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Stratified subcartesian spaces

A stratification of a subcartesian space S is a partition of S by a locally
finite family 901 of locally closed connected submanifolds M, called strata
of 91, which satisfy the following

Frontier Condition. For M, M’ € O, if M' N M # @, then either

M =M or M' C M\M.

We showed that every subcartesian space S admits a partition © by orbits
of the family X(S) of all vector fields on S, which we denote by O. It is of
interest to see under what conditions this partition of S is a stratification.

The partition O of a subcartesian space S by orbits of the family X(S) of
all vector fields on S satisfies Frontier Condition.

Proof. Let O and O’ be orbits of X(S). Suppose x € O’ N O with

O’ # O. We first show that O’ C O. Note that the orbit O is invariant
under the family of one-parameter local groups of local diffeomorphisms of
S generated by vector fields. Since, x € O, it follows that, for every vector
field X on S, exp(tX)(x) isin O if it is defined. But, O’ is the orbit of
X(S) through x. Hence, O’ C O.
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Stratifications of S can be partially ordered by inclusion. If 9t; and 91,
are two stratifications of S, we say that 9; is a refinement of 91, and
write 9017 > My, if, for every My € My, there exists My € 9y such that
M; C M,. We say that 90t is a minimal (coarsest) stratification of S if it is
not a refinement of a different stratification of S. If S is a manifold, then
the minimal stratification of S consists of a single manifold M = S.

If (S,90) is a stratified subcartesian space and N is a manifold, the
product S X N is stratified by the family Ms,y = {M x N | M € M}. If
U is an open subset of a stratified space (S, 1), we can consider a family
My ={MNU|UecM}. In general, My need not be a stratification of
U.

If (ssm) is a stratified subcartesian space and N is a manifold, the
product S x N is stratified by the family Mgy = {M x N | M € M} If
U is an open subset of a stratified space (S, 1), we can consider a family
My ={MnNU|UeM}. In general, My need not be a stratification of
U.
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A stratification 9t of a subcartesian space S is locally trivial if, for every
M € 91 and each x € M,

(i) there exists an open neighbourhood U of x in S such that My is a
stratification of U,

(i) there exists a subcartesian stratified space (S/, ) with a
distinguished point y € S’ such that the singleton {y} € 9, and

(iii) there is an isomorphism ¢ : (U, My) — (MNU) x Sl'im/(/\/lmu)xs/)
such that ¢(x) = (x,y).

Let 901 be a stratification of a subcartesian space S.

Definition

We say that 9T admits local extension of vector fields if, for each M € 9,
for each vector field Xy, on M and for each point x € M, there exists a
neighbourhood V of x in M, and a vector field X on S such that

Xv = Xum|v- In other words, the vector field X is an extension to S of the
restriction of Xy, to V.
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Every locally trivial stratification of a subcartesian space S admits local
extensions of vector fields.

Proof. Let Xy, be a vector field on M € 90t. Since M is locally trivial,
given xg € M, there exists a neighbourhood U of xp in M, a stratified
differential space (S, ") with a distinguished point y € S’ such that the
singleton {yo} € 9V, and an isomorphism ¢ : U — (M N U) x S'of
stratified subcartesian spaces such that ¢(xp) = (x0, o).

Let exp(tX)) be the local one-parameter group of local diffeomorphisms
of M generated by Xy, and let X yny)xs be a derivation of
C®((MN U) x S') defined by

Xty ) ) = 5 h(@p(Xu) (). ) o

for every h € C®((MNU) x S’) and each (x,y) € (MNU) x S’ Since
X(Mnu)yxs' is defined in terms of a local one-parameter group

(x,y) — (exp(tXm)(x), y) of diffeomorphisms, it is a vector field on
(MO U) x S,
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We can use the inverse of the diffeomorphism ¢ : U — (M N U) x S’ to
push-forward Xyny)x s to a vector field Xy = (¢~ 1)« X(mnu)xs on U.
Choose a function fy € C*(S) with support in U and such that f(x) =1
for x in some neighbourhood Uy of xg contained in U. Let X be a
derivation of C*®(S) extending fyXy by zero outside U. In other words, for
every f € C®(S), if x € U, then (Xf)(x) = fo(x)(Xyf)(x), and if

x ¢ Uy, then (Xf)(x) = 0. Clearly, X is a vector field on S extending the
restriction of Xy, to M N Ujy. O

Let Mt be a stratification of a subcartesian space S admitting local
extensions of vector fields. The partition ) of S by orbits of the family
X(S) of all vector fields on S is a stratification of S, and 9 is a
refinement of . Moreover, if I is minimal, then M = O.
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Proof. Let 9 be a stratification of S admitting local extensions of vector
fields. Since every vector field Xy, on a manifold M € 91 extends locally
to a vector field on S and M is connected, it follows that M is contained
in an orbit O € O.

Every orbit O € O is a union of strata of 9. Since 9 is locally finite, for
each x € O, there exists a neigbourhood V of x in S which intersects only
a finite number of strata My, ..., M of 9. Hence, V intersects only a

finite number of orbits in ©. Moreover, since strata of 9t form a partition
k

of S, it follows that V = [ J MiN V.

i=1
Consider x € My. Since M is locally closed there exists a neighbourhood
U of x contained in V/, and such that M; N U is closed in U. We can

/
relabel the manifolds My, ..., My so that ONU = U M; N U for some
i=1
I < k. Without loss of generality we may assume that x € M; for each
i =2,....1. We want to see if ON U is closed in U.
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Suppose we have a sequence (yx) in O N U convergent to y € U. Since
O N U is a finite union of disjoined manifolds, there must be a
subsequence of (yx) contained in one of them. Without loss of generality
we may assume that each y, € M; for some i =1, ...,/. We want to show
that the limit y = limy Lo yx € ONU. If y € M;, then
yeEMNUCONU. Ify € M{\\M;, then y € M; for some j =1, ..., k.
By assumption, y € U and U intersects only the strata that have x in
their closure. If M; C O then y € O N U. Therefore, y ¢ O N U implies
that M; is not contained in O. By a construction in the proof of
Sussmann’s Theorem, exp, X(W) is an m dimensional locally closed
submanifold of S. Let Uy be an open neighbourhood of x in U such that
Uo Nexp, X(W) is closed in Up.
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As before, we consider a sequence (yj) in

M; N Uy Nexp, X(W) € O N Uy, which converges to y € M; N Up. Since
M; ¢ O, it follows that y ¢ Uy Nexp, X(W) C Uy N O. This contradicts
the fact that Uy Nexp, X(W) is closed in Uy Therefore, O N U is closed in
U. Since x is an arbitrary point of the orbit O, it follows that O is locally
closed.

We have shown that the partition O of S by orbits of the family X(S) of
all vector fields on S is locally finite and that each orbit in O is locally
closed. Also, we showed earlier that that © is a stratification of S. By
construction, every stratum of the original stratification 9t is contained in
a stratum of O. This implies that 9t > O. If 91 is minimal, then 9 = O.
U

The space P/ G of orbits of a proper action of a Lie group G on a
manifold P is a minimally stratified space that admits local extensions of
vector fields.

Proof. Minimal stratification (Bierstone). Local extension of vector fields
(Lusala - Sniatycki).
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Symplectic reduction

@ A symplectic form on a manifold P is a closed and non-degenerate
2-form on P. Non-degeneracy of w implies that for every f € C®(P),
there exists a unique vector field X¢ such that

Xrdw = —df,

called the Hamiltonian vector field of f.
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Symplectic reduction

@ A symplectic form on a manifold P is a closed and non-degenerate
2-form on P. Non-degeneracy of w implies that for every f € C®(P),
there exists a unique vector field X¢ such that

Xrdw = —df,

called the Hamiltonian vector field of f.

@ Let G be a connected Lie group, and
@:GxP— P:(g p)— Pg(p) =gp

be an symplectic action of G on P with an Ad*-equivariant
momentum map J: P — g*. For each ¢ € g, the action on P of the
one-parameter subgroup exp té of G is given by translations along the
integral curves of X)., where J: = (J | {). is the momentum
corresponding to ¢.
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Poisson algebra

@ The assignment f +— Xf gives a linear map of the space C®(P) of
smooth functions on P into the space X(P) of smooth vector fields
on P. If P is connected, the kernel of this map consists of constant
functions on P.
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Poisson algebra

@ The assignment f +— Xf gives a linear map of the space C®(P) of
smooth functions on P into the space X(P) of smooth vector fields
on P. If P is connected, the kernel of this map consists of constant
functions on P.

@ The symplectic form w on P induces a bracket on C*(P), called the
Poisson bracket, such that for each f1, f, € C®(P),

{flv fQ} = _Xflf2 = szfl = _w(Xﬂ'sz)'

The Poisson bracket is bilinear, antisymmetric, acts as a derivation,
and satisfies the Jacobi identity.
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Poisson algebra

@ The assignment f +— Xf gives a linear map of the space C®(P) of
smooth functions on P into the space X(P) of smooth vector fields
on P. If P is connected, the kernel of this map consists of constant
functions on P.

@ The symplectic form w on P induces a bracket on C*(P), called the
Poisson bracket, such that for each f1, f, € C®(P),

{flv fQ} = _Xflf2 = szfl = _w(Xﬂ'sz)'

The Poisson bracket is bilinear, antisymmetric, acts as a derivation,
and satisfies the Jacobi identity.

@ The action ® of G on (P, w) gives rise to the action
G X C®(P) — C®(P): (g,f) — @f. Since the action of G on P is
symplectic, it follows that its action on C°°(P) is Poisson. That is, it
preserves the Poisson bracket. For each g € G and f1, f, € C®(P),
O {h,h} = {O3h, DihH}.
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Poisson algebra

@ The assignment f +— Xf gives a linear map of the space C®(P) of
smooth functions on P into the space X(P) of smooth vector fields
on P. If P is connected, the kernel of this map consists of constant
functions on P.

@ The symplectic form w on P induces a bracket on C*(P), called the
Poisson bracket, such that for each f1, f, € C®(P),

{flv fQ} = _Xflf2 = szfl = _w(Xﬂ'sz)'

The Poisson bracket is bilinear, antisymmetric, acts as a derivation,
and satisfies the Jacobi identity.

@ The action ® of G on (P, w) gives rise to the action
G X C®(P) — C®(P): (g,f) — @f. Since the action of G on P is
symplectic, it follows that its action on C°°(P) is Poisson. That is, it
preserves the Poisson bracket. For each g € G and f1, f, € C®(P),
O {h,h} = {O;h, DihH}.

o The space C®(P)® of G-invariant smooth functions on P is a
Poisson subalgebra of P.
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Poisson reduction

@ We assume here that the action of G on P is proper. We denote by
R = P/ G the space of G-orbits on P and by p : P — R the orbit
map. The differential structure of R is

C®(R) = {f: R — R | p*f € C°(P)}.
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Poisson reduction

@ We assume here that the action of G on P is proper. We denote by
R = P/ G the space of G-orbits on P and by p : P — R the orbit
map. The differential structure of R is

C®(R) = {f: R — R | p*f € C°(P)}.

o C®(R) has a structure of a Poisson algebra isomorphis to C®(P)¢.
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Poisson reduction

@ We assume here that the action of G on P is proper. We denote by
R = P/ G the space of G-orbits on P and by p : P — R the orbit
map. The differential structure of R is

C®(R) = {f: R — R | p*f € C°(P)}.

o C®(R) has a structure of a Poisson algebra isomorphis to C®(P)¢.

@ The orbit type stratification 9t of R = P/ G coincides with the
partition of R by the family of all vector fields X(R).
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Poisson reduction

@ We assume here that the action of G on P is proper. We denote by
R = P/ G the space of G-orbits on P and by p : P — R the orbit
map. The differential structure of R is

C®(R) = {f: R — R | p*f € C°(P)}.

o C®(R) has a structure of a Poisson algebra isomorphis to C®(P)¢.

@ The orbit type stratification 9t of R = P/ G coincides with the
partition of R by the family of all vector fields X(R).

Each stratum N of R is a Poisson manifold. \
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Poisson reduction

@ We assume here that the action of G on P is proper. We denote by
R = P/ G the space of G-orbits on P and by p : P — R the orbit
map. The differential structure of R is

C®(R) = {f: R — R | p*f € C°(P)}.

o C®(R) has a structure of a Poisson algebra isomorphis to C®(P)¢.

@ The orbit type stratification 9t of R = P/ G coincides with the
partition of R by the family of all vector fields X(R).

Each stratum N of R is a Poisson manifold. \

e Given f € C®(R), let Xf € Der C®(R) be defined by X¢(h) = {h,f}
for each h € C*(R). We refer to X¢ as the Poisson derivation of f.

J. Sniatycki (University of Calgary)

Singular Reduction



Poisson reduction

@ We assume here that the action of G on P is proper. We denote by
R = P/ G the space of G-orbits on P and by p : P — R the orbit
map. The differential structure of R is

C®(R) = {f: R — R | p*f € C°(P)}.

o C®(R) has a structure of a Poisson algebra isomorphis to C®(P)¢.

@ The orbit type stratification 9t of R = P/ G coincides with the
partition of R by the family of all vector fields X(R).

Each stratum N of R is a Poisson manifold. \

e Given f € C®(R), let Xf € Der C®(R) be defined by X¢(h) = {h,f}
for each h € C*(R). We refer to X¢ as the Poisson derivation of f.

e We denote by P(R) the family of all Poisson derivations of C®(R).
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For each f € C®(R), the Poisson derivation X is the push-forward of the
Hamiltonian vector field Xy« on P by the orbit map p : P — R.
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For each f € C®(R), the Poisson derivation X is the push-forward of the
Hamiltonian vector field Xy« on P by the orbit map p : P — R.

@ Hence, Poisson derivations of R are vector fields on R.
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For each f € C®(R), the Poisson derivation X is the push-forward of the
Hamiltonian vector field Xy« on P by the orbit map p : P — R.

@ Hence, Poisson derivations of R are vector fields on R.
@ Orbits of P(R) are smooth manifolds immersed in strata of R.
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For each f € C®(R), the Poisson derivation X is the push-forward of the
Hamiltonian vector field Xy« on P by the orbit map p : P — R.

@ Hence, Poisson derivations of R are vector fields on R.

@ Orbits of P(R) are smooth manifolds immersed in strata of R.

o Let Q be the orbit of PB(R) through x € R. For each f € C*(R), the
restriction X|q of the Poisson vector field of f to Q is a vector field

on @, and TQ ={Xf(x) | x € Q, f € C®(R)}.
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For each f € C®(R), the Poisson derivation X is the push-forward of the
Hamiltonian vector field Xy« on P by the orbit map p : P — R.

@ Hence, Poisson derivations of R are vector fields on R.

@ Orbits of P(R) are smooth manifolds immersed in strata of R.

o Let Q be the orbit of PB(R) through x € R. For each f € C*(R), the
restriction X|q of the Poisson vector field of f to Q is a vector field
on @, and TQ ={Xf(x) | x € Q, f € C®(R)}.

Theorem

Each orbit Q of the family B(R) of Poisson vector fields on R is a
symplectic manifold with a unique symplectic form wgq on Q such that

wq(Xn0 Xple) = —{h. h}o

for every f, f» € C*(R). Moreover, for each p € p~1(Q),

w@ (X Xpio)(0(p)) = W(Xps, Xory ) (P).-
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Level sets of the momentum map

Consider the family
¢(P) = {X | f € C*(P)°}

of Hamiltonian vector fields of G-invariant smooth functions on P.

For each p € P, the orbit through p of the family €(P) is contained in the
set Pg, = {x € P | Gx = G}, where G, is the isotropy group of p.

Proof. For f € C®(P)®, let exp tXr denote the local one-parameter
group of local diffeomorphisms generated by the Hamiltonian vector field
Xr of f. The G-invariance of X implies that for each g € G,

D, oexp tXyr = (exp tXr) 0 @y Let x = (exp tXr)(p), and g € G,. Then
x = Dgx implies (exp tXr)(p) = (Pg o (exp tXr))(p). Hence,

p=((exptXs) L o®, o(exptXr))(p) = ((exptXr) o (exptXr) o®,)(p) =

and g € Gp. Thus Gx C Gp. In a similar way, we can show that G, C G.
Hence, G« = Gp, which ensures that the orbit of X through p is
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Theorem

Assume that the action of G on P is proper. Then, for each p € P,
E(P), = kerp, dJN TpPg,,

and the orbit of €(P) through p is the connected component of
J71(J(p))) N Pg, that contains p.

(ii) For each compact subgroup H of G, connected components of Py are
symplectic manifolds.

(iii) If particular, if p € Py, uw = J(p) and L is the connected component
of Py that contains p, then the connected component of J_l(y) N L that
contains p is a manifold and its tangent bundle is spanned by Hamiltonian
vector fields of G-invariant functions.

v

This theorem, due to Ortega and Ratiu, is at the foundation of their
theory of optimal reduction.
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We showed above orbits of the family P3(R) of Poisson vector fields on R
are symplectic manifolds. In the theorem below, we show that they are
projections to R of connected components of level sets of J with
submanifolds of P with a fixed isotropy group.

Theorem

Assume that the action of a connected Lie group G on a symplectic
manifold (P,w) is Hamiltonian and proper. Given py € P, let u = J(po)
and H = Gy, be the isotropy group of py. The connected component K of
J7Y(u) N Py is a submanifold of P, and the projection Q = p(K)
coincides with the orbit of B(R) through p(py). In particular, the
symplectic form wq satisfies the condition

PrwQ = Wk,

where p, : K — Q is the restriction of the orbit map p: P — R to
domain K and codomain Q, and wg is the pull-back of w by the inclusion
map K — P.

v
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Review of the stratification structure.

The proper action of G on P defines the orbit type stratifcation 9t of P,
whose strata are connected components of local manifolds

Py = {p € P | G, is conjugate to H},

where H is a compact subgroup of G. Note that this stratification is not
minimal.

The orbit type stratification 9t of R = P/ G is the projection to R of the
stratification 9t of P by the orbit map p. For each stratum M € 9, the
projection N = p(M) is a stratum of M. The stratification N of R
coincides with the partition O of R by orbits of the family X(R) of all
vector fields on R.
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Theorem

We assume that the action of G on P is proper and denote by 9t and N
orbit type stratifications of P and R = P/ G, respectively.
(i) For each u € g*, the family of sets

M, = {connected components of J~' () "M | M € 9}

is a stratification of the level set J=(u). The inclusion map J=(u) — P
is @ morphism of stratified spaces.

(i) Connected components of the sets p(J~1(u) " M) = p(J~1(u)) NN,
where N = p(M), are symplectic orbits of the family 3(R) of Poisson
vector fields on R.

(iii) The family of sets

M, = {connected components of p(J~*(u)) NN | N € N}

is a stratification of p(J=1(u)) with symplectic strata. The restriction
P y-1() Of p to J7Y(u) is a morphism of stratified spaces.
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Up to now we considered the differential structure of J~1 () given by its
inclusion in P and the structure of p(J~1(y)) embedded in the orbit space
R=P/G.

In Hamiltonian mechanics we often perform the reduction procedure by
investigating first the structure of the quotient J~!(y)/ G, where

Gu:{g€G|Ad;P‘:P‘}

is the isotropy group of u. Since J: P — g* is continuous, it follows that
J71(u) is a closed subset of P. The local compactness of P implies that
J71(p) is locally compact. Moreover, the action Gy, on J~! (i) is proper
because the action of G on P is proper. The general results on quotient

spaces prove only that J~(j)/ G, is a locally compact differential space
with the quotient space topology and the differential structure

CoUH )/ Gu) ={f € C°LUT () / Gu) | Py € CT(I ()},

where
P, () — JTH )/ Gy

is the orbit map. However, we can prove much more.
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There exists a diffeomorphism | : J=*(u)/ Gy — p(J~*(p)) such that the
following diagram

J7H(p) — P
[ Lp
J7 )/ Gy R
N\ /
/ J
p(J71(p))

where i : J7Y(u) — P and j: p(J~1(1)) — R denote the inclusion
maps, commutes.
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The stratification of p(J~1(1)) gives rise to a stratification of J~1 () / Gy
such that the orbit map p,,. : J~ Y(u) — J71(pu)/ Gy is a morphism of
stratified spaces.

This gives the flavour of type of results we can obtain in sigular reduction.
We could continue with the desciption of reduction of coadjoint orbits, but

we would not contribute anything new.
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