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Introduction

@ | would like to than the organizers of this event for inviting me and
giving me an opportunity to give this series of lectures.

@ Reduction of symmetries in mechanics was an important theme in
Jerry Marsden's research.

@ In 1974, Marsden and Weinstein formulated a reduction scheme for
free and proper action of the symmetry group.

@ In a 1981 paper, Arms, Marsden and Moncrief showed that the
reduction of the zero level of a proper action of a Lie group exhibits
properties of a stratified space.

@ In 1998, Koon and Marsden proposed Poisson reduction of
non-holonomic systems.

@ In a 2007 paper, Yoshimura and Marsden investigated reduction of
symmetries of Dirac structures.
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@ In reduction of symmetries of a Hamiltonian system, we study the
interplay between the structure of the space of orbits of the symmetry
group of the system and its symplectic structure.
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@ In reduction of symmetries of a Hamiltonian system, we study the
interplay between the structure of the space of orbits of the symmetry
group of the system and its symplectic structure.

@ If the action of the symmetry group G on the phase space P of a
system is free and proper, then the space of orbits is a manifold and
the the space of orbits P/ G is a quotient manifold of P.

@ If the action on P of a Lie group G is proper, the orbit space P/ G is
stratified (Bierstone 1980).

@ Stratified spaces were introduced by Whitney (1955), who called
them manifold collections. The term stratified spaces (stratifications)
was coined by Thom (1955).

@ The following photograph of soap bubbles illustrates the structure of
a stratified space.
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Singular reduction

@ In 1983, Cushman initiated his technique of singular reduction with a
study of a Hamiltonian action of a compact Lie group. Using the
1975 paper of G. Schwarz, in many cases, Cushman was able to
describe explicitly the stratification structure of the reduced space in
terms of algebraic invariants of the action.
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Singular reduction

@ In 1983, Cushman initiated his technique of singular reduction with a
study of a Hamiltonian action of a compact Lie group. Using the
1975 paper of G. Schwarz, in many cases, Cushman was able to
describe explicitly the stratification structure of the reduced space in
terms of algebraic invariants of the action.

@ | was fascinated by Cushman's results and tried to understand his
theory. His explanations were very helpful. Nevertheless, for a long
time | did not understand was he was doing.

@ Finally, | realized that Cushman was using the language of differential
geometry in the sense of Sikorski.

@ In his 1972 book, Sikorski introduced the notion of a differential
structure on a topological space that is given by a class of continuous
functions which are deemed to be smooth.
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Differential structures

o A differential structure on a topological space S is a family C*(S) of
functions on S such that
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o A differential structure on a topological space S is a family C*(S) of
functions on S such that

@ The collection of sets
{fﬁl((a, b)) | f € C*(S), a, beR}
is a subbasis for the topology of P/G.

J. Sniatycki (University of Calgary) Singular Reduction



Differential structures

o A differential structure on a topological space S is a family C*(S) of
functions on S such that
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Differential structures

o A differential structure on a topological space S is a family C*(S) of
functions on S such that

@ The collection of sets
{f~1((a, b)) | f € C®(S), a,be R}
is a subbasis for the topology of P/G.
@ Forevery n€ N, F € C*(R") and f1, ..., f, € C®(S),
F(fi,....fn) € C*(S).

© If h: S — IR has the property that for every point x € S, there exists
an open neighbourhood U of x in S and a function f € C®(S) such
that
hu =flu,

then h € C®(S).
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Differential structures

o A differential structure on a topological space S is a family C*(S) of
functions on S such that

@ The collection of sets
{fY((a, b)) | f € C(S), abeR}

is a subbasis for the topology of P/G.
@ Forevery n€ N, F € C*(R") and f1, ..., f, € C®(S),

F(fi,....fn) € C*(S).

© If h: S — IR has the property that for every point x € S, there exists
an open neighbourhood U of x in S and a function f € C®(S) such
that
hu =flu,

then h € C®(S).

o A differential space is a topological space S endowed with a
differential structure C*(S).
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Category of differential spaces

o Let S and T be differential spaces with differential structures C®(S)
and C®(T), respectively.
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Category of differential spaces

o Let S and T be differential spaces with differential structures C®(S)
and C®(T), respectively.

o Amap ¢ : S — T is smooth if p*f € C®(S) for every f € C*(T).

e Amap ¢ : S — T is a diffeomorphism if ¢ is smooth, invertible and

¢! is smooth.

o If T is a differential space, and S C T, then S is a differential space
with the differential structure generated by restrictions to S of
functions in C®(T).

o A differential space S is a manifold if every point of S has a
neighbourhood diffeomorphic to an open subset of IR".

@ A differential space S is subcartesian if it is Hausdorff and every point
of S has a neighbourhood diffeomorphic to a subset of R".

J. Sniatycki (University of Calgary) Singular Reduction



o Let
Q:GxP—P:(g p)— Pg(p) =gp

be a proper action of a connected Lie group G on a manifold P.
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o Let
Q:GxP—P:(g p)— Pg(p) =gp
be a proper action of a connected Lie group G on a manifold P.

@ Properness of ® means that for every convergent sequence (p,) in P
and a sequence (g,) in G such that the sequence (g,p,) is convergent
in P, there exists a convergent subsequence (g5, ) of G and

JNim_gnpn = (lim gn,)( lim pp).
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o Let
Q:GxP—P:(g p)— Pg(p) =gp

be a proper action of a connected Lie group G on a manifold P.

@ Properness of ® means that for every convergent sequence (p,) in P
and a sequence (g,) in G such that the sequence (g,p,) is convergent
in P, there exists a convergent subsequence (g5, ) of G and

JNim_gnpn = (lim gn,)( lim pp).
@ Properness of the action implies that all isotropy groups

Gy, ={g€G|gp=np}

are compact.
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Space of orbits of a proper action

@ We denote the space of G orbits in P by P/ G and the canonical
projection by
p:P—P/G:p— Gp.
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projection by
p:P—P/G:p— Gp.

@ The differential structure of the orbit space P/ G is
C®(P/G) = {f € COP/G) | p*f € C®(P)°},

where C®(P)C is the space of smooth G-invariant functions on P.

The orbit space P/ G endowed with the differential structure C °°(P /G ) is
a subcartesian differential space.

@ Proof of this theorem involves all the steps which entered in
Cushman'’s singular reduction theory.
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Space of orbits of a proper action

@ We denote the space of G orbits in P by P/ G and the canonical
projection by
p:P—P/G:p— Gp.

@ The differential structure of the orbit space P/ G is
C®(P/G) = {f € COP/G) | p*f € C®(P)°},

where C®(P)C is the space of smooth G-invariant functions on P.

The orbit space P/ G endowed with the differential structure C °°(P /G ) is
a subcartesian differential space.

@ Proof of this theorem involves all the steps which entered in
Cushman'’s singular reduction theory.

@ Our aim is to decode the structure of P/ G from the data encoded in
its differential structure C*(P/G).
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Differential equations on subcartesian spaces

o A derivation of C®(S) is a map X : C®(S) — C%(S) satisfiying
Leibniz’s rule
X(fif) = X(fi)h + AX(£).
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Differential equations on subcartesian spaces

o A derivation of C®(S) is a map X : C®(S) — C%(S) satisfiying
Leibniz's rule
X(fif) = X(R)fs + AX().

@ Let / be an interval in IR. A smooth map c:/ — S is an integral
curve of a derivation X if
d
S (e(8)) = (X(F))(c(t))

for every t € [.
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Differential equations on subcartesian spaces

o A derivation of C®(S) is a map X : C®(S) — C%(S) satisfiying
Leibniz's rule
X(fif) = X(R)fs + AX().

@ Let / be an interval in R. A smooth map c¢:/ — S is an integral
curve of a derivation X if

d
2 (e(0) = (X(A)(e(t)

for every t € [.

Let S be a subcartesian space, and let X be a derivation of C*(S). For
every x € S, there exists a unique maximal integral curve c : | — S of X
such that c(0) = x.

J. Sniatycki (University of Calgary) Singular Reduction



Orbits of families of vector fields

@ Let X be a derivation of the differential structure C*®(S) of a
subcartesian space S.
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Orbits of families of vector fields

@ Let X be a derivation of the differential structure C*®(S) of a

subcartesian space S.

Definition
We say that X is a vector field on S if translations along integral curves of
X give rise to local one-parameter groups exp tX of local diffeomorphisms

of S.
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We say that X is a vector field on S if translations along integral curves of
X give rise to local one-parameter groups exp tX of local diffeomorphisms

of S.

@ Let § be a family of vector fields on a subcartesian space S.
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Orbits of families of vector fields

@ Let X be a derivation of the differential structure C*®(S) of a

subcartesian space S.

Definition
We say that X is a vector field on S if translations along integral curves of
X give rise to local one-parameter groups exp tX of local diffeomorphisms

of S.

@ Let § be a family of vector fields on a subcartesian space S.
@ For xp € S, the orbit of F through xq is

-U U U Uf(exp tiX) (1) €5 | € 4,

n=1 X1 X J1 ..... ,7 i=1
where the vector fields Xi, ..., X, arein § and, foreach i =1, ...,n
the interval J; C I, | is either [0, T;] or [T}, 0] with
Xi = (exp T,‘X,‘)(X,'_l).

Singular Reduction
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Generalized Sussmann’s theorem

Orbits of families of vector fields on a subcartesian space S are manifolds
immersed in S.
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Orbits of families of vector fields on a subcartesian space S are manifolds
immersed in S.

o Let X(S) be the family of all vector fields on S. By the theorem
above, every subcartesian space S is partitioned by orbits of the
family X(S) of all vector fields on S.
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Generalized Sussmann’s theorem

Orbits of families of vector fields on a subcartesian space S are manifolds
immersed in S.

o Let X(S) be the family of all vector fields on S. By the theorem
above, every subcartesian space S is partitioned by orbits of the
family X(S) of all vector fields on S.

@ picture of soap bubbles

@ Note, that we have got a structure theorem for a very general space.

@ The category of subcartesian spaces contains all subsets of IR” and
spaces that locally look like subsets IR".

@ According to our theorem, each of these spaces has a partition by
immersed manifolds that are orbits of the family of all vector fields.

@ Moreover, this partition is minimal in the sense that there is no local
one-parameter group of local diffeomorphisms that acts transversally
to the manifolds of the partition.
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Application to reduction of symmetry

@ Let P/ G be the space of orbits of a proper action of a connected Lie
group G on a manifold P.
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@ Let P/ G be the space of orbits of a proper action of a connected Lie
group G on a manifold P.

Strata of the orbit type stratification of P/ G are orbits of the family
X(P/G) of all vector fields on P/ G.

@ If P has a geometric structure invariant under the action of G, then
this structure induces an additional structure on the orbit space.
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induced by an invariant geometric structure on P is called reduction
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@ Let P/ G be the space of orbits of a proper action of a connected Lie
group G on a manifold P.

Strata of the orbit type stratification of P/ G are orbits of the family
X(P/G) of all vector fields on P/ G.

@ If P has a geometric structure invariant under the action of G, then
this structure induces an additional structure on the orbit space.

@ The process of determination of the structure of the orbit space P/ G
induced by an invariant geometric structure on P is called reduction
of symmetries.

@ For a proper action of G on P, it is convenient to encode the
geometric structure on P as an algebraic structure on the ring
C*®(P)¢ of smooth functions on P.

e The differential structure C*°(P/G) inherits an isomorphic algebraic
structure.
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Palais’ Slice Theorem

@ A slice for the action of G on P through a point p € Pis a
submanifold S, containing p such that:
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pin P.

J. Sniatycki (University of Calgary) Singular Reduction



Palais’ Slice Theorem

@ A slice for the action of G on P through a point p € Pis a
submanifold S, containing p such that:

@ S, is invariant under the action of the iostropy group Gp of p.

@ GS, ={gq|g € G, qge Sp}isanopen G-invariant neighbourhood of
pin P.

@ S,N(Gq) = Gpq for every g € Sp.

J. Sniatycki (University of Calgary) Singular Reduction



Palais’ Slice Theorem

@ A slice for the action of G on P through a point p € Pis a
submanifold S, containing p such that:

@ S, is invariant under the action of the iostropy group Gp of p.

@ GS, ={gq|g € G, qge Sp}isanopen G-invariant neighbourhood of
pin P.
@ S,N(Gq) = Gpq for every g € Sp.

@ By a Theorem of Palais (1961), the properness of the action of G on
P ensures that for every point p € P, there exists a slice S, through
p.
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Palais’ Slice Theorem

@ A slice for the action of G on P through a point p € Pis a
submanifold S, containing p such that:

@ S, is invariant under the action of the iostropy group Gp of p.

@ GS, ={gq|g € G, qge Sp}isanopen G-invariant neighbourhood of
pin P.
@ S,N(Gq) = Gpq for every g € Sp.

@ By a Theorem of Palais (1961), the properness of the action of G on
P ensures that for every point p € P, there exists a slice S, through
p.

The open neighboourhood GS,/ G of the orbit Gp in P/ G is
diffeomorphic to S,/ Gp.
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Bochner's Linearization Lemma

@ Since p is a fixed point of G, the derived action of G restricted to G,
preserves T,P, and induces a linear action

¥,: Gy X ToP — TP : (g, u) — TPy (u).
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Bochner's Linearization Lemma

@ Since p is a fixed point of G, the derived action of G restricted to G,
preserves T,P, and induces a linear action

¥,: Gy X ToP — TP : (g, u) — TPy (u).

e By Bochner's Linearization Lemma (1945), one can choose S, so that
the action of G, on S, is equivalent to the the restriction of ¥, to an
open Gp-invariant neighbourhood U, of 0 in a subspace E, of T,P.
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Bochner's Linearization Lemma

@ Since p is a fixed point of G, the derived action of G restricted to G,
preserves T,P, and induces a linear action

¥,: Gy X ToP — TP : (g, u) — TPy (u).

e By Bochner's Linearization Lemma (1945), one can choose S, so that
the action of G, on S, is equivalent to the the restriction of ¥, to an
open Gp-invariant neighbourhood U, of 0 in a subspace E, of T,P.

@ In other words, there exists a diffeomorphism IIJP : Up — Sp such that
¢po Td, :CIDgolpp

for all g € Gp.

J. Sniatycki (University of Calgary) Singular Reduction



Bochner's Linearization Lemma

@ Since p is a fixed point of G, the derived action of G restricted to G,
preserves T,P, and induces a linear action

¥,: Gy X ToP — TP : (g, u) — TPy (u).

e By Bochner's Linearization Lemma (1945), one can choose S, so that
the action of G, on S, is equivalent to the the restriction of ¥, to an
open Gp-invariant neighbourhood U, of 0 in a subspace E, of T,P.

@ In other words, there exists a diffeomorphism IIJP : Up — Sp such that
1ppo Td, :CIDgolpp

for all g € Gp.

Sy / Gy is diffeomorphic to the orbit space U,/ G, of the linear action ¥,
of Gp on E, O U,.
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Schwarz's Theorem and Weyl's Nullstellensatz

o The differential structure of U,/ G, is generated by the restrictions to
U, of smooth functions on E,.
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Schwarz's Theorem and Weyl's Nullstellensatz

o The differential structure of U,/ G, is generated by the restrictions to
U, of smooth functions on E,.

@ In other words, U,/ G, is a differential subspace of the space E,/ G,
consisting of orbits of the linear action of G, on E,.
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Schwarz's Theorem and Weyl's Nullstellensatz

o The differential structure of U,/ G, is generated by the restrictions to
U, of smooth functions on E,.

@ In other words, U,/ G, is a differential subspace of the space E,/ G,
consisting of orbits of the linear action of G, on E,.

@ By a theorem of G. Schwarz (1975), invariant smooth functions of a
linear action of a compact group are smooth functions of algebraic
invariants.
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Schwarz's Theorem and Weyl's Nullstellensatz

o The differential structure of U,/ G, is generated by the restrictions to
U, of smooth functions on E,.

@ In other words, U,/ G, is a differential subspace of the space E,/ G,
consisting of orbits of the linear action of G, on E,.

@ By a theorem of G. Schwarz (1975), invariant smooth functions of a
linear action of a compact group are smooth functions of algebraic
invariants.

e By Weyl's Nullstellensatz (1946), the ring of algebraic invariants of a
linear action of a compact group is finitely generated.
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Hilbert basis and Tarski-Seidenberg Theorem

@ A Hilbert basis of the action of G, on E, is a minimal set 071, ..., 0, of
homogeneous generators of the ring of algebraic invariants.
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Hilbert basis and Tarski-Seidenberg Theorem

@ A Hilbert basis of the action of G, on E, is a minimal set 071, ..., 0, of
homogeneous generators of the ring of algebraic invariants.
@ The corresponding Hilbert map is

op:Ep > R":vi— (01(v),...,0n(v)).
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Hilbert basis and Tarski-Seidenberg Theorem

@ A Hilbert basis of the action of G, on E, is a minimal set 071, ..., 0, of
homogeneous generators of the ring of algebraic invariants.
@ The corresponding Hilbert map is

op:Ep > R":vi— (01(v),...,0n(v)).
@ The map o, : E, — R" induces a map
Fp: Ep/ Gy — L =0p(Ep),

which is an isomorphism onto its range.
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Hilbert basis and Tarski-Seidenberg Theorem

@ A Hilbert basis of the action of G, on E, is a minimal set 071, ..., 0, of
homogeneous generators of the ring of algebraic invariants.
@ The corresponding Hilbert map is

op:Ep > R":vi— (01(v),...,0n(v)).
@ The map o, : E, — R" induces a map
Fp: Ep/ Gy — L =0p(Ep),

which is an isomorphism onto its range.

@ Since the Hilbert map ¢, : T,P — IR" is algebraic, the
Tarski-Seidenberg Theorem ensures that its range ¥ is a semialgebraic
subset of R".
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Hilbert basis and Tarski-Seidenberg Theorem

A Hilbert basis of the action of G, on E, is a minimal set 071, ..., 0, of
homogeneous generators of the ring of algebraic invariants.
The corresponding Hilbert map is

op:Ep > R":vi— (01(v),...,0n(v)).
The map 0, : E, — R" induces a map
Fp: Ep/ Gy — L =0p(Ep),

which is an isomorphism onto its range.

Since the Hilbert map o, : T,P — IR" is algebraic, the
Tarski-Seidenberg Theorem ensures that its range ¥ is a semialgebraic
subset of R".

In particular, £ is a closed subset of IR” and the differential structure
of X is given by restrictions of smooth functions on R” to X.
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Hilbert basis and Tarski-Seidenberg Theorem

@ A Hilbert basis of the action of G, on E, is a minimal set 071, ..., 0, of
homogeneous generators of the ring of algebraic invariants.
@ The corresponding Hilbert map is

op:Ep > R":vi— (01(v),...,0n(v)).
@ The map o, : E, — R" induces a map
Fp: Ep/ Gy — L =0p(Ep),

which is an isomorphism onto its range.

@ Since the Hilbert map ¢, : T,P — IR" is algebraic, the
Tarski-Seidenberg Theorem ensures that its range ¥ is a semialgebraic
subset of R".

@ In particular, X is a closed subset of IR” and the differential structure
of X is given by restrictions of smooth functions on R” to .

E,/ Gy is diffeomorphic to ¥. C R". \
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@ We have obtained a sequence of diffeomorphisms of neighbourhoods
of an arbitrary orbit Gp € P/G.
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@ We have obtained a sequence of diffeomorphisms of neighbourhoods
of an arbitrary orbit Gp € P/G.

@ GS,/ G is diffeomorphic to S,/ Gp, where S, is a slice at p and Gp is
the isotropy group of p.
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@ We have obtained a sequence of diffeomorphisms of neighbourhoods
of an arbitrary orbit Gp € P/G.

@ GS,/ G is diffeomorphic to S,/ Gp, where S, is a slice at p and Gp is
the isotropy group of p.

@ S,/ Gp is diffeomorphic to Up/ Gp, where U, is an invariant open
subset of a vector subspace E,, of TP and the action of G, on E, is
linear.

J. Sniatycki (University of Calgary) Singular Reduction




@ We have obtained a sequence of diffeomorphisms of neighbourhoods
of an arbitrary orbit Gp € P/G.

@ GS,/ G is diffeomorphic to S,/ Gp, where S, is a slice at p and Gp is
the isotropy group of p.

@ S,/ Gp is diffeomorphic to Up/ Gp, where U, is an invariant open
subset of a vector subspace E,, of TP and the action of G, on E, is
linear.

Q E,/Gp is diffeomorphic to £ C IR".
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@ We have obtained a sequence of diffeomorphisms of neighbourhoods
of an arbitrary orbit Gp € P/G.

@ GS,/ G is diffeomorphic to S,/ Gp, where S, is a slice at p and Gp is
the isotropy group of p.

@ S,/ Gp is diffeomorphic to Up/ Gp, where U, is an invariant open
subset of a vector subspace E,, of TP and the action of G, on E, is
linear.

Q E,/Gp is diffeomorphic to £ C IR".

@ Hence, GS,/ G is diffeomorphic to an open subset of R".
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@ We have obtained a sequence of diffeomorphisms of neighbourhoods
of an arbitrary orbit Gp € P/G.

@ GS,/ G is diffeomorphic to S,/ Gp, where S, is a slice at p and Gp is
the isotropy group of p.

@ S,/ Gp is diffeomorphic to Up/ Gp, where U, is an invariant open
subset of a vector subspace E,, of TP and the action of G, on E, is
linear.

Q E,/Gp is diffeomorphic to £ C IR".
@ Hence, GS,/ G is diffeomorphic to an open subset of R".
@ It is easy to show that the topology of the orbit space is Hausdorff.
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@ We have obtained a sequence of diffeomorphisms of neighbourhoods
of an arbitrary orbit Gp € P/G.
@ GS,/ G is diffeomorphic to S,/ Gp, where S, is a slice at p and Gp is
the isotropy group of p.
@ S,/ Gp is diffeomorphic to Up/ Gp, where U, is an invariant open
subset of a vector subspace E,, of TP and the action of G, on E, is

linear.
Q E,/Gp is diffeomorphic to £ C IR".

@ Hence, GS,/ G is diffeomorphic to an open subset of R".
@ It is easy to show that the topology of the orbit space is Hausdorff.

@ Therefore, P/ G is subcartesian.
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Reduction of symmetries

@ If P has a geometric structure invariant under the action of G, then
this structure induces an additional structure on the orbit space.
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Reduction of symmetries

@ If P has a geometric structure invariant under the action of G, then
this structure induces an additional structure on the orbit space.

@ The process of determination of the structure of the orbit space P/ G
induced by an invariant geometric structure on P is called reduction
of symmetries.

J. Sniatycki (University of Calgary) Singular Reduction



Reduction of symmetries

@ If P has a geometric structure invariant under the action of G, then
this structure induces an additional structure on the orbit space.

@ The process of determination of the structure of the orbit space P/ G
induced by an invariant geometric structure on P is called reduction
of symmetries.

@ For a proper action of G on P, it is convenient to encode the
geometric structure on P as an algebraic structure on the ring
C*®(P)C¢ of smooth functions on P.
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Reduction of symmetries

@ If P has a geometric structure invariant under the action of G, then
this structure induces an additional structure on the orbit space.

@ The process of determination of the structure of the orbit space P/ G
induced by an invariant geometric structure on P is called reduction
of symmetries.

@ For a proper action of G on P, it is convenient to encode the
geometric structure on P as an algebraic structure on the ring
C*®(P)C¢ of smooth functions on P.

e The differential structure C*°(P/G) inherits an isomorphic algebraic
structure.
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Reduction of symmetries

@ If P has a geometric structure invariant under the action of G, then
this structure induces an additional structure on the orbit space.

@ The process of determination of the structure of the orbit space P/ G
induced by an invariant geometric structure on P is called reduction
of symmetries.

@ For a proper action of G on P, it is convenient to encode the
geometric structure on P as an algebraic structure on the ring
C*®(P)C¢ of smooth functions on P.

e The differential structure C*°(P/G) inherits an isomorphic algebraic
structure.

@ The next step is to determine the geometric structure on P/ G on the
basis of the algebraic structure of C*(P/G).
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Symplectic reduction

@ Suppose that P is endowed with an invariant symplectic form w.
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Symplectic reduction

@ Suppose that P is endowed with an invariant symplectic form w.
@ The symplectic structure on P defines a Poisson algebra structure on

c=>(P).
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Symplectic reduction

@ Suppose that P is endowed with an invariant symplectic form w.
@ The symplectic structure on P defines a Poisson algebra structure on
C®(P).

@ Since w is G-invariant, the induced Poisson structure on C°°(P) is
G-invariant.
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Symplectic reduction

@ Suppose that P is endowed with an invariant symplectic form w.

@ The symplectic structure on P defines a Poisson algebra structure on
C®(P).

@ Since w is G-invariant, the induced Poisson structure on C°°(P) is
G-invariant.

o Hence, C*(P)® is a Poisson subalgebra of C*(P).
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Symplectic reduction

Suppose that P is endowed with an invariant symplectic form w.

The symplectic structure on P defines a Poisson algebra structure on
C®(P).

Since w is G-invariant, the induced Poisson structure on C°°(P) is
G-invariant.

Hence, C®(P)C is a Poisson subalgebra of C®(P).

Therefore, C*°(P/G) has the structure of a Poisson algebra.
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Symplectic reduction

@ Suppose that P is endowed with an invariant symplectic form w.

@ The symplectic structure on P defines a Poisson algebra structure on
C®(P).

@ Since w is G-invariant, the induced Poisson structure on C°°(P) is
G-invariant.

Hence, C®(P)C is a Poisson subalgebra of C®(P).
Therefore, C*°(P/G) has the structure of a Poisson algebra.
For each h € C*(P/G), the Poisson derivation X}, of h is given by

Xn(f) ={f, h} forall f € C*(P/G).
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Symplectic reduction

@ Suppose that P is endowed with an invariant symplectic form w.

@ The symplectic structure on P defines a Poisson algebra structure on
C®(P).

@ Since w is G-invariant, the induced Poisson structure on C°°(P) is
G-invariant.

o Hence, C*(P)® is a Poisson subalgebra of C*(P).

@ Therefore, C*(P/G) has the structure of a Poisson algebra.

@ For each h € C®°(P/G), the Poisson derivation X}, of h is given by

Xn(f) ={f, h} forall f € C*(P/G).

@ Poisson derivations of C®(P/G) are vector fields on P/G.
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Symplectic reduction

@ Suppose that P is endowed with an invariant symplectic form w.

@ The symplectic structure on P defines a Poisson algebra structure on
C®(P).

@ Since w is G-invariant, the induced Poisson structure on C°°(P) is
G-invariant.

o Hence, C*(P)® is a Poisson subalgebra of C*(P).

@ Therefore, C*(P/G) has the structure of a Poisson algebra.

@ For each h € C®°(P/G), the Poisson derivation X}, of h is given by

Xn(f) ={f, h} forall f € C*(P/G).

@ Poisson derivations of C®(P/G) are vector fields on P/G.

@ Orbits of the family of all Poisson vector fields are symplectic
manifolds.
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Symplectic reduction

@ Suppose that P is endowed with an invariant symplectic form w.

@ The symplectic structure on P defines a Poisson algebra structure on
C®(P).

@ Since w is G-invariant, the induced Poisson structure on C°°(P) is
G-invariant.

o Hence, C*(P)® is a Poisson subalgebra of C*(P).

@ Therefore, C*(P/G) has the structure of a Poisson algebra.

@ For each h € C®°(P/G), the Poisson derivation X}, of h is given by

Xn(f) ={f, h} forall f € C*(P/G).

@ Poisson derivations of C®(P/G) are vector fields on P/G.

@ Orbits of the family of all Poisson vector fields are symplectic
manifolds.

@ Thus, the orbit space P/ G is stratified. Each stratum is a Poisson
manifold singularly foliated by symplectic manifolds.
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Details of symplectic reduction

@ A 2-form w on P is symplectic if dw = 0 and w is nondegenerate.
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Details of symplectic reduction

@ A 2-form w on P is symplectic if dw = 0 and w is nondegenerate.

o If w is symplectic, for every f € C®(P) there exists a unique vector
field Xr on P such that

Xrdw = —df.
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Details of symplectic reduction

@ A 2-form w on P is symplectic if dw = 0 and w is nondegenerate.

o If w is symplectic, for every f € C®(P) there exists a unique vector
field Xr on P such that

Xrdw = —df.

@ Xy is called the Hamiltonian vector field of f.
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Details of symplectic reduction

@ A 2-form w on P is symplectic if dw = 0 and w is nondegenerate.

o If w is symplectic, for every f € C®(P) there exists a unique vector
field Xr on P such that

Xrdw = —df.

@ Xy is called the Hamiltonian vector field of f.

@ If f describes the energy of a mechanical system, integral curves of
Xr give time evolution of the system.
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Details of symplectic reduction

A 2-form w on P is symplectic if dw = 0 and w is nondegenerate.

If w is symplectic, for every f € C®(P) there exists a unique vector
field Xr on P such that

Xrdw = —df.

Xr is called the Hamiltonian vector field of f.

If f describes the energy of a mechanical system, integral curves of
Xr give time evolution of the system.

The Posson bracket of f; and £, in C*(P) is

{h, b} = —w(Xq, Xp).
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Details of symplectic reduction

A 2-form w on P is symplectic if dw = 0 and w is nondegenerate.

If w is symplectic, for every f € C®(P) there exists a unique vector
field Xr on P such that

Xrdw = —df.

Xr is called the Hamiltonian vector field of f.

If f describes the energy of a mechanical system, integral curves of
Xr give time evolution of the system.

The Posson bracket of f; and £, in C*(P) is
{h f} = —w(Xg, Xp).

Poisson bracket is bilinear, skew-symmetric, acts as a derivation and
satisfies the Jacobi identity.
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Details of symplectic reduction

A 2-form w on P is symplectic if dw = 0 and w is nondegenerate.

If w is symplectic, for every f € C®(P) there exists a unique vector
field Xr on P such that

Xrdw = —df.

Xr is called the Hamiltonian vector field of f.

If f describes the energy of a mechanical system, integral curves of
Xr give time evolution of the system.

The Posson bracket of f; and £, in C*(P) is
{h f} = —w(Xg, Xp).

Poisson bracket is bilinear, skew-symmetric, acts as a derivation and
satisfies the Jacobi identity.

C®(P) with the Poisson bracket {-,-} is called the Poisson algebra of
(P, w).
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Hamiltonian action

@ Let G be a connected Lie group with a Lie algebra g and its dual g*.
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Hamiltonian action

@ Let G be a connected Lie group with a Lie algebra g and its dual g*.
o Aaction®:G x P — P:(g,p)+— Pg(p) = gp is Hamiltonian if
there exists an Ad;-equivariant map J: P — g* such that for each
¢ € g, the action of exp t¢ on P is given by translations along integral
curves of the Hamiltonian vector field X ¢,
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Hamiltonian action

@ Let G be a connected Lie group with a Lie algebra g and its dual g*.

o Aaction®:G x P — P:(g,p)+— Pg(p) = gp is Hamiltonian if
there exists an Ad;-equivariant map J: P — g* such that for each
¢ € g, the action of exp t¢ on P is given by translations along integral
curves of the Hamiltonian vector field X ¢,

@ Symplectic reduction deals with the structure of of the orbit space
P/ G of a proper Hamiltonian action of G on (P, w).

J. Sniatycki (University of Calgary) Singular Reduction



Hamiltonian action

@ Let G be a connected Lie group with a Lie algebra g and its dual g*.
o Aaction®:G x P — P:(g,p)+— Pg(p) = gp is Hamiltonian if
there exists an Ad;-equivariant map J: P — g* such that for each
¢ € g, the action of exp t¢ on P is given by translations along integral
curves of the Hamiltonian vector field X ¢,

@ Symplectic reduction deals with the structure of of the orbit space
P/ G of a proper Hamiltonian action of G on (P, w).

e Hamiltonian action of G on (P, w) preserves w.
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Hamiltonian action

@ Let G be a connected Lie group with a Lie algebra g and its dual g*.

o Aaction®:G x P — P:(g,p)+— Pg(p) = gp is Hamiltonian if
there exists an Ad;-equivariant map J: P — g* such that for each
¢ € g, the action of exp t¢ on P is given by translations along integral
curves of the Hamiltonian vector field X ¢,

@ Symplectic reduction deals with the structure of of the orbit space
P/ G of a proper Hamiltonian action of G on (P, w).

e Hamiltonian action of G on (P, w) preserves w.

@ Hence, Hamiltonian action of G on (P, w) preserves preserves the
Poisson bracket.
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Poisson reduction

@ The space C®(P)¢ is a Poisson subalgebra of C*(P).
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Poisson reduction

@ The space C®(P)¢ is a Poisson subalgebra of C*(P).
@ Hence, the differential structure C*°(P/G) is a Poisson algebra.
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Poisson reduction

@ The space C®(P)¢ is a Poisson subalgebra of C*(P).
@ Hence, the differential structure C*°(P/G) is a Poisson algebra.
e For each f € C®°(P/G), the derivation Yy defined by

Yf(h) = —{Yf, h} V he COO(P/G)

is a vector field on P/ G, called the Poisson vector field of f.
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Poisson reduction

@ The space C®(P)¢ is a Poisson subalgebra of C*(P).
@ Hence, the differential structure C*°(P/G) is a Poisson algebra.
e For each f € C®°(P/G), the derivation Yy defined by

Ye(h) = —{Ys. h} ¥ he C®(P/G)

is a vector field on P/ G, called the Poisson vector field of f.

@ We know that orbits of the family X(P/G) of all vector fields on
P/ G are strata of the orbit type stratification of P/G.
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Poisson reduction

@ The space C®(P)¢ is a Poisson subalgebra of C*(P).
@ Hence, the differential structure C*°(P/G) is a Poisson algebra.
e For each f € C®°(P/G), the derivation Yy defined by

Yf(h) = —{Yf, h} V he COO(P/G)

is a vector field on P/ G, called the Poisson vector field of f.

@ We know that orbits of the family X(P/G) of all vector fields on
P/ G are strata of the orbit type stratification of P/G.

Each stratum of the orbit type stratification of P/ G is a Poisson manifold
singularly foliated by symplectic manifolds that are orbits of the family of
all Poisson vector fields on P/ G.
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