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Plan of the talk (1)

Have a Lie group G (of transformations) acting transitively on a manifold Q (the object
manifold:

G×Q→ Q, (g, q) 7→ gq.

Introduce a right-invariant metric γG on G and project the metric to Q to obtain the
normal metric γQ.

 Occurs naturally:
Image/shape matching (G = Diff, Q = shapes);
quantum mechanics (G = SU(n+ 1), Q = CPn with Fubini-Study metric);
unit sphere (G = SO(3), Q = S2 with usual metric)
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Plan of the talk (2) G×Q→ Q, (g, q) 7→ gq.

I Consider a higher-order variational principle in both spaces. The solution curves
are called Riemannian cubics. Generalization of cubic polynomials and cubic splines
to Riemannian manifolds.

 Interpolation problems where a certain degree of smoothness is required
(piecewise geodesic interpolation leads to discontinuous velocities). This may be
unnatural (shapes), or inconvenient (quantum control, camera configurations).

I Study the relationship between optimal curves on G and optimal curves on Q, for
the variational principle defined on the respective spaces.

 Both variational principles (on G or on Q) may be interesting in applications.

 In geodesic shape matching one encounters geodesics on Diff with specific form
of momenta/velocities (for example the singular momenta in landmark matching).
One can explain this by understanding the relationship between geodesics on G and
geodesics on Q.

Two main questions:

I Which cubics on Q can be lifted horizontally to cubics on G?

I Which cubics on G project to cubics on Q? (more difficult)
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Group actions and normal metrics
Actions

I Lie group G, object manifold Q.

I Transitive group action G×Q→ Q, (g, q) 7→ gq .

I Infinitesimal action ξQ(q) := ∂ε=0 exp(εξ)q , where ξ ∈ g

Metrics

I Right-invariant Riemannian metric γG on G; γG(ug, vg) = γe(ugg
−1, vgg

−1),

where γe restriction of γG to TeG× TeG.
I Normal metric γQ on Q given by

γQ(uq, uq) = inf
{ξ∈g

∣∣ξQ(q)=uq}
γe(ξ, ξ).

I Will use raising/lowering bundle maps [ and ] for both metrics. That is,
[ : TG→ T ∗G or [ : TQ→ T ∗Q; and ] = [−1.

Examples
I Lie group: Q = G, left multiplication; γe; obtain right-invariant metric.
I Unit sphere: G = SO(3); Q = S2; γe(Ω,Ω) = Ω ·Ω (∼= 2-level QM system)
I Landmark matching: G = Diff(Ω); Q = R3; γe = . . .
I Image matching: G = Diff(Ω); Q = F(Ω); γe inner product on X(Ω).
I Quantum mechanics: G = SU(n+ 1), Q = CPn; γe(A,B) = −2 tr(AB)
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Horizontality
Horizontal space

I Lie algebra of the isotropy subgroup of q ∈ Q denoted by gq (vertical space)

I The horizontal space at q is g⊥q .

I Horizontal projection Hq orthogonal projection onto g⊥q .

I Normal metric can be written as γQ(uq, uq) = γe(Hq(ξ),Hq(ξ)) for any ξ with

ξQ(q) = uq.

Examples

I Lie group: g⊥g = g

I Unit sphere: so(3)x = {Ω with Ω× x = 0} ⇒ {Ω with Ω = λx}.
Therefore, so(3)⊥x = x⊥ . (2-dimensional)

Momentum map

I Denote by J : T ∗Q→ g∗ the cotangent lift momentum map for the action of G

and Q. Then J](αq) ∈ g⊥q . Indeed,

γe(J
](αq), ξ) = 〈J(αq), ξ〉g∗×g = 〈αq, ξQ(q)〉T∗Q×TQ .

I For S2, J](p,x) = x× p. This is in x⊥ = so(3)⊥x .
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Riemannian submersion

I Fix a reference object a ∈ Q and define the projection mapping

Π : G→ Q, g 7→ ga

This map is a Riemannian submersion. This means that vectors tangent to the
object manifold Q can be measured by lifting them horizontally to TG and
measuring the resulting horizontal vectors using γG.

I VgG = kerTgΠ and HgG = V ⊥g give orthogonal decomposition of TG into

horizontal and vertical subbundles TG = HG⊕ V G .

I If Π(g) = q, then

VgG = (gq)g, HgG = (g⊥q )g.

I A curve g(t) ∈ G is horizontal if ġ ∈ HgG. This is equivalent to ξ = ġg−1 ∈ g⊥q .
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Riemannian cubics

I Denote by Dt the covariant derivative of the Levi–Civita connection. In

coordinates (Dtq̇)
k = q̈k + Γkij q̇

iq̇j .

I Consider the second-order variational problem δJ = 0 for

J [q] =

∫ 1

0

‖Dtq̇‖2Qdt,

with respect to curves with fixed end-point velocities.

I The Euler–Lagrange equation is [Noakes et al. 1989], [Crouch & Silva Leite 1995]

D3
t q̇(t) +R (Dtq̇(t), q̇(t)) q̇(t) = 0,

where R is the curvature tensor R(X,Y )Z := ∇X∇Y Z −∇Y∇XY −∇[X,Y ]Z.

I Solutions to this equation are called Riemannian cubics.
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Cubics for normal metrics
Goal: Derive the equation for cubics in such a way that the horizontal generator of the
curve appears. This will be helpful for analysing horizontal lifting properties.

I The horizontal generator of a curve q(t) ∈ Q is the unique curve ξ(t) ∈ g with
q̇ = ξQ(q) (“generator”) and ξ ∈ g⊥q (“horizontal”).

I Define the map J̄ : TQ→ g by J̄ := ] ◦ J ◦ [, which “marries” G-action and metric.

Then the horizontal generator of a curve q(t) ∈ Q is given by J̄(q̇) .

I Formula for the covariant derivative following from the horizontal lifting property of

geodesics: Dtq̇ = ( ˙̄J + ad†
J̄
J̄)Q(q), where ad†ν = ] ◦ ad∗ν ◦[.

I Fact: ˙̄J + ad†
J̄
J̄ is horizontal, that is, in g⊥q .

 Rewrite the Lagrangian:

‖Dtq̇‖2Q = ‖( ˙̄J + ad†
J̄
J̄)Q(q)‖2Q

normal metric
= ‖ ˙̄J + ad†

J̄
‖2e

 Euler–Lagrange equation:[(
δJ̄

δq

)∗
− D

Dt
◦
(
δJ̄

δq̇

)∗](
η̇[ + (adJ̄ η)[ − ad∗η J̄

[
)

= 0,

where η := ˙̄J + ad†
J̄
J̄ and δJ̄

δq
, δJ̄
δq̇

: TQ→ g horizontal generator has appeared  
Examples.
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Cubics on Lie groups
[(
δJ̄

δq

)∗
−

D

Dt
◦
(
δJ̄

δq̇

)∗] (
η̇
[

+ (adJ̄ η)
[ − ad

∗
η J̄

[
)

= 0,

I A computation yields[(
δJ̄

δg

)∗
− D

Dt
◦
(
δJ̄

δġ

)∗]
µ = (TRg−1)∗

(
− ∂t − ad∗J̄)µ

for any curves g(t) ∈ G and µ(t) ∈ g∗.
I The Euler–Lagrange equation is therefore

(∂t + ad∗J̄) [η̇[ − (adJ̄ η)[ + ad∗η J̄
[] = 0,

where η := ˙̄J + ad†
J̄
J̄ and J̄ := J̄(g, ġ) = ġg−1.

I If γG is bi-invariant this recovers the NHP equation [Noakes et al. 1989]
...
J̄ + [ ¨̄J, J̄ ] = 0.

I Alternative derivation on Lie groups proceeds via second-order Euler–Poincaré

reduction: Lagrangian L(g, ġ) = 1
2
‖Dtġ‖2 = 1

2
‖( ˙̄J + ad†

J̄
J̄)g‖2g is right-invariant

with reduced Lagrangian `(J̄ , ˙̄J) = 1
2
‖ ˙̄J + ad†

J̄
J̄‖2e. Second-order Euler–Poincaré

equation is

(∂t + ad∗J̄)

(
δ`

δJ̄
− ∂t

δ`

δ ˙̄J

)
= 0.

For bi-invariance, `(J̄ , ˙̄J) = 1
2
‖ ˙̄J‖2e  NHP equation.
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Cubics on symmetric spaces
[(
δJ̄

δq

)∗
−

D

Dt
◦
(
δJ̄

δq̇

)∗] (
η̇
[

+ (adJ̄ η)
[ − ad

∗
η J̄

[
)

= 0,

Assume that γG is bi-invariant, and let Q be a symmetric space for G. This means that

[g⊥q , g
⊥
q ] ⊂ gq for all q ∈ Q.

I The Euler–Lagrange equation is equivalent to Hq(
...
J̄ + 2[ ¨̄J, J̄ ]) = 0.

I In addition it is true for any curve q(t) ∈ Q that Vq(
...
J̄ + 2[ ¨̄J, J̄ ]) = 0.

I Therefore: A curve q(t) ∈ Q is a Riemannian cubic ⇐⇒
...
J̄ + 2[ ¨̄J, J̄ ] = 0.

Derived in a different way in [Crouch & Silva Leite 1995].

I Recall that cubics on the group G satisfy the NHP equation
...
J̄ + [ ¨̄J, J̄ ] = 0.  

make use of similarity to analyse horizontal lifting properties.
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Horizontal lifts of cubics on symmetric spaces
Goal: Find the cubics on Q that can be lifted horizontally to cubics on G.

I Recall the Riemannian submersion Π : G→ Q, g 7→ ga with reference object a.
I Let q(t) be a curve in Q with q(0) = a. The curve defined by g(0) = e and
ġ = J̄(q̇)g is horizontal above q(t).

I Therefore, we are looking for the curves q(t), which satisfy
...
J̄ + 2[ ¨̄J, J̄ ] = 0 (cubic

on Q), and at the same time
...
J̄ + [ ¨̄J, J̄ ] = 0 (cubic on G).

Theorem: A curve q(t) ∈ Q is a Riemannian cubic and can be lifted horizontally to a
Riemannian cubic g(t) ∈ G if and only if it satisfies q̇(t) = (ξ(t))Q(q(t)) for a curve
ξ(t) ∈ g of the form

ξ(t) =
ut2

2
+ vt+ w,

where u, v, w span an Abelian subalgebra that lies in g⊥q(0).

Proof: ⇒ J̄ solves h  [ ¨̄J, J̄ ] = 0 it follows (SSP) that [J̄ , ˙̄J ] = 0 from NHP

equation: ¨̄J = constant J̄ is 2nd order polynomial in t. Coefficients mutually

commuting since [J̄ , ˙̄J ] = [J̄ , ¨̄J ] = 0, and horizontal since J̄ and ˙̄J as well as ¨̄J are
horizontal (SSP).
⇐ Assume q(0) = a. Start by showing that ξ(t) is horizontal at all times. This makes

use of Exp(span(u, v, w)) being an Abelian subgroup, and bi-invariance of γG. Curve
g(0) = e and ġ = ξg horizontal lift of q(t). Both g(t) and q(t) are cubics. �
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Horizontal lifts of cubics on symmetric spaces (cont’d)
Theorem: A curve q(t) ∈ Q is a Riemannian cubic and can be lifted horizontally to a Riemannian cubic
g(t) ∈ G if and only if it satisfies q̇(t) = (ξ(t))Q(q(t)) for a curve ξ(t) ∈ g of the form

ξ(t) =
ut2

2
+ vt+ w,

where u, v, w span an Abelian subalgebra that lies in g⊥q(0).

I The rank of a symmetric space is the dimension of the maximal Abelian Lie
subalgebra of g⊥q .  The bigger the rank, the more vectors are compatible with the
Theorem.

I In rank-one symmetric spaces u, v, w are all collinear.

Corollary: In rank-one symmetric spaces (S2, for example) the only cubics that can be
lifted horizontally to cubics are geodesics composed with a cubic polynomial in time.

Proof: Integrate q̇ =
(
at2

2
+ bt+ c

)
dQ(q) . Find q(t) = e

(
at3

6
+ bt2

2
+ct

)
d
q(0). �

 include non-horizontal curves on G.
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Projections of non-horizontal geodesics

Stay in the symmetric space context for now. That is, γG bi-invariant and [g⊥q , g
⊥
q ] ⊂ gq.

Question: Which non-horizontal geodesics on G project to cubics on Q?

I First, describe geodesics on G. Euler–Poincaré equation is ξ̇ = 0, with
reconstruction relation ġ = ξg.

I Let q(t) be the projected curve q(t) = Π(g(t)) = g(t)a. Decompose ξ into
horizontal and vertical parts

ξ = Hq(ξ) + Vq(ξ) = J̄(q̇) + σ̄.

Here we defined σ̄ := Vq(ξ).

I Evolution equations are

˙̄J = [σ̄, J̄ ], ˙̄σ = [J̄ , σ̄].

 have rewritten the geodesic equation on G.

I Recall that in order for q(t) to be a cubic
...
J̄ + 2[ ¨̄J, J̄ ] = 0 must hold.

Theorem: The projection q(t) of a geodesic g(t) is a Riemannian cubic if and only if at
time t = 0

[σ̄, [σ̄, [σ̄, J̄ ]]] + [J̄ , [J̄ , [J̄ , σ̄]]] = 0.
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Projections of non-horizontal geodesics (cont’d) ˙̄J = [σ̄, J̄], ˙̄σ = [J̄, σ̄].

Theorem: The projection q(t) of a geodesic g(t) is a Riemannian cubic if and only if at
time t = 0

[σ̄, [σ̄, [σ̄, J̄ ]]] + [J̄ , [J̄ , [J̄ , σ̄]]] = 0.

Proof: Assume q(0) = a. We have J̄(t) = Adg(t) J̄(0) and σ̄(t) = Adg(t) σ̄(0) if true
at t = 0, then true at all times. Plugging in the geodesic equation into the equation for
cubics one finds ...

J̄ + 2[ ¨̄J, J̄ ] = [σ̄, [σ̄, [σ̄, J̄ ]]] + [J̄ , [J̄ , [J̄ , σ̄]]].

�
Special cases:

I σ̄ = 0  g(t) is horizontal geodesic, q(t) is a geodesic.

I [σ̄, J̄ ] = 0  q(t) is a geodesic due to Dtq̇ = ˙̄JQ(q) = ([σ̄, J̄ ])Q(q) = 0.

I [J̄ , [J̄ , σ̄]] = cσ̄, [σ̄, [σ̄, J̄ ]] = cJ̄ , for c ∈ R.
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Projections of non-horizontal geodesics (cont’d)

Consider G = SO(3) and Q = S2. A curve x(t) ∈ S2 is generated by a rotation vector

Ω = J̄ + σ̄. That is, ẋ = Ω× x. The theorem is equivalent to
(
‖σ̄‖2 − ‖J̄‖2

)
J̄× σ̄.

I J̄ = 0 or σ̄ = 0 trivial projected curves x(t) = x(0), or projections of horizontal
geodesics.

I ‖σ̄‖2 = ‖J̄‖2  for given inital velocity ẋ = v, the projection x(t) describes a
constant speed rotation of x(0) around the axis

Ω = J̄ + σ̄ = x× ẋ± ‖ẋ‖x.
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Include all cubics: Finding the obstruction term
Goal: Find the obstruction for the projection of a cubic to be again a cubic. We will use
second-order Lagrange–Poincaré reduction for this [Cendra, Marsden, Ratiu 2001],
[Gay-Balmaz, Holm, Ratiu 2011]. We still assume that γG is bi-invariant, but we drop
the condition [g⊥q , g

⊥
q ] ⊂ gq.

I Fix reference object a ∈ Q. Stabilizer Ga, with Lie algebra ga.  will reduce by Ga.
I Right-action of Ga,

ψ : G×Ga → G, (g, h) = gh.

I Quotient space G/Ga is diffeomorphic to Q. Recall the projection map Π : G→ Q,
g 7→ ga.

 Principal bundle (G,Q,Ga,Π, ψ).

I Introduce ga-valued principal connection A,

A : TG→ ga, vg 7→ Ag(vg) := Va(g−1vg)

I Adjoint bundle is the associated vector bundle g̃a := (G× ga)/Ga, where the

quotient is taken wrt right-action of Ga on G× ga,

(G× ga)×Ga → G× ga, (g, ξ, h) 7→ (gh,Ad−1
h ξ).

I Induced linear connection with covariant derivative DAt

I Need map i : g̃a → g, [g, ξ] 7→ Adg ξ, shorthand σ 7→ σ̄
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Include all cubics: Finding the obstruction term (cont’d)

Start by reviewing the geodesic case.

I First-order Lagrange–Poincaré reduction makes use of the bundle diffeomorphism

α
(1)
A : TG/Ga → TQ×Q g̃a, [g, ġ] 7→ (q, q̇)× [g,A(ġ)].

I Reduced variables q, q̇, σ.

I Geodesics on G arise as solutions to the kinetic energy action principle, where
L(g, ġ) = 1

2
‖ġ‖2G.  Reduced Lagrangian `(q, q̇, σ) = 1

2
‖q̇‖2Q + 1

2
‖σ‖2g̃a .

I Lagrange–Poincaré equations describing geodesics are

Dtq̇ = ∇q̇σ̄Q, DAt σ = 0.

 this reveals the obstruction term for q(t) to be a geodesic.
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Include all cubics: Finding the obstruction term (cont’d)
Find the obstruction for a cubic to project to a cubic.

I Second-order Lagrange–Poincaré reduction uses bundle diffeomorphism
α

(2)
A : T (2)G/Ga → T (2)Q×Q 2g̃a ,

[g, ġ, g̈] 7→ (q, q̇, q̈)× [g,A(ġ)]⊕DAt [g,A(ġ)] .

I Reduced variables q, q̇, q̈, σ, σ̇

I Lagrangian of Riemannian cubics is L(g, ġ, g̈) = 1
2

∥∥Dtġ‖2G
 reduced Lagrangian

`(q, q̇, q̈, σ, σ̇) =
1

2
‖Dtq̇ −∇q̇σ̄Q‖2Q +

1

2
‖σ̇‖2g̃a

I The Lagrange–Poincaré equations are

D3
t q̇ +R (Dtq̇, q̇) q̇ = D2

t∇q̇σ̄Q −∇σ̄TQ ·DtVq −∇(∂tσ̄)TQ · Vq

+R (Dtq̇, σ̄Q(q)) q̇ +R(∇q̇σ̄Q, q̇ − σ̄Q(q))q̇

+∇q̇
(
i
(
σ̈ + ad†σ σ̇ + iTq ∂tJ̄(Vq)

))
Q

+ FTσ

(
F∇

(
V [q , q̇

))]
(
DAt + ad†σ

)(
σ̈ + iTq ∂tJ̄(Vq)

)
= 0.
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Thank you
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