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Why study microswimming?

Feynman: there is plenty of room in the bottom!

(and plenty of grant money, so it seems)

Richard Feynman §
Tiny Machines

The Feynman Lecture
on Nanotechnology



http://www.youtube.com/watch?v=-LidL8W7eI4
http://www.zyvex.com/nanotech/feynman.html

In the last 15 years:

New tools for particle visualization, in vivo
cell manipulation, biochemical structure,
genomics and function.

These developments are bringing new
challenges and opportunities for the applied
mathematician to do collaborative

work with biologists and engineers.

One example:

Recent experiments in R.Goldstein, DAMPT

— L

Dreyfus et al.,
Microscopic
artificial
swimmers,
Nature 437,
862-865, 2005


http://www.youtube.com/Goldsteinlab
http://www.damtp.cam.ac.uk/user/gold/
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Microswimming is governed by Stokes equations on an incompressible fluid

Taylor (movie)
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Stress tensor T=-pl+ ¢ ,

O,u  Oyu Ou
Vu=| dv dyu 0w

Opw Oyw O;w
denote the Jacobian matrix of u. By Taylor’s theorem,
u(y) = u(x) + Vu(x) - h +O(h?), (1.2.2)

where Vu(x) - h is a matrix multiplication, with h regarded as a column
vector. Let

D = | [Vu+ (Vu)T].

32 1 The Equations of Motion
/ 1}'—’ /s
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FIGURE 1.3.1. Faster molecules in B’ can diffuse across S and impart momentum
to B.

where n is the normal to S, we now assume that
force on S per unit area = —p(x, t)n+ o(x,t) - n, (1.3.1)

where o is a matriz called the stress tensor, about which some assump-
tions will have to be made. The new feature is that & -n need not be parallel
to n. The separation of the forces into pressure and other forces in (1.3.1)
is somewhat ambiguous because ¢ - n may contain a component parallel to
n. This issue will be resolved later when we give a more definite functional
form to o.
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This is reasonable, because when a fluid undergoes a rigid body ro-
tation, there should be ne diffusion of momentum.

3. & w5 symmetrie. This property can be deduced as a consequence of
balance of angular momentum.”

Since o is symmetric, if follows from properties 1 and 2 that & can depend
only on the symmetric part of Vu; that is, on the deformation D. Because
o is a linear function of D, & and D commute and so can be simultaneously
diagonalized. Thus, the eigenvalues of o are linear functions of those of D,
By property 2, they must also be symmetric because we can choose U to
permute two eigenvalues of D (by rotating through an angle v /2 about an
eigenvector), and this must permute the corresponding eigenvalues of o.
The only linear functions that are symmetric in this sense are of the form

7, = Ad, +dy + dg) + 2ud,, i=1,213,

where o, are the eigenvalues of o, and d, are those of D. This defines the
constants A and p. Recalling that d, +d; +d3 = divu, we can use property
2 to transform o, back to the usual basis and deduce that

o = Adivu)l + 2 D, (1.3.2)

where T is the identity. We can rewrite this by putting all the trace in one
term:

o = 2u([D — L{divu)I] + {(divu)l (1.3.2)'

where p is the first coefficient of wviscosity, and { = A + %,u is the
second coefficient of viscosily.

source: Marsden/Chorin



An organism/robot is a deforming boundary immersed
in the ambient.

There are physical requirements for self propulsion.

What are them? (Wait a couple slides.)

For now: T=-pl +2u D
divT=0 and divu =0
u = 0 atinfinity ,

no slip condition imposed on all boundaries
(moving or fixed)



Ambient: R? (life at interface) or R3

but ... everything has boundaries !!!!

Common wisdom:

Boundaries affect motion substantially only

when organisms are close to them.



Geometry and Physics of Microswimming *

(Purcell & Shapere-Wilczek)

It ‘s a Gauge theory !

Key words: shape space, principal bundle, connection!

And a subriemannian geometry!

Metric is the hydrodynamical power efficiency notions

( For collective swimming: Ehresmann connection )

Recife notes
www.impa.br/~jair

* Taylor and Lighthill already knew in the 1950’s what it was all about.
Later on, analysts occasionally make blunders (see O.P. (2.14))
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Microswiming is a gauge theory!!
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Figure la. Hypothetical riﬁg-sha,ped animal capable of rotating its body in the direction
indicated. b. Direction of motion when the ring rolls on the outside of a cylinder.
¢. Direction of motion when the ring rolls on the inside of a cylindrical tube.


../taylor/wavingtails-taylor.pdf
../classicpapers/Purcell/AJP000003.pdf

What is the metric? Hydrodynamical power expenditure *
U = vectorfield along the boundary
u = solution of exterior Stokes equations (analogous to Dirichlet problem for Laplacian)

o = stress tensor associatedto u F= o. n along the boundary

integrate F.UonS, callit <<U,U>>

P: U—F Resistance operator

symmetric (Lorenz reciprocity)

* Discuss the envelope approximation



A “wet” Calderon problem?
P: U —F analogous to “Dirichlet to Neumann”

It is well known (see, e.g., [21]) that, given f € C*2((2), there exists a
unique solution of the boundary-value problem

Velv(z,u)¥Vu) = 0 in £,
(v(z,u)Vu) (19.164)
ulgg = /.
We define the Dirichlet to Neumann map A, : C*%(8Q) — C'(9Q) as the
} map given by
Howor of \" 5
o1y LA . .
Calderon AMif—v T{I:f)v“‘m- (19.165)
Y where u is the solution of (19.164) and v denotes the unit outer normal of
: . a0

”""'"’“"'f‘ '\"f‘_]_-‘"““ ; Physically, v(z,u) represents the (anisotropic, quasilinear) conductivity

:I‘nd | :.n'tlzll Differential of Q and A,(f) the current flux at the boundary induced by the voltage f.
Equations We study the inverse boundary-value problem associated to (19.164): how

1 by Michaed Christ, Corlos E. Kenig, ang
Cora Sadosky

much information about the coefficient matrix v can be obtained from knowl-
edge of the Dirichlet to Neumann map A,7

Marsden on Calderon



CalderonMa1973e.pdf

What is the Connection?

Horizontal spaces:

physically allowed motions for self propulsion

Total force=0 Total torque =0

Vertical spaces: rigid motions (with frozen shape)

A key fact: Vertical 1 Horizontal

Proof.

“Lorenz reciprocity” ( Green like identities for the “gooey “ Laplacian)

Answer: Its the mechanical connection



The connection 1 form solves the self rotating torus

(Taylor, Purcell) Hold the shape in place,

SR boundary conditions: solve Stokes
Nano: DNA ring equations, compute total force F and

total torque T (most likely T = 0).

RE counterflow: solve Stokes

equations with unit velocity. Compute
total force and adjust to have minus

the force calculated previously.

You can invent other animals that have no trouble swimming. We had

better be able to invent them. since we know they exist. One you might Purcell,
think of first as a physicist. 1s a torus. I don't know whether there is a Life at low
toroidal animal. but whatever other physiological problems it might face. it Reynolds

clearly could swim at low Reynolds number
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Ficure la. Hypothetical ring-shaped animal capable of rotating its body in the direction
indicated. b. Direction of motion when the ring rolls on the outside of a cylinder.
¢. Direction of motion when the ring rolls on the inside of a cylindrical tube.

The action of waving cylindrical tails in propelling
microscopic organisms

By Str GEOFFREY Tavror, F.R.S.

(Received 3 October 1951)



Spirochetes

http://www.annualreviews.org/doi/full/10.1146/annurev.genet.36.041602.134359

Self rotation induced flow (depicted in the figure)
Rigid Body counterflow with the opposite total torque

(note that total force vanishes)

Lighthill’s analysis

More later in this talk

Schematic figure showing the mechanism for the self rotation about a local body axis.

* Different trick by spiroplasma (Greg Huber)
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How to compute the curvature?

( Some tricks of the trade that we learned in the 1990’s )

Is it really needed to solve Stokes equations for any
deformation?

Answer: yes and no.

Yes, we need to extend vectorfields defined on the boundary of the
shape as the external Stokes flows; we need to Lie bracket them.

No, if we need only the connection 1 form.

Shapere/Wilzek recipie and more explainded (see Recife lectures)

Taylor’s swimming sheet



swimming sheet - handout.pdf

With curvature form, get Propulsion operator F (antisymmetric)

infinitesimal displacement generated by U,V,-U,-V

F(U,V)

An element of sE(3)



Let {v,]} be a basis for the vectorfields on the surface of a given located shape 4.
Define F,, to be the infinitesimal Euclidean motion given by the coupling of the modes
vy and v, (e.2., Fourier modes). The J,,, are nothing more than the components of the
curvature two-form 7 of the connection form A, evaluated at the shape g contracted
with the vectors v, and v,. A formula for F,,, is

For = AV, 001,

where

ol =l v

[vy miowee — W VIO
is the Lie bracket. The hat indicates the Stokes™ extension of the boundary condition
to the fluid; the fluid response in a neighborhood of the boundary is necessary in order
to compute the derivatives. The superscript # denotes “horizontal projection”-—which
in practice means subtracting A, (v) from the input boundary conditions so that their
Stokes’ extensions lead to no net force or torque on the fluid.

Once we have the components of the curvature calculated at a particular shape we
can approximate the connection form in a neighborhood of that shape. Let a,, be the
coordinates associated to the v,,. A boundary condition can then be written v = 3 @, V.

and the a,, are to be thought of as the amplitudes. Then,

F.o= Z}',,_,,,dﬂm Aoda,

I =C

= Y dianFueda,).

H =

Hence A = 3 a,, Fanda, + exact, So if a swimming motion is gauge-parameterized by

s)=g+ Y an(t)vn,

where g is a given located shape, then substituting the approximation for A into formula
{9}, we obtain an approximation for the net motion associated to the periodic swimming
stroke:

|
-‘]CKP[ Ay dr =1 '|‘f E Fron Oty d1 Ul:lalj,}
dn

m=n

The “Curvature
Approximation
Formula”

(Shapere/Wilczek)

Concerns small
deformations of an
““average shape”’

(or envelope model)

® Geometric thinking
organizes the Stokes
flows calculations.

(Lie brackets “lurk” in
the papers by the
founding fathers)



Optimization

Min P , subject to prescribed F

For small deformations of amplitude €

of an “"average shape” s

(o]

We get a linear algebra problem (in infinite dimension)

Some efficiency concepts were givenin Shapere/Wilczek (others recently)

See discussion in JK/J.Delgado on “Pareto optimization” .
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Purcellian Mechanics

1. Cell & flagellum Bacterial motor (Berg) =  —
2. Two linked swimmer \/

(groups of Peko Hosoi , Howard Stone, Greg Huber ...)

One of the fundamental axiom: for rods FJ_ — 2 F

3. Axiomatization: resistance matrices add; equivariance

Geometric Mechanics of N-linked Swimmers (with Gerusa Araujo)

|
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Problem 1 (hopefully not too hard).

Apply Pontryagin, what are the optimal patterns?
... and in the continuous limit?
do you get progressive waves

of arcs of circles from base to tip ?




The holy grail: how molecular motors (dyneyn) act?
Problem 2 (hard): Incorporate internal forces in the modeling.

Use a Geometric Mechanics approach to organize the analysis.

Can you infer what are the internal forces from the movies?

Start with internal force fields with biological interpretation; how to they relate with
the stress tensor at the solid fluid contact?

C.Brokaw

H.Gadelha

Comment: immersed boundary method

internal dissipation

How to start this program?  Lighthill (J. Eng. Math. , 1996)


http://www.cco.caltech.edu/~brokawc/Demo1/BeadExpt.html
http://www.damtp.cam.ac.uk/user/habg2/
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Distributed molecular motors of the eukariote flagella

CharlesBrokaw Microtubule sliding

Bending patterns

Flagellum Electron
micrographs of
cross sections:

Y Basal body
Basal body

(structurally identical

to centriole)

Question: are optimal patterns
waves formed by arcs of circles?

(or near to)
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Spirochetes revisited

Problem 3 (defy the experts!)

A 6 pack of beer offered !!

2 DOF Joint

Encapsulated propulsion
mechanisms Myxo

Internal helical flagellum

Spirochete on a box

Would you like to
swallow this?

Hirose lab movie



sm03.mov
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Swimming in “Fatland” (S", n=2o0r3)

Problem 4*: Topology matters?

* Another six-pack of beer for the first answer - does not need to be correct.



Swimming in “Fatland” (S", n=2o0r3)

Topology matters? Does it prevent swimming?

[ | hope not. Rewrite the connection condition in terms of
aMomentum map

J: T*Q > g*
Q ={ embeddings of reference body B in S" },

G =S0O(n) actingin targets > = q(B) by rigid motion

Identify TQ = T*Q by Power metric

Microswimming is just like the cart flip: J = O .]



Final Remarks I. Analysis /numerics: tools for Stokes flows
biharmonic equation / Darboux representation (2d)
slender body approximations (Lighthill)
(multi)pole collocation methods (Wu, Weinbaum, ...)
regularized Stokeslets (Cortez)
immersed boundary method (Peskin)

boundary integral methods (Pozrikidis)

(we will discuss none of them!)

ESCAPE ROUTE: Taylor waving sheet + tangent plane approximation



Final Remark Il. Can you one-up the Scallop Paradox?

Tuning fork in molasses

(b)

Acoustic streaming Play a guitar under water:

For MEMS devices

just a
cookie:

Quartz tuning fork

“Snapping shrimp”
(Detlef Lohse)

(cost: $10)



http://www.youtube.com/watch?v=C5LS6scAL3E
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Final Remark lll (final) Taylor’s waving sheet and the
tangent plane approximation

TPA: Analogous to the planar wave superposition for Laplacian operator.

Tavlor’s waving sheet Tavlor paper

Kurt Ehlers 8" order

Application: Synechococcus locomotion

Acoustic streaming? 2.5 more efficient


swimming sheet - handout.pdf
analysis of swimming Taylor.pdf
kurt-taylor8.pdf
kurt-taylor8.pdf
kurt-taylor8.pdf
kurt-taylor8.pdf

Taylor waving sheet revisited recently!!

Wu (not so recent, 1961)

Kozlov-Ramodanov (2002, potential flows + “recoil”)

Kozlov-Onischenko (2004)

Childress IMAtalk SC-Spag-Tokieda (all Reynolds + “recoil”)

Eric Lauga (transient) phaselocking (cooperation) higher order

Kurt calculations Question: why only even terms are present?

Annete Hosoi-Wilkening Annete-Chan
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The tangent plane approximation

Can be used on problems where a “local” wave can be identified .




Helical suface waves may explain the mystery of
Synechococcus swimming

Our recent work

(JK, Kurt Ehlers) (KE, G.Oster)

spheroid.mov



http://genome.jgi-psf.org/synw8/synw8.home.html
spheroid.mov

The mysterious open sea swimmer Synechococcus

(Waterbury et al., 1985)

10.0 um


Synechococcusdiscovery/74.full.pdf

Food for thought.

Research on autonomous micro swimming devices
is attracting great interest due to their potential for
medical and industrial applications.

Most proposals are inspired by bacteria with
external flagella.

Could micro-robots driven by internal mechanisms
be competitive? Synmovl (Berg)



../movies low reynolds/Berg/synecho_swim.mov

Photo by George Bergman.

Jerry Marsden, Berkeley, 1997.

Thank you, Jerry!



