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Does this make sense?
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Figure : figure courtesy Kakani Katija

Courtesy Nikita Nester

Figure : Jellyfish in Palau (video by Naoki Inoue posted on
YouTube Feb 2007)



The Averaging Theorem

Theorem
Let
x = f(x)

be a dynamical system with an asymptotically stable fixed
point at xo. Then for any T-periodic vector field, g(x, t), the
dynamical systems

x = f(x) + eg(x, 1)
admits a limit cycle near xo with period T for sufficiently small

€.
1

LGuckenheimer & Holmes, Nonlinear Oscillations and Chaos, 2nd Ed,
Springer (1983).



The passive system has a stable point

Figure : embedding of a dead fish in R3

a motionless corpse in stagnant water is a stable state.
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An analogous system
Consider the system on R3

X=y
y = —x — vy +esin(t)
7= x+xy

The first two equations are that of a forced/damped oscillator.
Note that this ODE has z symmetry so we can “ignore” z.
(draw diagram on board)
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The Big Picture

periodic force

dead fish locomotion?
reduction reduction
dead fish [ i gi . dead fish ]
periodic
SEG) periodic force L SE()




Previous Work

1.

Liao et. al. Fish exploiting vortices decrease muscle
activity, Science 302 (2003).

. S. Alben, M. J. Shelley, Coherent locomotion as an

attracting state for a free flapping body, PNAS 102
(2005).

. A. Shapere, F. Wilczek, Geometry of self-propulsion at

low Reynolds number, JFM 198 (1989).

. S. D. Kelly, The mechanics and control of robotic

locomotion with applications to aquatic vehicles, PhD
thesis, Caltech, (1998).

Kanso et. al., Locomotion of articulated bodies in a
perfect fluid, J. Nonlinear Sci 15 (2005).

. H. Cendra, J. Marsden, T. Ratiu, Lagrangian Reduction

by Stages, Memoirs of the AMS, (2001).

. A. Weinstein, Lagrangian Mechanics on Groupoids,

Mechanics Day, Fields Inst, (1995).



Outline

Math



The Big Picture

periodic force

deady locomotion?

reduction reduction
dead fish | (periodic dead fish]
SE(®) periodic force L SE()




The Big Picture

periodic force

dead fish | locomotion?

reduction reduction
h 4 1 (
dead fish H - dead fish
— periodic ]
SE() periodic force L SEE)




The Big Picture

: periodic force
dead fish locomotion?

reduction reduction

deadh (periodic dead fish]

0 periodic force SEQ)




The Big Picture

periodic force

dead fish locomotion?
reduction reduction
dead fish [ 1. dead fish
» periodic —]
3EG) periodic force L )



The Big Picture

: periodic force
dead fish locomotion?

reduction reduction

dead fish (periodic dead fish]

>0 periodic force \_\ SE(3)




The Big Picture

periodic force

dead fish locomotion?
reduction reduction
A
dead fish [ i 1 dead fish ]
periodic
SE() periodic force L SECG)




The Big Picture

periodic force

dead fish Qotion?

reduction reduction
dead fish | (perlod|c dead fish ]
SE(3) periodic force § _FEE)




What just happened?
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The Big Picture
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Some sad news

The Averaging theorem requires that we be in a Banach space.
Here are some musings

1.

We can use the completion of @7 This involves
non-differentiable mappings.

2. We can search for a set of feasible perturbations?

3. We may construct a sequence of finite dimensional

models.
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. almost.
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