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Introduction

Recall that a di¤erential space is a topological space S endowed with
a family C∞(S) of functions that are deemed smooth.

The family C∞(S) satis�es the following conditions

1 The collection of sets

ff �1((a, b)) j f 2 C∞(S), a, b 2 Rg
is a subbasis for the topology of S .

2 For every n 2 N, F 2 C∞(Rn) and f1, ..., fn 2 C∞(S),

F (f1, ..., fn) 2 C∞(S).

3 If h : S ! R has the property that for every point x 2 S , there exists
an open neighbourhood U of x in S and a function f 2 C∞(S) such
that

hjU = fjU ,

then h 2 C∞(S).

The family C∞(S) of functions on S is called a di¤erential structure
on S .
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A map ϕ : S ! T between di¤erential spaces S and T is smooth if
its pull-back ϕ� maps C∞(T ) to C∞(S). Moreover, ϕ : S ! T
di¤eomorphism if it is invertible and ϕ�1 : T ! S is smooth.

If T is a subset of a di¤erential space S , then there is a di¤erential
structure C∞(T ) generated by the restrictions to T of functions in
C∞(S).

More precisely, a function h : T ! R is in C∞(T ) if for every point
x 2 T � S , there exists an open neighbourhood U of x in T and a
function f 2 C∞(S) such that

hjU = fjU .

A di¤erential space S is a manifold if every point of S has an open
neighbourhood that is di¤eomorphic to an open subset of Rn.

A di¤erential space S is subcartesian if every point of S has an open
neighbourhood that is di¤eomorphic to a subset of Rn.

In the following, we consider only subcartesian di¤erential spaces.
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Local charts and derivations

For each point x of a subcartesian space S there exists a
neighbourhood U of x in S and a smooth map ϕ : U ! Rn that
induces a di¤eomorphism of U and ϕ(U) � Rn.

We may consider (U, ϕ) to be a local chart on S .

All local properties of S can be studied in terms of inclusion maps
ϕ(U) ,! Rn.

However, we have to remember that ϕ(U) need not be open.

A derivation on S is a derivation X of the di¤erential structure
C∞(S) of S .

In other words, X : C∞(S)! C∞(S) is a linear map satisfying
Leibnitz�s rule

X (f1f2) = X (f1)f2 + f1X (f2).
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Derivations on subcartesian spaces

If ϕ : S ! T is a di¤eomorphism, then a derivation X of C∞(S)
pushes-forward to a derivation ϕ�X : C∞(T )! C∞(T ) such that

ϕ�X (f ) = (ϕ
�1)�(X (ϕ�f )).

For each open set U in S , the derivation X of C∞(S) de�nes a
derivation XjU of C

∞(U) such that for every f 2 C∞(S),

XjU (fjU ) = (X (f ))jU ,

where jU denotes the restriction to U.

Theorem
If S is a subset of Rn, and X is a derivation of C∞(S), then for each
x 2 S , there exists a neighbourhood U of x in Rn and a derivation Y of
C∞(Rn) such that

X (FjS )jS\U = (Y (F ))jS\U
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Proof

Let u be a derivation of C∞(S) at x 2 S � Rn. For each F 2 C∞(Rn) the
restriction FjS of F to S is in C∞(S). It is easy to see that the map
C∞(Rn)! R : F 7! u(FjS ) is a derivation at x of C∞(Rn).

We denote the natural coordinate functions on Rn by x1, ..., xn : Rn ! R.
Every derivation Y of C∞(Rn) is of the form ∑n

i=1 F
i ∂

∂x i , where
F i = Y (x i ) for i = 1, ...n. Let X be a derivation of C∞(S) and
F 2 C∞(Rn). For each x 2 S , the derivation X (x) of C∞(S) at x gives a
derivation of C∞(Rn) at x . Hence,

X (FjS )(x) = X (x)(FjS ) =
n

∑
i=1

∂F
∂x i
(x)(X (x)(x ijS )) =

n

∑
i=1

∂F
∂x i
(x)(X (x ijS ))(x).

This is valid for every x 2 S .
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Proof cd.

Hence,

X (FjS ) =
n

∑
i=1

∂F
∂x i
(X (x ijS )).

For i = 1, ..., n, the coe¢ cients X (x ijS ) are in C∞(S). Since S is a
di¤erential subspace of Rn, for each x 2 S there exists a neighbourhood U
of x in Rn and functions F 1, ...,F n 2 C∞(Rn) such that
X (x ijS )jU\S = F

i
jU\S for each i = 1, ..., n. Hence,

X (FjS )jU\S =

 
n

∑
i=1
F i

∂F
∂x i

!
jU\S

.

Since F 1, ...,F n are smooth functions on Rn, it follows that
Y = ∑n

i=1 F
i ∂

∂x i is a vector �eld on Rn. �
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Integration of derivations

Let X be a derivation of C∞(S), and let I be an interval in R. A
smooth map c : I ! S is an integral curve of X if

d
dt
f (c(t)) = (X (f ))(c(t))

for every t 2 I .

Note that I need not be an open interval. If I consists of a single
point t0 such that c(t0) = x , then we consider c to be an integral
curve for every derivation X .

Theorem
Let S be a subcartesian space, and let X be a derivation of C∞(S). For
every x 2 S, there exists a unique maximal integral curve c : I ! S of X
such that c(0) = x.
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Proof

(i) Local existence. For the sake of simplicity assumme that S is a
subset of Rn. By the preceeding Theorem, there exists a neighbourhood U
of x 2 Rn and a vector �eld Y on Rn such that

X (FjS )jS\U = (Y (F ))jS\U

for every F 2 C∞(Rn).
Let c0 be an integral curve in Rn of the vector �eld Y such that
c0(0) = x . Let Ix be the connected component of c�10 (R) containing 0,
and c : Ix ! R the curve in S obtained by the restriction of c0 to Ix .
Clearly, c(0) = x . For each t0 2 Ix and each f 2 C∞(S) there exists a
neighbourhood U of c(t0) in S and a function F 2 C∞(Rn) such that
fjU = FjU . Therefore,

d
dt
f (c(t))jt=t0 =

d
dt
F (c(t))t=t0 = (Y (F ))(c(t0)) = (X (f ))(c(t0)),

which implies that c : Ix ! S is an integral curve of X through x .
J. Śniatycki (University of Calgary) Singular Reduction
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Proof

(ii) Smoothness. It follows from the theory of di¤erential equations that
the integral curve c0 in Rn of a smooth vector �eld Y is smooth. Hence,
c = c0jIx is smooth. Since local a local chart ϕ : U ! ϕ(U) � Rn chart
gives a di¤eomorphism of an open neighbourhood U of x 2 S on its image
in Rn, the inverse ϕ�1 is smooth and the composition c = ϕ�1 � cx is
smooth.
(iii) Local uniqueness. This follows from the local uniqueness of
solutions of �rst order di¤erential equations in Rn.
(iv) Maximality. Follows the same arguments as for manifolds.
(v) Global uniqueness. Follows the same arguments as for manifolds. �
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Vector �elds

Let X be a derivation of C∞(S). We denote by (exp tX )(x) the point on
the maximal integral curve of X through x corresponding to the value t of
the parameter. Given x 2 S , (exp tX )(x) is de�ned for t in an interval Ix
containing zero, and (exp 0X )(x) = x . If t, s, and t + s are in Ix ,
s 2 I(exp tX )(x ), and t 2 I(exp sX )(x ), then

(exp(t + s)X )(x) = (exp sX )((exp tX )(x)) = (exp tX )((exp sX )(x)).

In the case when S is a manifold, the map exp tX is a local one-parameter
group of local di¤eomorphisms of S . For a subcartesian space S , the
exp tX might fail to be a local di¤eomorphism.

De�nition
A derivation X is a vector �eld on S if exp tX is a local 1-parameter group
of local di¤eomorphisms of S .
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Let F be a family of vector �elds on a subcartesian space S and x0 a point
in S . Let X1, ...,Xn be vector �elds in F. Consider a piecewise smooth
curve given by �rst following the integral curve of X1 through x0 for time
τ1, next following the integral curve of X2 through x1 = (exp τ1X1)(x0)
for time τ2, after that following the integral curve of X3 through
x2 = (exp τ2X2)(x1) for some τ3, and so on. For each i = 1, ..., n, let Ji
be the closed interval in R with endpoints 0 and τi . In other words,
Ji = [0, τi ] if τi > 0 and Ji = [τi , 0] if τi < 0. Note that τi < 0 means
that the integral curve of Xi is followed in the negative time direction.
Clearly, for every i , Ji is contained in the domain Ixi�1 of the maximal
integral curve of Xi originating at xi�1.. The range of the curve is

n[
i=1

f(exp tiXi )(xi�1) 2 S j t 2 Jig.

De�nition
The orbit Ox0 of the family F of vector �elds is the union of all the ranges
described above that contains x0.
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Theorem
Let Ox0 be the orbit through x0 of a family F of vector �elds on a
subcartesian space S. For each X 2 F and f 2 C∞(S), the integral curve
of fX through x0 is contained in Ox0 . Similarly, if X ,Y are in F, then the
integral curve of (expX )�Y through x0 is contained in Ox0 .

Proof. For f 2 C∞(S) and X 2 F, integral curves of X and fX di¤er by
parametrization, provided f 6= 0. Integral curves of fX originating at the
points for which f = 0 are constant. Hence, integral curves of fX
originating at x0 are contained in the orbit Ox0 of F.
We have the equality

exp(s(expX )�Y )(x0) = exp(X ) � exp(sY ) � exp(�X )(x0)
whenever both sides are de�ned. Hence, the following integral curves
t 7! exp(�tX )(x0), t 7! exp(tY )[exp(X )(x0)] and
t 7! exp(tX )[exp(sY )[exp(�X )(x0)]] are well de�ned and contained in
Ox0 . Moreover, the point exp(s(expX )�Y ))(x0) can be obtained from x0
by following the curves c1, c2 and c3. Therefore, exp(s(expX )�Y ))(x0) is
contained in Ox0 .
J. Śniatycki (University of Calgary) Singular Reduction
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De�nition
A family F of vector �elds on S is locally complete if, for every X ,Y 2 F
and x 2 S , there exists an open neighbourhood U of x and Z 2 F such
that ((expX )�Y )jU = ZjU .

Theorem
Every family F of vector �elds on a subcartesian space S can be extended
to a locally complete family eF with the same orbits.
Proof. If F is not locally complete, we can �nd vector �elds X and Y in F
and x0 2 S , such that there is no neighbourhood U of x0 and Z 2 F
satisfying ((expX )�Y )jU = ZjU . Since X is a vector �eld on S , there is a
neighbourhood V of x0 in S such that expX restricts to a di¤eomorphism
of V onto its image. Hence, (expX )�Y is well de�ned on V . There exists
f 2 C∞(S) and open neighbourhoods U1 and U2 of x0 in S such that
U1 � U2 � V , fjU1 = 1 and fjSnU2 = 0. De�ne a vector �eld Z by
ZjV = f (expX )�Y and ZjSnU2 = 0. By Theorem above, orbits of the
family F1 = F[ fZg are the same as orbits of F. �
J. Śniatycki (University of Calgary) Singular Reduction
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Sussmann�s Theorem

Theorem
Each orbit O of a family F of vector �elds on a subcartesian space S is a
manifold. Moreover, in the manifold topology of O, the di¤erential
structure on O induced by its inclusion in S coincides with its manifold
di¤erential structure.

Proof. By Theorem above, there exists a locally complete family of vector
�elds on S with the same set of orbits as F. Hence, without loss of
generality we may assume that the family F is locally complete.
(i) Notation. In order to simplify the presentation we introduce the
following notation. For k > 0, let X = (X 1, ...,X k ) 2 Fk , t = (t1, ..., tk )
and

exp(tX)(x) =
�
exp(tkX

k )� ...� exp(t1X 1)
�
(x).

Given X, the expression for exp(tX)(x) is de�ned for all (t, x) in an open
subset Ω(X) of Rk � S . Let Ωt(X) denote the set of all x 2 S such that
(t, x) 2 Ω(X).
J. Śniatycki (University of Calgary) Singular Reduction
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In other words, Ωt(X) is the set of all x for which exp(tX)(x) is de�ned.
Moreover, we denote by Ωx

X � Rk the set of t 2 Rk such that
exp(tX)(x) is de�ned and set

expx X : Ωx
X ! S : t 7! exp(tX)(x).

By construction, if x 2 O, then expx X is smooth and its range is
contained in O.
(ii) Rank of a locally complete family of vector �elds. For each
x 2 O, the rank of F at x , denoted rankFx , is the number of vector �elds
X 1, ...,Xm in F such that X 1(x), ...,Xm(x) form a basis of the subspace
of TxS spanned by values at x of vector �elds in F. Since linear
independence is an open property, it follows that if X 1, ...,Xm are linearly
independent at x , then they are linearly independent in a neighbourhood
of x . The assumption that the family F is locally complete ensures that
the rank of F is constant on O.
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(iii) Covering of the orbit by manifolds. Given x 2 O, there exists
X = (X 1, ...,Xm) 2 Fm and a neighbourhood V of x in S such that
fX 1, ...,Xmg is a maximal linearly independent subset of FjV . For each
i = 1, ...,m, and u 2 R,

u
d
dt
exp(tX i )(x) = uX i (exp(tX i )(x)).

Hence, for each u = (u1, ..., um) 2 Rm ,

T expx X(u) = u1X
1(x) + ...+ umXm(x).

The vectors X1(x), ...,Xm(x) are linearly independent, which implies that
the derived map T expx X : Rm ! TxS is one-to-one. Since S is
subcartesian, without loss of generality we may assume that there exists a
smooth map ϕ : V ! Rn that induces a di¤eomorphism of V onto its
image ϕ(V ) � Rn.
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By the �rst Theorem stated here, for every i = 1, ...,m, the vector �eld
ϕ�X

i on ϕ(V ) locally extends to a vector �eld Y i on Rn. Shrinking V , if
necessary, we may assume that all vector �elds ϕ�X

i are restrictions to
ϕ(V ) of vector �elds Y i on Rn. Let y = ϕ(x) and Y = (Y1, ...,Ym). As
before, we denote by expy Y the map from the neighbourhood of 0 2 Rm

to Rn given by

expy (Y)(t) =
�
exp(tmYm)� ...� exp(t1Y 1)

�
(y).

Linear independence at x of the vector �elds X 1, ...,Xm implies that the
vector �elds Y1, ...,Yn are linearly independent at y . Hence, there exists a
neighbourhood W of 0 in Rm such that expy Y(W ) is a submanifold of
Rn and expy Y, restricted to W , gives a di¤eomorphism
expy YjW : W ! expy Y(W ). Since y = ϕ(x) 2 ϕ(V ) and for
i = 1, ...,m, the restriction to ϕ(V ) of Y i gives the vector �eld ϕ�X

i on
ϕ(V ), the set expy Y (W ) is contained in ϕ(V ), and it is the image of
W � Rm under the map

expϕ(x )
(ϕ�X) : W ! ϕ(V ) : t!

�
exp(tmϕm� X

1)� ...� exp(t1ϕ�X
1)
�
(ϕ(x)).
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In other words,

expy Y(W ) = expϕ(x )
(ϕ�X)(W ) � ϕ(V ).

The di¤erential structure of expy Y (W ) is generated by restrictions to
expy Y (W ) of smooth functions in C∞(Rm). The di¤erential structure of
ϕ(V ) is also generated by restrictions to ϕ(V ) of smooth functions in
C∞(Rm). Hence, equation above implies that expϕ(x )

(ϕ�X)(W ) is a
manifold in the di¤erential structure generated by restrictions of smooth
functions on ϕ(V ). We say that expϕ(x )

(ϕ�X)(W ) is a submanifold of
ϕ(V ). Moreover, expϕ(x )

(ϕ�X)jW : W ! expϕ(x )
(ϕ�X)(W ) is a

di¤eomorphism. Since ϕ is a di¤eomorphism of V on its image ϕ(V ) and
V is open in S , it follows that expx (X)(W ) is a submanifold of S and
expx (X)jW is a di¤eomorphism of W onto U.
The construction above can be repeated for each point x in the orbit O, a
�nite collection X of vector �elds in F, and a neighbourhood W of
0 2 Rm where m is the number of vector �elds in X that satisfy the
assumptions made above. In this way we get a family of sets expx X(W )
in O covering O.
J. Śniatycki (University of Calgary) Singular Reduction
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In other words,
O =

[
x2O

[
X

[
W

expx X(W ).

Each expx X(W ) is a submanifold of S di¤eomorphic to W .
(iv) Topology of the orbit. We have shown that the orbit O is covered
by a family fexpx X(W )g of subsets of O, where x 2 O,
X = (X1, ...,Xm) 2 Fm is a frame �eld for F in a neighbourhood of x and
W is a neighbourhood of 0 2 Rm such that expx X is a di¤eomorphism of
W on its image. We want to take this family of subsets of O to be a basis
for the topology of O. For this de�nition to make sense, we must verify
that if x0 2 expx1 X1(W1) \ expx2 X2(W2), then there exists a frame �eld
X0 for F in a neighbourhood of x0 and an open neighbourhood W0 of 0 in
Rm such that

expx0 X0(W0) � expx1 X1(W1) \ expx2 X2(W2).

This can be veri�ed by direct computation.
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Therefore, we can take the family fexpx X(W )g of subsets of the orbit O,
where x 2 O, X = (X1, ...,Xm) 2 Fm is a frame �eld for F in a
neighbourhood of x and W is a neighbourhood of 0 2 Rm such that
expx X is a di¤eomorphism of W on its image, as a basis of a topology T
on O. In this topology, O is a connected topological space locally
homeomorphic to Rm . Note that the topology T of O may be �ner than
its subspace topology.
(v) Di¤erential structure of the orbit. The orbit O is covered by open
sets fexpx X(W )g, each of which is di¤eomorphic to an open
neighbourhood of 0 2 Rm . Moreover, if the intersection
U12 = expx1 X1(W1) \ expx2 X2(W2) is not empty, then it is an open
subset of O and expx1 X1 � (expx2 X2)�1 is a di¤eomorphism of
expx2 X2(U12) onto expx1 X1(U12). Hence, O is a smooth manifold
di¤eomorphic to Rm .
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For each function f 2 C∞(O) and each x 2 O, the restriction of f to
expx X(W ) is smooth. But expx X(W ) is a submanifold of S . It means
that if f 2 C∞(O), then for each x 2 O there exists a neighbourhood
U = expx X(W ) of x in O and a function h 2 C∞(S) such that fjU = hjU .
Conversely, let f : O ! R be such that for each x 2 O, there exists an
open neighbourhood U of x in O and h 2 C∞(S) such that fjU = hjU .
Consider expx0 X0(W0) � O. By hypothesis, for each x 2 expx0 X0(W0),
there exists an open neighbourhood U of x in O and h 2 C∞(S) such that
fjU = hjU . In particular, the restrictions of f and h to the open
neighbourhood U \ expx0 X0(W0) of x in expx0 X0(W0) coincide. Hence,
the restriction of f to expx0 X0(W0) is smooth. This holds for every open
set expx0 X0(W0) of our covering of O by manifolds. Hence, f is smooth
in the manifold di¤erential structure C∞(O) of the orbit.
We have shown that the manifold di¤erential structure of the orbit O
coincides with the di¤erential structure of O induced by its inclusion into
S . �
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Strati�ed subcartesian spaces

A strati�cation of a subcartesian space S is a partition of S by a locally
�nite family M of locally closed connected submanifolds M, called strata
of M, which satisfy the following
Frontier Condition. For M,M 0 2M, if M 0 \M 6= ∅, then either
M 0 = M or M 0 � MnM.
We showed that every subcartesian space S admits a partition O by orbits
of the family X(S) of all vector �elds on S , which we denote by O. It is of
interest to see under what conditions this partition of S is a strati�cation.

The partition O of a subcartesian space S by orbits of the family X(S) of
all vector �elds on S satis�es Frontier Condition.
Proof. Let O and O 0 be orbits of X(S). Suppose x 2 O 0 \O with
O 0 6= O. We �rst show that O 0 � O. Note that the orbit O is invariant
under the family of one-parameter local groups of local di¤eomorphisms of
S generated by vector �elds. Since, x 2 O, it follows that, for every vector
�eld X on S , exp(tX )(x) is in O if it is de�ned. But, O 0 is the orbit of
X(S) through x . Hence, O 0 � O.
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Strati�cations of S can be partially ordered by inclusion. If M1 and M2

are two strati�cations of S , we say that M1 is a re�nement of M2 and
write M1 �M2, if, for every M1 2M1, there exists M2 2M2 such that
M1 � M2. We say that M is a minimal (coarsest) strati�cation of S if it is
not a re�nement of a di¤erent strati�cation of S . If S is a manifold, then
the minimal strati�cation of S consists of a single manifold M = S .
If (S ,M) is a strati�ed subcartesian space and N is a manifold, the
product S �N is strati�ed by the family MS�N = fM �N j M 2Mg. If
U is an open subset of a strati�ed space (S ,M), we can consider a family
MU = fM \U j U 2Mg. In general, MU need not be a strati�cation of
U.
If (S ,M) is a strati�ed subcartesian space and N is a manifold, the
product S �N is strati�ed by the family MS�N = fM �N j M 2Mg. If
U is an open subset of a strati�ed space (S ,M), we can consider a family
MU = fM \U j U 2Mg. In general, MU need not be a strati�cation of
U.
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A strati�cation M of a subcartesian space S is locally trivial if, for every
M 2M and each x 2 M,
(i) there exists an open neighbourhood U of x in S such that MU is a
strati�cation of U,
(ii) there exists a subcartesian strati�ed space (S 0,M0) with a
distinguished point y 2 S 0 such that the singleton fyg 2M0, and
(iii) there is an isomorphism ϕ : (U,MU )! ((M \U)� S 0,M0

(M\U )�S 0)

such that ϕ(x) = (x , y).
Let M be a strati�cation of a subcartesian space S .

De�nition
We say that M admits local extension of vector �elds if, for each M 2M,
for each vector �eld XM on M and for each point x 2 M, there exists a
neighbourhood V of x in M, and a vector �eld X on S such that
XjV = XM jV . In other words, the vector �eld X is an extension to S of the
restriction of XM to V .
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Theorem
Every locally trivial strati�cation of a subcartesian space S admits local
extensions of vector �elds.

Proof. Let XM be a vector �eld on M 2M. Since M is locally trivial,
given x0 2 M, there exists a neighbourhood U of x0 in M, a strati�ed
di¤erential space (S 0,M0) with a distinguished point y 2 S 0 such that the
singleton fy0g 2M0, and an isomorphism ϕ : U ! (M \U)� S 0of
strati�ed subcartesian spaces such that ϕ(x0) = (x0, y0).
Let exp(tXM ) be the local one-parameter group of local di¤eomorphisms
of M generated by XM , and let X(M\U )�S 0 be a derivation of
C∞((M \U)� S 0) de�ned by

(X(M\U )�S 0h)(x , y) =
d
dt
h(exp(tXM )(x), y)jt=0,

for every h 2 C∞((M \U)� S 0) and each (x , y) 2 (M \U)� S 0. Since
X(M\U )�S 0 is de�ned in terms of a local one-parameter group
(x , y) 7! (exp(tXM )(x), y) of di¤eomorphisms, it is a vector �eld on
(M \U)� S 0.
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We can use the inverse of the di¤eomorphism ϕ : U ! (M \U)� S 0 to
push-forward X(M\U )�S 0 to a vector �eld XU = (ϕ

�1)�X(M\U )�S 0 on U.
Choose a function f0 2 C∞(S) with support in U and such that f (x) = 1
for x in some neighbourhood U0 of x0 contained in U. Let X be a
derivation of C∞(S) extending f0XU by zero outside U. In other words, for
every f 2 C∞(S), if x 2 U, then (Xf )(x) = f0(x)(XU f )(x), and if
x /2 U0, then (Xf )(x) = 0. Clearly, X is a vector �eld on S extending the
restriction of XM to M \U0. �

Theorem
Let M be a strati�cation of a subcartesian space S admitting local
extensions of vector �elds. The partition O of S by orbits of the family
X(S) of all vector �elds on S is a strati�cation of S, and M is a
re�nement of O. Moreover, if M is minimal, then M = O.
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Proof. Let M be a strati�cation of S admitting local extensions of vector
�elds. Since every vector �eld XM on a manifold M 2M extends locally
to a vector �eld on S and M is connected, it follows that M is contained
in an orbit O 2 O.
Every orbit O 2 O is a union of strata of M. Since M is locally �nite, for
each x 2 O, there exists a neigbourhood V of x in S which intersects only
a �nite number of strata M1, ...,Mk of M. Hence, V intersects only a
�nite number of orbits in O. Moreover, since strata of M form a partition

of S , it follows that V =
k[
i=1

Mi \ V .

Consider x 2 M1. Since M1 is locally closed there exists a neighbourhood
U of x contained in V , and such that M1 \U is closed in U. We can

relabel the manifolds M1, ...,Mk so that O \U =
l[
i=1

Mi \U for some

l � k. Without loss of generality we may assume that x 2 M i for each
i = 2, ..., l . We want to see if O \U is closed in U.
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Suppose we have a sequence (yk ) in O \U convergent to y 2 U. Since
O \U is a �nite union of disjoined manifolds, there must be a
subsequence of (yk ) contained in one of them. Without loss of generality
we may assume that each yk 2 Mi for some i = 1, ..., l . We want to show
that the limit y = limk!∞ yk 2 O \U. If y 2 Mi , then
y 2 Mi \U � O \U. If y 2 M inMi , then y 2 Mj for some j = 1, ..., k.
By assumption, y 2 U and U intersects only the strata that have x in
their closure. If Mj � O then y 2 O \U. Therefore, y /2 O \U implies
that Mj is not contained in O. By a construction in the proof of
Sussmann�s Theorem, expx X(W ) is an m dimensional locally closed
submanifold of S . Let U0 be an open neighbourhood of x in U such that
U0 \ expx X(W ) is closed in U0.

J. Śniatycki (University of Calgary) Singular Reduction
Mechanics and Geometry in Canada Fields Instutute Toronto 17 July 2012 29

/ 30



As before, we consider a sequence (yk ) in
Mi \U0 \ expx X(W ) � O \U0, which converges to y 2 Mj \U0. Since
Mj * O, it follows that y /2 U0 \ expx X(W ) � U0 \O. This contradicts
the fact that U0 \ expx X(W ) is closed in U0 Therefore, O \U is closed in
U. Since x is an arbitrary point of the orbit O, it follows that O is locally
closed.
We have shown that the partition O of S by orbits of the family X (S) of
all vector �elds on S is locally �nite and that each orbit in O is locally
closed. Also, we showed earlier that that O is a strati�cation of S . By
construction, every stratum of the original strati�cation M is contained in
a stratum of O. This implies that M � O. If M is minimal, then M = O.
�
Theorem
The space P/G of orbits of a proper action of a Lie group G on a
manifold P is a minimally strati�ed space that admits local extensions of
vector �elds.

Proof. Minimal strati�cation (Bierstone). Local extension of vector �elds
(Lusala - Śniatycki).
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