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Goals:

Study the Lagrangian and Hamiltonian structures of
classical field theories (CFTs) with constraints

Explore connections between initial value constraints &
gauge transformations

Tie together & understand many different and apparently
unrelated facets of CFTs

Focus on roles of gauge symmetry and momentum maps
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Methods & Tools:

calculus of variations

initial value analysis, Dirac constraint theory

multisymplectic geometry, multimomentum maps

Noether’s theorem

energy-momentum maps

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS – Overview –Toronto, July, 2012 4 / 27



Methods & Tools:

calculus of variations

initial value analysis, Dirac constraint theory

multisymplectic geometry, multimomentum maps

Noether’s theorem

energy-momentum maps

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS – Overview –Toronto, July, 2012 4 / 27



Methods & Tools:

calculus of variations

initial value analysis, Dirac constraint theory

multisymplectic geometry, multimomentum maps

Noether’s theorem

energy-momentum maps

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS – Overview –Toronto, July, 2012 4 / 27



Methods & Tools:

calculus of variations

initial value analysis, Dirac constraint theory

multisymplectic geometry, multimomentum maps

Noether’s theorem

energy-momentum maps

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS – Overview –Toronto, July, 2012 4 / 27



Methods & Tools:

calculus of variations

initial value analysis, Dirac constraint theory

multisymplectic geometry, multimomentum maps

Noether’s theorem

energy-momentum maps

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS – Overview –Toronto, July, 2012 4 / 27



Generic Properties of Classical Field Theories

Gleaned from extensive study of standard examples:

electromagnetism, Yang–Mills

gravity

strings

relativistic fluids

topological field theories . . .

Pioneers: Choquet-Bruhat, Lichnerowicz, Dirac–Bergmann,
Arnowit–Deser–Misner (ADM), Fischer–Marsden...
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Generic Properties of Classical Field Theories

1. The Euler–Lagrange equations are underdetermined: there are not
enough evolution equations to propagate all field components.

— This is because the theory has gauge freedom.

— The corresponding gauge group is known at the outset.

— Kinematic fields have no significance.

— Dynamic fields ψ, conjugate momenta ρ have physical meaning.
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2. The Euler – Lagrange equations are overdetermined: they include
constraints

Φi(ψ, ρ) = 0 (1)

on the choice of initial data.

— So initial data (ψ(0), ρ(0)) cannot be freely specified

— Elliptic system (typically)

— Assume all constraints are first class in the sense of Dirac
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3. The Φi generate gauge transformations of (ψ, ρ) via the canonical
symplectic structure on the space of Cauchy data.

— So the presence of constraints←→ gauge freedom
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4. The Hamiltonian (with respect to a slicing) has the form

H =

∫
Σ

∑
i

αiΦ
i(ψ, ρ) dΣ

depending linearly on the atlas fields αi

Atlas fields:

— closely related to kinematic fields

— arbitrarily specifiable

— “drive” the entire gauge ambiguity of the CFT
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5. The evolution equations for the dynamic fields (ψ, ρ) take the adjoint
form

d
dλ

(
ψ
ρ

)
= J ·

∑
i

[
DΦi(ψ(λ), ρ(λ))

]∗
αi . (2)

— λ is a slicing parameter (“time”)

— J is a compatible almost complex structure; * an L2-adjoint

— hyperbolic system (typically)
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Adjoint form displays, in the clearest and most concise way, the
interrelations between the

dynamics

initial value constraints, and

gauge ambiguity of a theory
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6. The Euler–Lagrange equations are equivalent, modulo gauge trans-
formations, to the combined evolution equations (2) and constraint
equations (1).

— The constraints are preserved by the evolution equations
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7. The space of solutions of the field equations is not necessarily
smooth. It may have quadratic singularities occurring at symmetric
solutions.

— symplectic reduction

— linearization stability

— quantization
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Philosophy

Noether’s theorem and the Dirac analysis of constraints do much to
predict and explain features 1–6.

— I wish to go further and provide (realistic) sufficient conditions
which guarantee that they must occur in a CFT.

— I provide such criteria for 1–6 and lay the groundwork for 7.

A key objective is thus to derive the adjoint formalism for CFTs.
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Example: (Abelian) Chern–Simons Theory

A topological field theory on 3-dimensional “spacetime” X = R× Σ.

— Fields are 1-forms A = (A0,A) on X .

— Lagrangian density is L = dA ∧ A.

— Gauge group is Diff(X ): η · A = η∗A

— E–L equations: dA = 0.
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— Kinematic fields: A0

— Dynamic fields: A

— IV constraint: Φ(A,ρ) = (dA)12 = 0

— Gauge generators: (Dia)
δ

δAi

— Slicing of Λ1(X )→ X generated by:

d
dλ

= ζµ
∂

∂xµ
− Aν ζν ,µ

∂

∂Aµ

— Hamiltonian: H = −2
∫
Σ

(dA)12(ζµAµ) dΣ
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— Atlas field: ζµAµ

— Evolution equations in adjoint form reduce to:

d
dλ

(
Ai

ρi

)
=

(
Di(ζ

µAµ)

ε0ijDj(ζ
µAµ)

)

This is equivalent to (dA)0i = 0.

— N.B. We also have primary constraints ρ0 = 0 and ρi = ε0ijAj .
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Traditional Approaches to CFT

— Group-theoretical

I concerned with the gauge covariance of a CFT

I Lagrangian-oriented

I covariant

I based on Noether’s theorem
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— Canonical

I initial value analysis

I Hamiltonian-oriented

I not covariant

I based on space + time decomposition
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Connections:

— These two aspects of a mechanical system are linked by the
momentum map.

— One would like to have an analogous connection in CFT relating
gauge symmetries to initial value constraints.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS – Overview –Toronto, July, 2012 20 / 27



Connections:

— These two aspects of a mechanical system are linked by the
momentum map.

— One would like to have an analogous connection in CFT relating
gauge symmetries to initial value constraints.

MARK J. GOTAY (PIMS, UBC) MOMENTUM MAPS & CLASSICAL FIELDS – Overview –Toronto, July, 2012 20 / 27



Caveat!

The standard notion of a momentum map associated to a symplectic
group action usually cannot be carried over to spacetime covariant
field theory, because:

— spacetime diffeomorphisms move Cauchy surfaces, and

— the Hamiltonian formalism is only defined relative to a fixed
Cauchy surface
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Prime Example: Einstein’s theory of vacuum gravity

— the gauge group is the spacetime diffeomorphism group

— the only remnants of this group on the instantaneous (i.e., space +
time split) level are the superhamiltonian H and supermomenta J

I interpreted as the generators of temporal and spatial deformations
of a Cauchy surface

I these deformations do not form a group

I nor are H and J components of a momentum map.

This circumstance forces us to work on the covariant level.
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The Way Out: Multisymplectic Field Theory

We must construct a covariant counterpart to the instantaneous
Hamiltonian formalism.

In the spacetime covariant (or multisymplectic) framework we develop
here—an extension and refinement of the formalism of Kijowski and
Szczyrba— the gauge group does act.

So we can define a covariant (or multi-) momentum map on the
corresponding covariant (or multi-) phase space.
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The Energy-Momentum Map

Key fact: The covariant momentum map induces an energy-
momentum map Φ on the instantaneous phase space.

— Bridges the covariant & instantaneous formalisms

— Φ is the crucial object reflecting the gauge transformation
covariance of a CFT in the instantaneous picture.

— In ADM gravity, Φ = −(H, J), so that the superhamiltonian and
supermomenta are the components of the energy-momentum
map.
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A recurrent theme is that the energy-momentum map encodes
essentially all the dynamical information carried by a CFT: its

— Hamiltonian (Item 4)

— gauge freedom (Item 3)

— initial value constraints (Item 2)

— stress-energy-momentum tensor

— . . .
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— stress-energy-momentum tensor

— . . .
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Indeed:

Energy-Momentum Theorem
The constraints (1) are given by the vanishing of the energy-
momentum map associated to the gauge group of the theory.

Φ thus synthesizes the group-theoretical and canonical approaches to
CFT.
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Other Highlights

parametrization theory (à la Kuchař)

covariantization theory (à la Yang–Mills)

stress-energy-momentum tensors

‘removing’ second class constraints (à la Stückelberg)
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