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Introduction

@ Recall that a differential space is a topological space S endowed with
a family C®(S) of functions that are deemed smooth.

@ The family C®°(S) satisfies the following conditions

@ The collection of sets

{fX((a b)) | feC®S), abeR}
is a subbasis for the topology of S.
@ Forevery ne NN, F € C®°(R") and f1, ..., f, € C®(S),
F(fi,...fa) € C=(S).
© If h: S — R has the property that for every point x € S, there exists

an open neighbourhood U of x in S and a function f € C®(S) such
that

hu = flu.
then h € C*(S).
@ The family C®°(S) of functions on S is called a differential structure
on S.
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@ Amap ¢ : S — T between differential spaces S and T is smooth if
its pull-back ¢* maps C®(T) to C*(S). Moreover, ¢ : S — T
diffeomorphism if it is invertible and ! : T — S is smooth.
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@ Amap ¢ : S — T between differential spaces S and T is smooth if
its pull-back ¢* maps C®(T) to C*(S). Moreover, ¢ : S — T
diffeomorphism if it is invertible and ! : T — S is smooth.

o If T is a subset of a differential space S, then there is a differential
structure C*®(T) generated by the restrictions to T of functions in
C=(S).

@ More precisely, a function h: T — R is in C®(T) if for every point
x € T C S, there exists an open neighbourhood U of x in T and a
function f € C®(S) such that

h|U - ﬂu.

o A differential space S is a manifold if every point of S has an open
neighbourhood that is diffeomorphic to an open subset of IR".
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A map ¢ : S — T between differential spaces S and T is smooth if
its pull-back ¢* maps C®(T) to C®(S). Moreover, ¢ : S — T
diffeomorphism if it is invertible and ! : T — S is smooth.

o If T is a subset of a differential space S, then there is a differential
structure C*®(T) generated by the restrictions to T of functions in
C=(S).

@ More precisely, a function h: T — R is in C®(T) if for every point
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function f € C®(S) such that
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neighbourhood that is diffeomorphic to an open subset of IR".

o A differential space S is subcartesian if every point of S has an open
neighbourhood that is diffeomorphic to a subset of IR”.
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A map ¢ : S — T between differential spaces S and T is smooth if
its pull-back ¢* maps C®(T) to C®(S). Moreover, ¢ : S — T
diffeomorphism if it is invertible and ! : T — S is smooth.

o If T is a subset of a differential space S, then there is a differential
structure C*®(T) generated by the restrictions to T of functions in
C=(S).

@ More precisely, a function h: T — R is in C®(T) if for every point

x € T C S, there exists an open neighbourhood U of x in T and a

function f € C®(S) such that

hy = flu-
o A differential space S is a manifold if every point of S has an open

neighbourhood that is diffeomorphic to an open subset of IR".

o A differential space S is subcartesian if every point of S has an open
neighbourhood that is diffeomorphic to a subset of IR”.

@ In the following, we consider only subcartesian differential spaces.
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Local charts and derivations

@ For each point x of a subcartesian space S there exists a
neighbourhood U of x in S and a smooth map ¢ : U — R” that
induces a diffeomorphism of U and ¢(U) C R".
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Local charts and derivations

@ For each point x of a subcartesian space S there exists a
neighbourhood U of x in S and a smooth map ¢ : U — R” that
induces a diffeomorphism of U and ¢(U) C R".

e We may consider (U, ¢) to be a local chart on S.

@ All local properties of S can be studied in terms of inclusion maps
p(U) — R".

o However, we have to remember that ¢(U) need not be open.

@ A derivation on S is a derivation X of the differential structure
C*®(S) of S.

@ In other words, X : C®(S) — C*(S) is a linear map satisfying

Leibnitz's rule
X(fif) = X(A)h+AX(6).
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Derivations on subcartesian spaces

o If p: S — T is a diffeomorphism, then a derivation X of C%(S)
pushes-forward to a derivation ¢ X : C®(T) — C®(T) such that

9.X(f) = (¢7)" (X (g"f)).

J. Sniatycki (University of Calgary) Singular Reduction
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o If p: S — T is a diffeomorphism, then a derivation X of C%(S)
pushes-forward to a derivation ¢ X : C®(T) — C®(T) such that

9.X(f) = (¢7)" (X (g"f)).

@ For each open set U in S, the derivation X of C*(S) defines a
derivation Xy of C*°(U) such that for every f € C*(S5),

Xu(fiy) = (X(F))u,

where |, denotes the restriction to U.
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Derivations on subcartesian spaces

o If p: S — T is a diffeomorphism, then a derivation X of C%(S)
pushes-forward to a derivation ¢ X : C®(T) — C®(T) such that

9.X(f) = (¢7)" (X (g"f)).

@ For each open set U in S, the derivation X of C*(S) defines a
derivation Xy of C*°(U) such that for every f € C*(S5),

Xu(fiy) = (X(F))u,

where |, denotes the restriction to U.

If S is a subset of R", and X is a derivation of C®(S), then for each
x € S, there exists a neighbourhood U of x in R" and a derivation Y of
C*®(R") such that

X(F|S)|Smu = (Y(F))|Smu
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Let u be a derivation of C*(S) at x € S C R". For each F € C*(R") the
restriction Fjs of F to S isin C®(S). It is easy to see that the map
C®(R") — R : F — u(Fs) is a derivation at x of C°°(]R”).

We denote the natural coordinate functions on IR” by x1 .. x":R" — R.
Every derivation Y of C®(IR") is of the form Y/ F’aa,, where

F' = Y(x") for i =1,...n. Let X be a derivation of C*(S) and

F € C®(R"). For each x € S, the derivation X(x) of C®(S) at x gives a
derivation of C*(IR") at x. Hence,

X(Fs)() = X()(Fis) = 12 35 00X 00(xs)) = 1 52 00X s

This is valid for every x € S.
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Hence,

For i =1, ..., n, the coefficients X( |5) are in C*(S). Since Sis a

differential subspace of R”, for each x € S there exists a neighbourhood U
of x in R™ and functions F!, ..., F" € C®(IR") such that
X(X"S)|Ums = Flyns foreach i =1,....n. Hence,

i=1

o 9F
X(Fis)juns = (ZF a)(,) :
\uns

Since F1,..., F" are smooth functions on IR”, it follows that
Y=Y",F a,- is a vector field on R". O
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Integration of derivations

o Let X be a derivation of C®(S), and let / be an interval in R. A
smooth map c: / — S is an integral curve of X if

d
S (e(®)) = (X(F))(c(t))

for every t € /.
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Integration of derivations

o Let X be a derivation of C®(S), and let / be an interval in R. A
smooth map c: / — S is an integral curve of X if

d
S (e(®)) = (X(F))(c(t))

for every t € /.

@ Note that / need not be an open interval. If ] consists of a single
point ty such that c(tp) = x, then we consider ¢ to be an integral
curve for every derivation X.
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Integration of derivations

o Let X be a derivation of C®(S), and let / be an interval in R. A
smooth map c: / — S is an integral curve of X if

d
S (e(®)) = (X(F))(c(t))

for every t € /.

@ Note that / need not be an open interval. If ] consists of a single
point ty such that c(tp) = x, then we consider ¢ to be an integral
curve for every derivation X.

Let S be a subcartesian space, and let X be a derivation of C*(S). For
every x € S, there exists a unique maximal integral curve c : | — S of X
such that c(0) = x.
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(i) Local existence. For the sake of simplicity assumme that S is a
subset of IR". By the preceeding Theorem, there exists a neighbourhood U
of x € R” and a vector field Y on R” such that

X(F|5)|Smu = (Y(F))|Snu

for every F € C*(RR").

Let ¢y be an integral curve in IR” of the vector field Y such that

c0(0) = x. Let I, be the connected component of ¢; *(IR) containing 0,
and ¢ : Iy — R the curve in 5 obtained by the restriction of ¢y to /.
Clearly, ¢(0) = x. For each ty € Iy and each f € C*®(S) there exists a
neighbourhood U of ¢(tp) in S and a function F € C*(IR") such that
fiy = Fjy- Therefore,

EH(e))jety = S F(e(8)) et = (Y(F)(e(0)) = (X(F))(e(t),

which implies that ¢ : Iy — S is an integral curve of X through x.
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(ii) Smoothness. It follows from the theory of differential equations that
the integral curve ¢y in R” of a smooth vector field Y is smooth. Hence,
¢ = ¢p|y, is smooth. Since local a local chart ¢ : U — ¢@(U) C R" chart
gives a diffeomorphism of an open neighbourhood U of x € § on its image
in R”, the inverse ¢! is smooth and the composition ¢ = ¢~ o ¢, is
smooth.

(iii) Local uniqueness. This follows from the local uniqueness of
solutions of first order differential equations in IR”.

(iv) Maximality. Follows the same arguments as for manifolds.

(v) Global uniqueness. Follows the same arguments as for manifolds. [J
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Vector fields

Let X be a derivation of C®(S). We denote by (exp tX)(x) the point on
the maximal integral curve of X through x corresponding to the value t of
the parameter. Given x € S, (exp tX)(x) is defined for t in an interval I,
containing zero, and (exp0X)(x) = x. If t, s, and t + s are in Iy,

sE I(exp tX)(x) and t € /(exst)(x)v then

(exp(t + 5)X)(x) = (expsX)((exp tX)(x)) = (exp tX)((exp sX)(x)).

In the case when S is a manifold, the map exp tX is a local one-parameter
group of local diffeomorphisms of S. For a subcartesian space S, the
exp tX might fail to be a local diffeomorphism.

Definition
A derivation X is a vector field on S if exp tX is a local 1-parameter group
of local diffeomorphisms of S.
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Let § be a family of vector fields on a subcartesian space S and xp a point
in S. Let Xi,..., X, be vector fields in §. Consider a piecewise smooth
curve given by first following the integral curve of Xj through xg for time
T1, next following the integral curve of X, through x; = (exp T1.X1)(x0)
for time Ty, after that following the integral curve of X3 through

xp = (exp T2X2)(x1) for some 73, and so on. Foreach i =1, ..., n, let J;
be the closed interval in IR with endpoints 0 and T;. In other words,
Ji=10,7;] if T, > 0 and J; = [1;,0] if T; < 0. Note that 7; < 0 means
that the integral curve of X; is followed in the negative time direction.
Clearly, for every i, J; is contained in the domain [, , of the maximal
integral curve of X; originating at x;_1.. The range of the curve is

n

U{(exp t:Xi)(xi—1) € S|t € Ji}.
i=1

Definition

The orbit Oy, of the family § of vector fields is the union of all the ranges
described above that contains xg.

J. Sniatycki (University of Calgary) Singular Reduction



Let Oy, be the orbit through xo of a family § of vector fields on a
subcartesian space S. For each X € § and f € C®(S), the integral curve
of fX through xq is contained in Ox,. Similarly, if X, Y are in §, then the
integral curve of (exp X).Y through xo is contained in Ox,.

Proof. For f € C®(S) and X € §, integral curves of X and 7X differ by
parametrization, provided f # 0. Integral curves of fX originating at the
points for which f = 0 are constant. Hence, integral curves of X
originating at xp are contained in the orbit Oy, of §.

We have the equality

exp(s(exp X).. Y) (x0) = exp(X) 0 exp(s¥) o exp(—X) (o)

whenever both sides are defined. Hence, the following integral curves

t — exp(—tX)(x0), t — exp(tY)[exp(X)(xo)] and

t — exp(tX)[exp(sY)[exp(—X)(xo)]] are well defined and contained in
Oy, Moreover, the point exp(s(exp X).Y))(xp) can be obtained from xg
by following the curves ¢i, ¢, and c3. Therefore, exp(s(exp X).Y))(xo) is
contained in Oy.
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Definition

A family § of vector fields on S is locally complete if, for every X, Y € §
and x € S, there exists an open neighbourhood U of x and Z € § such
that ((exp X).Y )|y = Zu-

Every family § of vector fields on a subcartesian space S can be extended
to a locally complete family § with the same orbits.

Proof. If § is not locally complete, we can find vector fields X and Y in §
and xp € S, such that there is no neighbourhood U of xy and Z € §
satisfying ((exp X).Y)|y = Z)y. Since X is a vector field on S, there is a
neighbourhood V of xg in S such that exp X restricts to a diffeomorphism
of V onto its image. Hence, (exp X)*Y is well defined on V. There exists
f € C*(S) and open neighbourhoods U; and U, of xp in S such that
UclbCV, fly, = 1 and fj5\y, = 0. Define a vector field Z by

Zjy = f(exp X).Y and Zs\y, = 0. By Theorem above, orbits of the
family §1 = FU{Z} are the same as orbits of . O
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Sussmann’s Theorem

Each orbit O of a family § of vector fields on a subcartesian space S is a
manifold. Moreover, in the manifold topology of O, the differential
structure on O induced by its inclusion in S coincides with its manifold
differential structure.

Proof. By Theorem above, there exists a locally complete family of vector
fields on S with the same set of orbits as §. Hence, without loss of
generality we may assume that the family § is locally complete.
(i) Notation. In order to simplify the presentation we introduce the
following notation. For k > 0, let X = (X!,..., X*) € 3% t = (t1, ..., t)
and

exp(tX)(x) = (exp(thk)O...o exp(t1X1)> (x).

Given X, the expression for exp(tX)(x) is defined for all (t, x) in an open
subset Q(X) of R¥ x S. Let ((X) denote the set of all x € S such that
(t,x) € Q(X).

J. Sniatycki (University of Calgary) Singular Reduction



In other words, ¢(X) is the set of all x for which exp(tX)(x) is defined.
Moreover, we denote by ()% C R¥ the set of t € R¥ such that
exp(tX)(x) is defined and set

exp, X: Ox — St — exp(tX)(x).

By construction, if x € O, then exp, X is smooth and its range is
contained in O.

(i) Rank of a locally complete family of vector fields. For each

x € O, the rank of § at x, denoted rank §,, is the number of vector fields
X1, .., X™in § such that X!(x), ..., X™(x) form a basis of the subspace
of T, S spanned by values at x of vector fields in §. Since linear
independence is an open property, it follows that if X1, ..., X are linearly
independent at x, then they are linearly independent in a neighbourhood
of x. The assumption that the family § is locally complete ensures that
the rank of § is constant on O.
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(iii) Covering of the orbit by manifolds. Given x € O, there exists
X = (X!, .., X™) € 3" and a neighbourhood V of x in S such that
{Xl, X’"} is a maximal linearly independent subset of S‘V. For each
i=1,...,m, and v € R,

u% exp(£X7) (x) = uX/ (exp(EX7) ().

Hence, for each u = (uy, ..., upy) € R™,
T exp, X(u) = iy X1 (x) 4 ... + up X™(x).

The vectors Xi(x), ..., Xm(x) are linearly independent, which implies that
the derived map T exp, X : R” — T,S is one-to-one. Since S is
subcartesian, without loss of generality we may assume that there exists a
smooth map ¢ : V — IR" that induces a diffeomorphism of V' onto its
image ¢(V) C R".
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By the first Theorem stated here, for every i = 1, ..., m, the vector field
@, X" on @(V) locally extends to a vector field Y’ on R”. Shrinking V/, if
necessary, we may assume that all vector fields ¢ X' are restrictions to
@(V) of vector fields Y/ on R”. Let y = ¢(x) and Y = (Y1, ..., ). As
before, we denote by exp, Y the map from the neighbourhood of 0 € R"™
to R” given by

exp, (Y)(t) = (exp(tmY™)o ..o exp(t1Y")) (v).

Linear independence at x of the vector fields X!, ..., X™ implies that the
vector fields Y1, ..., Y, are linearly independent at y. Hence, there exists a
neighbourhood W of 0 in R™ such that exp, Y (W) is a submanifold of
R" and exp, Y, restricted to W, gives a diffeomorphism

exp, Y|y : W — exp, Y(W). Since y = ¢(x) € ¢(V) and for

i =1,..,m, the restriction to ¢(V) of Y’ gives the vector field ¢ X' on
@(V), the set exp, Y (W) is contained in ¢(V/), and it is the image of
W C IR™ under the map

exp(p(x)((p*X) tW = (V) it — (exp(tmeT X )o ..o exp(tip, X)) (@(x)).

J. Sniatycki (University of Calgary) Singular Reduction



In other words,
exp, Y (W) = exp, (9, X)(W) C (V).

The differential structure of exp, Y(W) is generated by restrictions to
exp, Y (W) of smooth functions in C*(IR™). The differential structure of
@(V) is also generated by restrictions to ¢ (V) of smooth functions in
C®(R™). Hence, equation above implies that equ,(x)((p*X)(W) is a
manifold in the differential structure generated by restrictions of smooth
functions on ¢(V). We say that expgo(X)(q)*X)(W) is a submanifold of
(V). Moreover, exp(p(x)((p*X)W W — exp¢(x)(go*X)(W) is a
diffeomorphism. Since ¢ is a diffeomorphism of V on its image ¢(V) and
V is open in S, it follows that exp, (X)(W) is a submanifold of S and
exp, (X) | is a diffeomorphism of W onto U.

The construction above can be repeated for each point x in the orbit O, a
finite collection X of vector fields in §, and a neighbourhood W of

0 € R™ where m is the number of vector fields in X that satisfy the
assumptions made above. In this way we get a family of sets exp, X(W)
in O covering O.
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In other words,

o= U UYexp, X(W).

x€e0 X W

Each exp, X(W) is a submanifold of S diffeomorphic to W.
(iv) Topology of the orbit. We have shown that the orbit O is covered
by a family {exp, X(W)} of subsets of O, where x € O,
X = (Xq,...,Xm) € F™ is a frame field for F in a neighbourhood of x and
W is a neighbourhood of 0 € R™ such that exp, X is a diffeomorphism of
W on its image. We want to take this family of subsets of O to be a basis
for the topology of O. For this definition to make sense, we must verify
that if xg € exp,, X1(Wi) Nexp,, Xo(W5), then there exists a frame field
Xp for § in a neighbourhood of xy and an open neighbourhood W of 0 in
IR™ such that

exp,, Xo(Wo) C exp,, X1(W1) Nexp,, Xo(Ws).

This can be verified by direct computation.
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Therefore, we can take the family {exp, X(W)} of subsets of the orbit O,
where x € O, X = (X1, ..., Xip) € ™ is a frame field for § in a
neighbourhood of x and W is a neighbourhood of 0 € IR™ such that
exp, X is a diffeomorphism of W on its image, as a basis of a topology 7
on O. In this topology, O is a connected topological space locally
homeomorphic to IR™. Note that the topology 7 of O may be finer than
its subspace topology.

(v) Differential structure of the orbit. The orbit O is covered by open
sets {exp, X(W)}, each of which is diffeomorphic to an open
neighbourhood of 0 € IR™. Moreover, if the intersection

Uro = exp,, X1 (W1) Nexp,, X2(Wh) is not empty, then it is an open
subset of O and exp,; X; o (exp,, X2) ! is a diffeomorphism of

exp,, X2(U12) onto exp,, X1(Ui2). Hence, O is a smooth manifold
diffeomorphic to R™.
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For each function f € C®(0) and each x € O, the restriction of f to
exp, X(W) is smooth. But exp, X(W) is a submanifold of S. It means
that if f € C®(0), then for each x € O there exists a neighbourhood

U = exp, X(W) of x in O and a function h € C*(S) such that fiy, = hyy.
Conversely, let f : O — IR be such that for each x € O, there exists an
open neighbourhood U of x in O and h € C*(S) such that fiy, = hyy.
Consider exp,, Xo(Wp) C O. By hypothesis, for each x € exp,, Xo(Wp),
there exists an open neighbourhood U of x in O and h € C®(S) such that
fiy = hjy. In particular, the restrictions of f and h to the open
neighbourhood U Nexp,, Xo(Wo) of x in exp,, Xo(Wp) coincide. Hence,
the restriction of f to exp,, Xo(Wp) is smooth. This holds for every open
set exp,, Xo(Wp) of our covering of O by manifolds. Hence, f is smooth
in the manifold differential structure C*®(O) of the orbit.

We have shown that the manifold differential structure of the orbit O
coincides with the differential structure of O induced by its inclusion into
S. O
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Stratified subcartesian spaces

A stratification of a subcartesian space S is a partition of S by a locally
finite family 901 of locally closed connected submanifolds M, called strata
of 91, which satisfy the following

Frontier Condition. For M, M’ € O, if M' N M # @, then either

M =M or M' C M\M.

We showed that every subcartesian space S admits a partition © by orbits
of the family X(S) of all vector fields on S, which we denote by O. It is of
interest to see under what conditions this partition of S is a stratification.

The partition O of a subcartesian space S by orbits of the family X(S) of
all vector fields on S satisfies Frontier Condition.

Proof. Let O and O’ be orbits of X(S). Suppose x € O’ N O with

O’ # O. We first show that O’ C O. Note that the orbit O is invariant
under the family of one-parameter local groups of local diffeomorphisms of
S generated by vector fields. Since, x € O, it follows that, for every vector
field X on S, exp(tX)(x) isin O if it is defined. But, O’ is the orbit of
X(S) through x. Hence, O’ C O.
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Stratifications of S can be partially ordered by inclusion. If 9t; and 91,
are two stratifications of S, we say that 9; is a refinement of 91, and
write 9017 > My, if, for every My € My, there exists My € 9y such that
M; C M,. We say that 90t is a minimal (coarsest) stratification of S if it is
not a refinement of a different stratification of S. If S is a manifold, then
the minimal stratification of S consists of a single manifold M = S.

If (S,90) is a stratified subcartesian space and N is a manifold, the
product S X N is stratified by the family Ms,y = {M x N | M € M}. If
U is an open subset of a stratified space (S, 1), we can consider a family
My ={MNU|UecM}. In general, My need not be a stratification of
U.

If (ssm) is a stratified subcartesian space and N is a manifold, the
product S x N is stratified by the family Mgy = {M x N | M € M} If
U is an open subset of a stratified space (S, 1), we can consider a family
My ={MnNU|UeM}. In general, My need not be a stratification of
U.
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A stratification 9t of a subcartesian space S is locally trivial if, for every
M € 91 and each x € M,

(i) there exists an open neighbourhood U of x in S such that My is a
stratification of U,

(i) there exists a subcartesian stratified space (S/, ) with a
distinguished point y € S’ such that the singleton {y} € 9, and

(iii) there is an isomorphism ¢ : (U, My) — (MNU) x Sl'im/(/\/lmu)xs/)
such that ¢(x) = (x,y).

Let 901 be a stratification of a subcartesian space S.

Definition

We say that 9T admits local extension of vector fields if, for each M € 9,
for each vector field Xy, on M and for each point x € M, there exists a
neighbourhood V of x in M, and a vector field X on S such that

Xv = Xum|v- In other words, the vector field X is an extension to S of the
restriction of Xy, to V.
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Every locally trivial stratification of a subcartesian space S admits local
extensions of vector fields.

Proof. Let Xy, be a vector field on M € 90t. Since M is locally trivial,
given xg € M, there exists a neighbourhood U of xp in M, a stratified
differential space (S, ") with a distinguished point y € S’ such that the
singleton {yo} € 9V, and an isomorphism ¢ : U — (M N U) x S'of
stratified subcartesian spaces such that ¢(xp) = (x0, o).

Let exp(tX)) be the local one-parameter group of local diffeomorphisms
of M generated by Xy, and let X yny)xs be a derivation of
C®((MN U) x S') defined by

Xty ) ) = 5 h(@p(Xu) (). ) o

for every h € C®((MNU) x S’) and each (x,y) € (MNU) x S’ Since
X(Mnu)yxs' is defined in terms of a local one-parameter group

(x,y) — (exp(tXm)(x), y) of diffeomorphisms, it is a vector field on
(MO U) x S,
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We can use the inverse of the diffeomorphism ¢ : U — (M N U) x S’ to
push-forward Xyny)x s to a vector field Xy = (¢~ 1)« X(mnu)xs on U.
Choose a function fy € C*(S) with support in U and such that f(x) =1
for x in some neighbourhood Uy of xg contained in U. Let X be a
derivation of C*®(S) extending fyXy by zero outside U. In other words, for
every f € C®(S), if x € U, then (Xf)(x) = fo(x)(Xyf)(x), and if

x ¢ Uy, then (Xf)(x) = 0. Clearly, X is a vector field on S extending the
restriction of Xy, to M N Ujy. O

Let Mt be a stratification of a subcartesian space S admitting local
extensions of vector fields. The partition ) of S by orbits of the family
X(S) of all vector fields on S is a stratification of S, and 9 is a
refinement of . Moreover, if I is minimal, then M = O.
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Proof. Let 9 be a stratification of S admitting local extensions of vector
fields. Since every vector field Xy, on a manifold M € 91 extends locally
to a vector field on S and M is connected, it follows that M is contained
in an orbit O € O.

Every orbit O € O is a union of strata of 9. Since 9 is locally finite, for
each x € O, there exists a neigbourhood V of x in S which intersects only
a finite number of strata My, ..., M of 9. Hence, V intersects only a

finite number of orbits in ©. Moreover, since strata of 9t form a partition
k

of S, it follows that V = [ J MiN V.

i=1
Consider x € My. Since M is locally closed there exists a neighbourhood
U of x contained in V/, and such that M; N U is closed in U. We can

/
relabel the manifolds My, ..., My so that ONU = U M; N U for some
i=1
I < k. Without loss of generality we may assume that x € M; for each
i =2,....1. We want to see if ON U is closed in U.
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Suppose we have a sequence (yx) in O N U convergent to y € U. Since
O N U is a finite union of disjoined manifolds, there must be a
subsequence of (yx) contained in one of them. Without loss of generality
we may assume that each y, € M; for some i =1, ...,/. We want to show
that the limit y = limy Lo yx € ONU. If y € M;, then
yeEMNUCONU. Ify € M{\\M;, then y € M; for some j =1, ..., k.
By assumption, y € U and U intersects only the strata that have x in
their closure. If M; C O then y € O N U. Therefore, y ¢ O N U implies
that M; is not contained in O. By a construction in the proof of
Sussmann’s Theorem, exp, X(W) is an m dimensional locally closed
submanifold of S. Let Uy be an open neighbourhood of x in U such that
Uo Nexp, X(W) is closed in Up.
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As before, we consider a sequence (yj) in

M; N Uy Nexp, X(W) € O N Uy, which converges to y € M; N Up. Since
M; ¢ O, it follows that y ¢ Uy Nexp, X(W) C Uy N O. This contradicts
the fact that Uy Nexp, X(W) is closed in Uy Therefore, O N U is closed in
U. Since x is an arbitrary point of the orbit O, it follows that O is locally
closed.

We have shown that the partition O of S by orbits of the family X(S) of
all vector fields on S is locally finite and that each orbit in O is locally
closed. Also, we showed earlier that that © is a stratification of S. By
construction, every stratum of the original stratification 9t is contained in
a stratum of O. This implies that 9t > O. If 91 is minimal, then 9 = O.
U

The space P/ G of orbits of a proper action of a Lie group G on a
manifold P is a minimally stratified space that admits local extensions of
vector fields.

Proof. Minimal stratification (Bierstone). Local extension of vector fields
(Lusala - Sniatycki).
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