanishes.
- Let $\tau: P \to Q$ be the restriction to P of the tangent bundle projection $\tau_Q: TQ \to Q$, and

$$H = \{ w \in TP \mid T\tau(w) \in P \subset TQ \}.$$

• The pull-back of the canonical symplectic form ω_Q of T^*Q by the Legendre transformation corresponding to the kinetic energy $\frac{1}{2}k(u,u)$ of the system, induces on each fibre H_u a linear symplectic form ω_u .

- Non-holonomic reduction is the term used for the reduction of symmetries of non-holonomically constrained Hamiltonian systems.
- Consider a constrained system with configuration space Q, kinetic energy metric $k: TQ \times_Q TQ \to R$, potential energy $V: Q \to R$, and a constraint distribution $P \subseteq TQ$.
- Assumption: the work of the reaction force of the constraints on virtual motions compatible with constraints vanishes.
- Let $\tau: P \to Q$ be the restriction to P of the tangent bundle projection $\tau_Q: TQ \to Q$, and

$$H = \{ w \in TP \mid T\tau(w) \in P \subset TQ \}.$$

- The pull-back of the canonical symplectic form ω_Q of T^*Q by the Legendre transformation corresponding to the kinetic energy $\frac{1}{2}k(u,u)$ of the system, induces on each fibre H_u a linear symplectic form ω_u .
- (H, ω) is a symplectic distribution on P.

$$\omega(Y_f(u), w) = \langle df \mid w \rangle.$$

$$\omega(Y_f(u), w) = \langle df \mid w \rangle.$$

• If $\partial_H f$ denote the restriction of df to H, then,

$$Y_f \bot \omega = \partial_H f$$
.

 Y_f is the distributional Hamiltonian vector field of $f \in C^{\infty}(P)$.

$$\omega(Y_f(u), w) = \langle df \mid w \rangle.$$

• If $\partial_H f$ denote the restriction of df to H, then,

$$Y_f \lrcorner \omega = \partial_H f$$
.

 Y_f is the distributional Hamiltonian vector field of $f \in C^{\infty}(P)$.

• Motions are given by integral curves of the distributional Hamiltonian vector field Y_h of the energy function

$$h(u) = \frac{1}{2}k(u, u) + V(\tau_Q(u)).$$

$$\omega(Y_f(u), w) = \langle df \mid w \rangle.$$

• If $\partial_H f$ denote the restriction of df to H, then,

$$Y_f \lrcorner \omega = \partial_H f$$
.

 Y_f is the distributional Hamiltonian vector field of $f \in C^{\infty}(P)$.

• Motions are given by integral curves of the distributional Hamiltonian vector field Y_h of the energy function

$$h(u) = \frac{1}{2}k(u, u) + V(\tau_Q(u)).$$

• We say that (P, H, ω, h) is a distributional Hamiltonian system.

• On $C^{\infty}(P)$, we define a bracket almost Poisson bracket

$$\{f_1, f_2\} = Y_{f_1}f_2.$$

• On $C^{\infty}(P)$, we define a bracket almost Poisson bracket

$$\{f_1, f_2\} = Y_{f_1}f_2.$$

 It is called an almost Poisson bracket. It is skew symmetric and is a derivation. However, it satisfies Jacobi's identity only if the distribution P on Q is integrable.

• On $C^{\infty}(P)$, we define a bracket almost Poisson bracket

$$\{f_1, f_2\} = Y_{f_1}f_2.$$

- It is called an almost Poisson bracket. It is skew symmetric and is a derivation. However, it satisfies Jacobi's identity only if the distribution P on Q is integrable.
- The ring $C^{\infty}(P)$ endowed with an almost Poisson bracket is called an almost Poisson algebra.

• On $C^{\infty}(P)$, we define a bracket almost Poisson bracket

$$\{f_1, f_2\} = Y_{f_1}f_2.$$

- It is called an almost Poisson bracket. It is skew symmetric and is a derivation. However, it satisfies Jacobi's identity only if the distribution P on Q is integrable.
- The ring $C^{\infty}(P)$ endowed with an almost Poisson bracket is called an almost Poisson algebra.
- We can put equations of motion in the almost Poisson form:

$$\frac{d}{dt}f(c(t)) = \{h, f\}(c(t))$$

for every $f \in C^{\infty}(P)$ and each integral curve of Y_h .

• We assume that a Lie symmetry group G of (P, H, ω, h) acts properly on P, preserving $H \subseteq TP$,

- We assume that a Lie symmetry group G of (P, H, ω, h) acts properly on P, preserving $H \subseteq TP$,
- Hence, the action of G on P preserves the almost Poisson bracket on $C^{\infty}(P)$.

- We assume that a Lie symmetry group G of (P, H, ω, h) acts properly on P, preserving $H \subseteq TP$,
- Hence, the action of G on P preserves the almost Poisson bracket on $C^{\infty}(P)$.
- Therefore, the ring $C^{\infty}(P)^{G}$ of G-invariant smooth functions on P is an almost Poisson subalgera of $C^{\infty}(P)$.

- We assume that a Lie symmetry group G of (P, H, ω, h) acts properly on P, preserving $H \subseteq TP$,
- Hence, the action of G on P preserves the almost Poisson bracket on $C^{\infty}(P)$.
- Therefore, the ring $C^{\infty}(P)^G$ of G-invariant smooth functions on P is an almost Poisson subalgera of $C^{\infty}(P)$.
- Let R = P/G be the space of G-orbits on P and $\rho: P \to R$ be the orbit map.

- We assume that a Lie symmetry group G of (P, H, ω, h) acts properly on P, preserving $H \subseteq TP$,
- Hence, the action of G on P preserves the almost Poisson bracket on $C^{\infty}(P)$.
- Therefore, the ring $C^{\infty}(P)^{G}$ of G-invariant smooth functions on P is an almost Poisson subalgera of $C^{\infty}(P)$.
- Let R = P/G be the space of G-orbits on P and $\rho: P \to R$ be the orbit map.
- The differential structure of R is given by

$$C^{\infty}(R) = \{ f : R \to \mathbb{R} \mid \rho^* f \in C^{\infty}(P) \}.$$

- We assume that a Lie symmetry group G of (P, H, ω, h) acts properly on P, preserving $H \subseteq TP$,
- Hence, the action of G on P preserves the almost Poisson bracket on $C^{\infty}(P)$.
- Therefore, the ring $C^{\infty}(P)^G$ of G-invariant smooth functions on P is an almost Poisson subalgera of $C^{\infty}(P)$.
- Let R = P/G be the space of G-orbits on P and $\rho: P \to R$ be the orbit map.
- The differential structure of R is given by

$$C^{\infty}(R) = \{ f : R \to \mathbb{R} \mid \rho^* f \in C^{\infty}(P) \}.$$

• $C^{\infty}(R)$ is isomorphic to $C^{\infty}(R)^G$. Hence, it inherits an almost Poisson bracket such that

$$\rho^*\{\bar{f}_1, \bar{f}_2\} = \{\rho^*\bar{f}_1, \rho^*\bar{f}_2\}$$

for all \bar{f}_1 , $\bar{f}_2 \in C^{\infty}(R)$.

• For $\bar{f} \in C^{\infty}(R)$ define an almost Poisson derivation $\bar{Y}_{\bar{f}}$ of $C^{\infty}(R)$ such that

$$\bar{Y}_{\bar{f}}$$
 $\bar{f}_1 = \{\bar{f}, f_1\}.$

• For $\bar f\in C^\infty(R)$ define an almost Poisson derivation $\bar Y_{\bar f}$ of $C^\infty(R)$ such that

$$\bar{Y}_{\bar{f}}$$
 $\bar{f}_1 = \{\bar{f}, f_1\}.$

Then

$$\rho^*(\bar{Y}_{\bar{f}} \ \bar{f}_1) = Y_{\rho^*f} \rho^* f_1$$

• For $\bar f\in C^\infty(R)$ define an almost Poisson derivation $\bar Y_{\bar f}$ of $C^\infty(R)$ such that

$$\bar{Y}_{\bar{f}}$$
 $\bar{f}_1 = \{\bar{f}, f_1\}.$

Then

$$ho^*(\bar{Y}_{\bar{f}} \ \bar{f}_1) = Y_{
ho^*f}
ho^* f_1$$

which implies that $\bar{Y}_{\bar{f}}$ is a vector field on R.

• The Hamiltonian h is G-invariant, hence $h = \rho_* \bar{h}$, and integral curves of $\bar{Y}_{\bar{h}}$ are projections to R of integral curves of Y_h .

• For $\bar f\in C^\infty(R)$ define an almost Poisson derivation $\bar Y_{\bar f}$ of $C^\infty(R)$ such that

$$\bar{Y}_{\bar{f}}$$
 $\bar{f}_1 = \{\bar{f}, f_1\}.$

Then

$$\rho^*(\bar{Y}_{\bar{f}} \ \bar{f}_1) = Y_{\rho^*f} \rho^* f_1$$

- The Hamiltonian h is G-invariant, hence $h = \rho_* \bar{h}$, and integral curves of $\bar{Y}_{\bar{h}}$ are projections to R of integral curves of Y_h .
- The reduced system $(R, \{., .\}, \bar{h})$ is an almost Poisson system.

• For $\bar{f}\in C^\infty(R)$ define an almost Poisson derivation $\bar{Y}_{\bar{f}}$ of $C^\infty(R)$ such that

$$\bar{Y}_{\bar{f}}$$
 $\bar{f}_1 = \{\bar{f}, f_1\}.$

Then

$$\rho^*(\bar{Y}_{\bar{f}} \ \bar{f}_1) = Y_{\rho^*f} \rho^* f_1$$

- The Hamiltonian h is G-invariant, hence $h = \rho_* \bar{h}$, and integral curves of $\bar{Y}_{\bar{h}}$ are projections to R of integral curves of Y_h .
- \bullet The reduced system $(\textit{R},\{.,.\},\bar{\textit{h}})$ is an almost Poisson system.
- R is stratified by orbits of the family of all vector fields on R. Each stratum is an almost Poisson manifold.

• For $\bar{f}\in C^\infty(R)$ define an almost Poisson derivation $\bar{Y}_{\bar{f}}$ of $C^\infty(R)$ such that

$$\bar{Y}_{\bar{f}}$$
 $\bar{f}_1 = \{\bar{f}, f_1\}.$

Then

$$\rho^*(\bar{Y}_{\bar{f}} \ \bar{f}_1) = Y_{\rho^*f} \rho^* f_1$$

- The Hamiltonian h is G-invariant, hence $h = \rho_* \bar{h}$, and integral curves of $\bar{Y}_{\bar{h}}$ are projections to R of integral curves of Y_h .
- The reduced system $(R, \{., .\}, \bar{h})$ is an almost Poisson system.
- R is stratified by orbits of the family of all vector fields on R. Each stratum is an almost Poisson manifold.
- Each stratum inherits the structure of a constrained Hamiltonian system.

Pontryagin bundle

• The Pontryagin bundle of a manifold Q is the direct sum $TQ \oplus T^*Q$ of the tangent and cotangent bundle of Q. It is naturally isomorphic to the fibre product $P = TQ \times_Q T^*Q$. Let $\tau : TQ \to Q$ and $\vartheta : T^*Q \to Q$ be the tangent and the cotangent bundle projections, respectively, and

$$\pi: P = TQ \times_Q T^*Q \to Q: (u, p) \mapsto \pi(u, p) = (\tau(u), \vartheta(p)).$$

Pontryagin bundle

• The Pontryagin bundle of a manifold Q is the direct sum $TQ \oplus T^*Q$ of the tangent and cotangent bundle of Q. It is naturally isomorphic to the fibre product $P = TQ \times_Q T^*Q$. Let $\tau : TQ \to Q$ and $\vartheta : T^*Q \to Q$ be the tangent and the cotangent bundle projections, respectively, and

$$\pi: P = TQ \times_Q T^*Q \to Q: (u, p) \mapsto \pi(u, p) = (\tau(u), \vartheta(p)).$$

• The Pontryagin bundle carries a symmetric form $\langle \langle \cdot, \cdot \rangle \rangle$ defined as follows. For each (u_1, p_1) and (u_2, p_2) in the same fibre of π ,

$$\langle\langle\langle(u_1,p_1),(u_2,p_2)\rangle\rangle=\langle p_1\mid u_2\rangle+\langle p_2\mid u_1\rangle.$$

The form $\langle \langle \cdot, \cdot \rangle \rangle$ is indefinite with signature (dim Q, dim Q).

Pontryagin bundle

• The Pontryagin bundle of a manifold Q is the direct sum $TQ \oplus T^*Q$ of the tangent and cotangent bundle of Q. It is naturally isomorphic to the fibre product $P = TQ \times_Q T^*Q$. Let $\tau : TQ \to Q$ and $\vartheta : T^*Q \to Q$ be the tangent and the cotangent bundle projections, respectively, and

$$\pi: P = TQ \times_Q T^*Q \to Q: (u, p) \mapsto \pi(u, p) = (\tau(u), \vartheta(p)).$$

• The Pontryagin bundle carries a symmetric form $\langle \langle \cdot, \cdot \rangle \rangle$ defined as follows. For each (u_1, p_1) and (u_2, p_2) in the same fibre of π ,

$$\langle\langle(u_1,p_1),(u_2,p_2)\rangle\rangle=\langle p_1\mid u_2\rangle+\langle p_2\mid u_1\rangle.$$

The form $\langle \langle \cdot, \cdot \rangle \rangle$ is indefinite with signature (dim Q, dim Q).

• Moreover, the space $\Gamma(P)$ of smooth sections of the Pontryagin bundle carries a bilinear skew-symmetric bracket, called the Courant bracket,

$$[(X,\alpha),(Y,\beta)]=([X,Y],\$_X\beta-\$_Y\alpha+\frac{1}{2}d(\alpha(Y)-\beta(X))).$$

Symmetries of a Dirac structure

• A Dirac structure on Q is a subbundle D of $TQ \times_Q T^*Q$, which is maximal isotropic with respect to the bilinear form $\langle\langle\cdot,\cdot\rangle\rangle$. Thus, rank $D = \dim Q$. We denote by $\iota: D \to P$ the inclusion map and by $\delta = \pi \circ \iota: D \to Q$ the projection of D onto Q.

Symmetries of a Dirac structure

- A Dirac structure on Q is a subbundle D of $TQ \times_Q T^*Q$, which is maximal isotropic with respect to the bilinear form $\langle\langle\cdot,\cdot\rangle\rangle$. Thus, rank $D=\dim Q$. We denote by $\iota:D\to P$ the inclusion map and by $\delta=\pi\circ\iota:D\to Q$ the projection of D onto Q.
- Let

$$\Phi: G \times Q \rightarrow Q: (g, x) \mapsto \Phi_g(x) = gx$$

be an action of a connected Lie group G on the manifold Q. It induces an action

$$T\Phi: G \times TQ \rightarrow TQ: (g, u) \mapsto T\Phi_g(u)$$

of G on the tangent bundle TQ of Q. The push-forward of a vector field X on Q by $\Phi_{\mathcal{E}}$ is given by

$$(\Phi_g)_*X=T\Phi_g\circ X\circ\Phi_{g^{-1}}$$
 ,

where, we treat X as a section of the tangent bundle projection $\tau: TQ \to Q$. A vector field X is G-invariant if $(\Phi_g)_*X = X$ for each $g \in G$.

Similarly, we have an induced action

$$T^*\Phi: G \times T^*Q \to T^*Q: (g, p) \mapsto T^*\Phi_g(p),$$

where

$$\langle T^*\Phi_g(p) \mid u \rangle = \langle p \mid T\Phi_{g^{-1}}(u) \rangle$$

for every pair $(u, p) \in P = TQ \times_Q T^*Q$. This definition implies that the action of G on P preserves the evaluation. In other words,

$$\langle T^*\Phi_g(p) \mid T\Phi_g(u) \rangle = \langle p \mid u \rangle$$

for all $g \in G$.

• Similarly, we have an induced action

$$T^*\Phi: G \times T^*Q \to T^*Q: (g, p) \mapsto T^*\Phi_g(p),$$

where

$$\langle T^*\Phi_g(p) \mid u \rangle = \langle p \mid T\Phi_{g^{-1}}(u) \rangle$$

for every pair $(u, p) \in P = TQ \times_Q T^*Q$. This definition implies that the action of G on P preserves the evaluation. In other words,

$$\langle T^*\Phi_g(p) \mid T\Phi_g(u) \rangle = \langle p \mid u \rangle$$

for all $g \in G$.

• If α is a 1-form on Q, considered as a section of the cotangent bundle $\vartheta: T^*Q \to Q$, then

$$(\Phi_g)_*\alpha = T^*\Phi_g \circ \alpha \circ \Phi_{g^{-1}}$$

is a section of ϑ that we shall also call the push-forward of α by Φ_g . A form α is G-invariant if $(\Phi_g)_*\alpha=\alpha$ for every $g\in G$. For every 1-form α on Q,

$$(\Phi_g)_*\alpha=(\Phi_{g^{-1}}^*)\alpha.$$

• The product of $T\Phi$ and $T^*\Phi$ gives rise to an action

$$\Psi: G \times P \rightarrow P: (g, (u, p)) \mapsto \Psi_g(u, p) = (T\Phi_g(u), T^*\Phi_g(p)).$$

• The product of $T\Phi$ and $T^*\Phi$ gives rise to an action

$$\Psi: G \times P \rightarrow P: (g, (u, p)) \mapsto \Psi_g(u, p) = (T\Phi_g(u), T^*\Phi_g(p)).$$

• For a section $\sigma = (X, \alpha)$ of $\pi : P \to Q$, we denote by $(\Phi_g)_* \sigma$ the section of π given by

$$(\Phi_{\mathbf{g}})_*\sigma=\Psi_{\mathbf{g}}\circ\sigma\circ\Phi_{\mathbf{g}^{-1}}=((\Phi_{\mathbf{g}})_*X,(\Phi_{\mathbf{g}})_*\alpha)=((\Phi_{\mathbf{g}})_*X,\Phi_{\mathbf{g}^{-1}}^*\alpha).$$

• The product of $T\Phi$ and $T^*\Phi$ gives rise to an action

$$\Psi: G \times P \rightarrow P: (g, (u, p)) \mapsto \Psi_g(u, p) = (T\Phi_g(u), T^*\Phi_g(p)).$$

• For a section $\sigma = (X, \alpha)$ of $\pi : P \to Q$, we denote by $(\Phi_g)_* \sigma$ the section of π given by

$$(\Phi_{\mathsf{g}})_*\sigma=\Psi_{\mathsf{g}}\circ\sigma\circ\Phi_{\mathsf{g}^{-1}}=((\Phi_{\mathsf{g}})_*X,(\Phi_{\mathsf{g}})_*\alpha)=((\Phi_{\mathsf{g}})_*X,\Phi_{\mathsf{g}^{-1}}^*\alpha).$$

• A section σ of π is G-invariant if $(\Phi_g)_*\sigma=\sigma$ for each $g\in G$.

• The product of $T\Phi$ and $T^*\Phi$ gives rise to an action

$$\Psi: G \times P \rightarrow P: (g, (u, p)) \mapsto \Psi_g(u, p) = (T\Phi_g(u), T^*\Phi_g(p)).$$

• For a section $\sigma = (X, \alpha)$ of $\pi : P \to Q$, we denote by $(\Phi_g)_* \sigma$ the section of π given by

$$(\Phi_{\mathbf{g}})_*\sigma=\Psi_{\mathbf{g}}\circ\sigma\circ\Phi_{\mathbf{g}^{-1}}=((\Phi_{\mathbf{g}})_*X,(\Phi_{\mathbf{g}})_*\alpha)=((\Phi_{\mathbf{g}})_*X,\Phi_{\mathbf{g}^{-1}}^*\alpha).$$

- A section σ of π is G-invariant if $(\Phi_g)_*\sigma=\sigma$ for each $g\in G$.
- We consider here a Dirac structure $D \subset P$ that is invariant under the action of G on P.

Free and proper action

- If the action Φ of G on Q is free and proper, the action Ψ of G on the Pontryagin bundle is also free and proper.
- Therefore, Q is a left principal fibre bundle with structure group G, the base manifold Q/G and the projection map $\rho_O:Q\to Q/G$.
- Similarly, P is a left principal G-bundle with base manifold P/G and the projection map $\rho_P: P \to P/G$.
- Since the Pontryagin bundle projection $\pi:P\to Q$ intertwines the action of G in P and Q; that is, for each $g\in G$, $\pi\circ\Psi_g=\Phi_g\circ\pi$, it follows that there exists a map $\overline{\pi}:P/G\to Q/G$ such that the following diagram

$$\begin{array}{cccc} & \rho_P & & \\ P & \xrightarrow{\longrightarrow} & P/G \\ \pi & \downarrow & & \downarrow & \overline{\pi} \\ Q & \xrightarrow{\longrightarrow} & Q/G \\ & & \rho_Q & & \end{array}$$

commutes.

- Moreover, the action Ψ on P is linear on fibres of the projection π .
- Therefore, $\overline{\pi}: P/G \to Q/G$ is a vector bundle.
- If $\sigma = (X, \alpha) : Q \to P$ is a G-invariant section of π , there exists a section $\overline{\sigma} = (\overline{X}, \overline{\alpha}) : Q/G \to P/G$ of $\overline{\pi}$ such that the following diagram

$$\begin{array}{cccc} & \rho_P & & \\ P & \longrightarrow & P/G \\ \sigma & \uparrow & & \uparrow & \overline{\sigma} \\ Q & \longrightarrow & Q/G \\ & & \rho_Q & & \end{array}$$

commutes.

Principal connection

• A connection on the principal bundle Q is a G-invariant distribution hor TQ, that is complementary to the vertical distribution ver $TQ = \ker T\pi$. This implies that we have a direct sum decomposition

$$TQ = \text{ver } TQ \oplus \text{hor } TQ.$$

Every vector $u \in T_qQ$ can be decomposed into the vertical part $\operatorname{ver} u$ and the horizontal part $\operatorname{hor} u$, that is $u = \operatorname{ver} u + \operatorname{hor} u$. Similarly, every covector $p \in T_q^*Q$ can be decomposed into the vertical part $\operatorname{ver} p$ and the horizontal part $\operatorname{hor} p$ such that

$$\langle p \mid u \rangle = \langle \operatorname{ver} p \mid \operatorname{ver} u \rangle + \langle \operatorname{hor} p \mid \operatorname{hor} u \rangle.$$

Principal connection

• A connection on the principal bundle Q is a G-invariant distribution hor TQ, that is complementary to the vertical distribution $\operatorname{ver} TQ = \ker T\pi$. This implies that we have a direct sum decomposition

$$TQ = \text{ver } TQ \oplus \text{hor } TQ.$$

Every vector $u \in T_qQ$ can be decomposed into the vertical part $\operatorname{ver} u$ and the horizontal part $\operatorname{hor} u$, that is $u = \operatorname{ver} u + \operatorname{hor} u$. Similarly, every covector $p \in T_q^*Q$ can be decomposed into the vertical part $\operatorname{ver} p$ and the horizontal part $\operatorname{hor} p$ such that

$$\langle p \mid u \rangle = \langle \operatorname{ver} p \mid \operatorname{ver} u \rangle + \langle \operatorname{hor} p \mid \operatorname{hor} u \rangle.$$

• The decompositions described here lead to a decomposition of the Pontryagin bundle $P = \operatorname{ver} P \oplus \operatorname{hor} P$, where the vertical Pontryagin bundle $\operatorname{ver} P$ and the horizontal Pontryagin bundle $\operatorname{hor} P$ are given by

$$\operatorname{ver} P = \operatorname{ver} TQ \oplus \operatorname{ver} T^*Q$$
 and $\operatorname{hor} P = \operatorname{hor} TQ \oplus \operatorname{hor} T^*Q$.

$$\langle \langle \cdot, \cdot \rangle \rangle = \text{ver} \langle \langle \cdot, \cdot \rangle \rangle + \text{hor} \langle \langle \cdot, \cdot \rangle \rangle.$$

$$\langle\langle\cdot,\cdot\rangle\rangle = \operatorname{ver}\langle\langle\cdot,\cdot\rangle\rangle + \operatorname{hor}\langle\langle\cdot,\cdot\rangle\rangle.$$

• The bracket on the space of sections of *P* need not decompose into horizontal and vertical parts because the bracket of a horizontal section of *P* with the vertical section of *P* need not vanish.

$$\langle\langle\cdot,\cdot\rangle\rangle = \operatorname{ver}\langle\langle\cdot,\cdot\rangle\rangle + \operatorname{hor}\langle\langle\cdot,\cdot\rangle\rangle.$$

- The bracket on the space of sections of P need not decompose into horizontal and vertical parts because the bracket of a horizontal section of P with the vertical section of P need not vanish.
- The orbit spaces $(\operatorname{ver} P)/G$ and $(\operatorname{hor} P)/G$ are vector bundles over P/G. We call $(\operatorname{ver} P)/G$ the reduced vertical Pontryagin bundle and $(\operatorname{hor} P)/G$ the reduced horizontal Pontryagin bundle.

$$\langle\langle\cdot,\cdot\rangle\rangle = \operatorname{ver}\langle\langle\cdot,\cdot\rangle\rangle + \operatorname{hor}\langle\langle\cdot,\cdot\rangle\rangle.$$

- The bracket on the space of sections of *P* need not decompose into horizontal and vertical parts because the bracket of a horizontal section of *P* with the vertical section of *P* need not vanish.
- The orbit spaces $(\operatorname{ver} P)/G$ and $(\operatorname{hor} P)/G$ are vector bundles over P/G. We call $(\operatorname{ver} P)/G$ the reduced vertical Pontryagin bundle and $(\operatorname{hor} P)/G$ the reduced horizontal Pontryagin bundle.
- The reduced vertical Pontryagin bundle $(\operatorname{ver} P)/G$ is isomorphic to the direct sum of $Q[\mathfrak{g}] \oplus Q[\mathfrak{g}^*]$ of the adjoint and co-adjoint bundles of Q.

$$\langle\langle\cdot,\cdot\rangle\rangle = \operatorname{ver}\langle\langle\cdot,\cdot\rangle\rangle + \operatorname{hor}\langle\langle\cdot,\cdot\rangle\rangle.$$

- The bracket on the space of sections of *P* need not decompose into horizontal and vertical parts because the bracket of a horizontal section of *P* with the vertical section of *P* need not vanish.
- The orbit spaces $(\operatorname{ver} P)/G$ and $(\operatorname{hor} P)/G$ are vector bundles over P/G. We call $(\operatorname{ver} P)/G$ the reduced vertical Pontryagin bundle and $(\operatorname{hor} P)/G$ the reduced horizontal Pontryagin bundle.
- The reduced vertical Pontryagin bundle $(\operatorname{ver} P)/G$ is isomorphic to the direct sum of $Q[\mathfrak{g}] \oplus Q[\mathfrak{g}^*]$ of the adjoint and co-adjoint bundles of Q.
- The reduced horizontal Pontryagin bundle is isomorphic to the Pontryagin bundle of the orbit space Q/G.

$$\langle\langle\cdot,\cdot\rangle\rangle = \operatorname{ver}\langle\langle\cdot,\cdot\rangle\rangle + \operatorname{hor}\langle\langle\cdot,\cdot\rangle\rangle.$$

- The bracket on the space of sections of *P* need not decompose into horizontal and vertical parts because the bracket of a horizontal section of *P* with the vertical section of *P* need not vanish.
- The orbit spaces $(\operatorname{ver} P)/G$ and $(\operatorname{hor} P)/G$ are vector bundles over P/G. We call $(\operatorname{ver} P)/G$ the reduced vertical Pontryagin bundle and $(\operatorname{hor} P)/G$ the reduced horizontal Pontryagin bundle.
- The reduced vertical Pontryagin bundle $(\operatorname{ver} P)/G$ is isomorphic to the direct sum of $Q[\mathfrak{g}] \oplus Q[\mathfrak{g}^*]$ of the adjoint and co-adjoint bundles of Q.
- The reduced horizontal Pontryagin bundle is isomorphic to the Pontryagin bundle of the orbit space Q/G.
- Note that the adjoint bundle of a principal fibre bundle Q is $Q[\mathfrak{g}] = (Q \times \mathfrak{g})/G$. Similarly, the co-adjoint bundle of Q is $Q[\mathfrak{g}^*] = (Q \times \mathfrak{g}^*)/G$.

• The reduced Pontryagin bundle P/G is isomorphic to the direct sum of $Q[\mathfrak{g}] \oplus Q[\mathfrak{g}^*]$ and $T(Q/G) \oplus T^*(Q/G)$.

- The reduced Pontryagin bundle P/G is isomorphic to the direct sum of $Q[\mathfrak{g}] \oplus Q[\mathfrak{g}^*]$ and $T(Q/G) \oplus T^*(Q/G)$.
- The bilinear form $\langle\langle\cdot,\cdot\rangle\rangle$ on P is G-invariant and it gives rise to a bilinear form $\langle\langle\cdot,\cdot\rangle\rangle_{P/G}$ on the reduced Pontryagin bundle such that

$$\langle\langle p_1, p_2 \rangle\rangle = \langle\langle p_P(p_1), p_P(p_2) \rangle\rangle_{P/G}$$

for every p_1 , p_2 in the same fibre of P.

- The reduced Pontryagin bundle P/G is isomorphic to the direct sum of $Q[\mathfrak{g}] \oplus Q[\mathfrak{g}^*]$ and $T(Q/G) \oplus T^*(Q/G)$.
- The bilinear form $\langle\langle\cdot,\cdot\rangle\rangle$ on P is G-invariant and it gives rise to a bilinear form $\langle\langle\cdot,\cdot\rangle\rangle_{P/G}$ on the reduced Pontryagin bundle such that

$$\langle\langle p_1, p_2 \rangle\rangle = \langle\langle p_P(p_1), p_P(p_2) \rangle\rangle_{P/G}$$

for every p_1 , p_2 in the same fibre of P.

• The Courant bracket evaluated on G-invariant sections of $P \to Q$ gives a G-invariant section of $P \to G$. Hence, there is a bracket $[\cdot,\cdot]_{P/G}$ on the space $\Gamma(P/G)$ of sections of $\overline{\pi}:P/G\to Q/G$ such that if σ_1 and σ_2 are G-invariant sections of $P\to G$, then

$$[\overline{\sigma}_1, \overline{\sigma}_2]_{P/G} = \overline{[\sigma_1, \sigma_2]}.$$

• Consider now a Dirac structure on Q given by a G-invariant subbundle D of P, which is maximal isotropic with respect to the bilinear form.

- Consider now a Dirac structure on Q given by a G-invariant subbundle
 D of P, which is maximal isotropic with respect to the bilinear form.
- A *G*-invariant Dirac structure $D \subset P = TQ \oplus T^*Q$ is locally spanned by *G*-invariant sections.

- Consider now a Dirac structure on Q given by a G-invariant subbundle D of P, which is maximal isotropic with respect to the bilinear form.
- A G-invariant Dirac structure $D \subset P = TQ \oplus T^*Q$ is locally spanned by G-invariant sections.
- The space D/G of G-orbits in D is a subbundle of P/G, which is maximally isotropic with respect to the bilinear form on P/G induced by the bilinear form $\langle\langle\cdot,\cdot\rangle\rangle_{P/G}$.

- Consider now a Dirac structure on Q given by a G-invariant subbundle D of P, which is maximal isotropic with respect to the bilinear form.
- A G-invariant Dirac structure $D \subset P = TQ \oplus T^*Q$ is locally spanned by G-invariant sections.
- The space D/G of G-orbits in D is a subbundle of P/G, which is maximally isotropic with respect to the bilinear form on P/G induced by the bilinear form $\langle\langle\cdot,\cdot\rangle\rangle_{P/G}$.
- If the Dirac structure D is closed in the sense that for each pair σ_1 and σ_2 of G-invariant sections of $D \to Q$, the bracket $[\sigma_1, \sigma_2]$ has values in D, then $[\overline{\sigma}_1, \overline{\sigma}_2]_{P/G}$ has values in D/G for every pair of sections $\overline{\sigma}_1, \overline{\sigma}_2$ of $(D/G) \to Q/G$.

ullet We drop the assumption that the action of G on Q is free.

- We drop the assumption that the action of G on Q is free.
- Nevertheless, if a Dirac structure $D \subset P = TQ \oplus T^*Q$ is invariant under a proper action of a connected Lie group G on Q, D is locally spanned by G-invariant sections.

- We drop the assumption that the action of G on Q is free.
- Nevertheless, if a Dirac structure $D \subset P = TQ \oplus T^*Q$ is invariant under a proper action of a connected Lie group G on Q, D is locally spanned by G-invariant sections.
- ullet For each compact subgroup H of G and each connected component L of

$$Q_H = \{q \in Q \mid G_q = Q\},\$$

consider the intersection $D_L = D \cap \pi^{-1}(L)$, where $\pi: P \to Q$ is the Pontryagin bundle projection.

- We drop the assumption that the action of G on Q is free.
- Nevertheless, if a Dirac structure $D \subset P = TQ \oplus T^*Q$ is invariant under a proper action of a connected Lie group G on Q, D is locally spanned by G-invariant sections.
- For each compact subgroup H of G and each connected component L of

$$Q_H = \{q \in Q \mid G_q = Q\},\$$

consider the intersection $D_L = D \cap \pi^{-1}(L)$, where $\pi : P \to Q$ is the Pontryagin bundle projection.

Theorem

D is uniquely determined by the collection of all structures D_L , as L varies over connected components of Q_H and H varies over compact subgroups of G.

• Let $N_L \subseteq G$ be a subgroup of G consisting of elements $g \in G$ that preserve the manifold L.

- Let $N_L \subseteq G$ be a subgroup of G consisting of elements $g \in G$ that preserve the manifold L.
- The action of $G_L = N_L/H$ on L is free and proper.

- Let $N_L \subseteq G$ be a subgroup of G consisting of elements $g \in G$ that preserve the manifold L.
- The action of $G_L = N_L/H$ on L is free and proper.
- Since the Dirac structure D is G-invariant, it follows that D_L is G_l -invariant.

- Let $N_L \subseteq G$ be a subgroup of G consisting of elements $g \in G$ that preserve the manifold L.
- The action of $G_L = N_L/H$ on L is free and proper.
- Since the Dirac structure D is G-invariant, it follows that D_L is G_l -invariant.
- Hence, we need to analyze the structure of D_L and apply regular reduction.