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Plan of the talk (1)

Have a Lie group G (of transformations) acting transitively on a manifold Q (the object
manifold:

GxQ—=Q, (g9,9) — gq.

Introduce a right-invariant metric vc on G and project the metric to () to obtain the
normal metric 7q.
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Plan of the talk (1)

Have a Lie group G (of transformations) acting transitively on a manifold Q (the object
manifold:

GxQ—Q, (9,9)+ gq.
Introduce a right-invariant metric vc on G and project the metric to () to obtain the
normal metric 7q.
~» Occurs naturally:
Image/shape matching (G = Diff, Q = shapes);
quantum mechanics (G = SU(n + 1), @ = CP" with Fubini-Study metric);
unit sphere (G = SO(3), Q = S? with usual metric)
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Plan of the talk (2) GxQ—Q. (9.9)~ ga-

» Consider a higher-order variational principle in both spaces. The solution curves
are called Riemannian cubics. Generalization of cubic polynomials and cubic splines
to Riemannian manifolds.
~~ Interpolation problems where a certain degree of smoothness is required
(piecewise geodesic interpolation leads to discontinuous velocities). This may be
unnatural (shapes), or inconvenient (quantum control, camera configurations).
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Plan of the talk (2) GxQ—Q. (9.9)~ ga-

» Consider a higher-order variational principle in both spaces. The solution curves
are called Riemannian cubics. Generalization of cubic polynomials and cubic splines
to Riemannian manifolds.
~~ Interpolation problems where a certain degree of smoothness is required
(piecewise geodesic interpolation leads to discontinuous velocities). This may be
unnatural (shapes), or inconvenient (quantum control, camera configurations).

» Study the relationship between optimal curves on G and optimal curves on @, for
the variational principle defined on the respective spaces.

~ Both variational principles (on G or on Q) may be interesting in applications.

~ In geodesic shape matching one encounters geodesics on Diff with specific form
of momenta/velocities (for example the singular momenta in landmark matching).
One can explain this by understanding the relationship between geodesics on G and
geodesics on Q.
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Plan of the talk (2) GxQ—Q. (9.9)~ ga-

» Consider a higher-order variational principle in both spaces. The solution curves
are called Riemannian cubics. Generalization of cubic polynomials and cubic splines
to Riemannian manifolds.

~~ Interpolation problems where a certain degree of smoothness is required
(piecewise geodesic interpolation leads to discontinuous velocities). This may be
unnatural (shapes), or inconvenient (quantum control, camera configurations).

» Study the relationship between optimal curves on G and optimal curves on @, for
the variational principle defined on the respective spaces.

~ Both variational principles (on G or on Q) may be interesting in applications.

~ In geodesic shape matching one encounters geodesics on Diff with specific form
of momenta/velocities (for example the singular momenta in landmark matching).
One can explain this by understanding the relationship between geodesics on G and
geodesics on Q.
Two main questions:
» Which cubics on @ can be lifted horizontally to cubics on G?

» Which cubics on G project to cubics on Q7 (more difficult)
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Group actions and normal metrics
Actions
» Lie group G, object manifold Q.

» Transitive group action ‘ GxQ—=Q, (9,9 — 9gq ‘

> Infinitesimal action ‘fg(q) := Oe=0 exp(e€)q ‘ where € € g
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Group actions and normal metrics
Actions
> Lie group G, object manifold Q.
» Transitive group action ‘ GxQ—=Q, (9,9 — 9gq ‘

> Infinitesimal action ‘.EQ(q) := Oe=0 exp(e€)q ‘ where € € g

Metrics

» Right-invariant Riemannian metric y¢ on G; "yc(ugmg) = ve(ugg " veg™ "),

where 7. restriction of yg to TeG X TcG.
» Normal metric y¢ on @Q given by

YQ(ug, uq) = inf Ye(&:6)-
{¢es|eq(@=uq}

» Will use raising/lowering bundle maps b and f for both metrics. That is,
b:TG = T*Gorb:TQ — T*Q; and § =b~1.
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Group actions and normal metrics
Actions
> Lie group G, object manifold Q.

» Transitive group action ‘ GxQ—=Q, (9,9 — 9gq ‘

> Infinitesimal action ‘.EQ(q) := Oe=0 exp(e€)q ‘ where € € g

Metrics

» Right-invariant Riemannian metric y¢ on G; "yc(ugmg) = ve(ugg " veg™ "),

where 7. restriction of yg to TeG X TcG.
» Normal metric y¢ on @Q given by

YQ(ug, uq) = inf Ye(&:6)-
{¢es|eq(@=uq}

» Will use raising/lowering bundle maps b and f for both metrics. That is,
b:TG = T*Gorb:TQ — T*Q; and § =b~1.
Examples
> Lie group: @ = G, left multiplication; v; obtain right-invariant metric.
» Unit sphere: G = SO(3); Q = 5%; 7.(2, Q) = Q- Q (= 2-level QM system)
>
>
>
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Horizontality
Horizontal space
» Lie algebra of the isotropy subgroup of ¢ € @ denoted by (vertical space)

» The horizontal space at ¢ is .

» Horizontal projection orthogonal projection onto gj.

» Normal metric can be written as ‘ Yo (uq, uq) = ve(Hq(§), Hg(&)) ‘ for any & with
§q(a) = uq.
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Horizontality
Horizontal space
» Lie algebra of the isotropy subgroup of ¢ € @ denoted by (vertical space)

» The horizontal space at ¢ is .

» Horizontal projection orthogonal projection onto gj.

» Normal metric can be written as ‘ Yo (uq, uq) = ve(Hq(§), Hg(&)) ‘ for any & with

§a(q) = uq.
Examples

> Lie group: g;‘ =g
> Unit sphere: s0(3)x = {2 with 2 x x =0} = {Q with Q@ = Ax}.

o
Therefore, . (2-dimensional)
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Horizontality
Horizontal space
» Lie algebra of the isotropy subgroup of ¢ € @ denoted by (vertical space)

» The horizontal space at ¢ is .

» Horizontal projection orthogonal projection onto gj.

» Normal metric can be written as ‘ Yo (uq, uq) = ve(Hq(§), Hg(&)) ‘ for any & with

§a(q) = uq.
Examples

> Lie group: g;‘ =g
> Unit sphere: s0(3)x = {2 with 2 x x =0} = {Q with Q@ = Ax}.
Therefore, . (2-dimensional)
Momentum map
» Denote by J : T"Q — g* the cotangent lift momentum map for the action of G
and Q. Then Indeed,

VE(Ju(aq)vf) = <J(O‘q)7§>g*xg = <O‘q»§Q(Q)>T*QxTQ'
» For S%, J*(p,x) = x x p. This is in x* = 50(3)x.
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Riemannian submersion

» Fix a reference object a € Q and define the projection mapping

I:G—-Q, g+~ ga

This map is a Riemannian submersion. This means that vectors tangent to the
object manifold () can be measured by lifting them horizontally to T'G and
measuring the resulting horizontal vectors using ~va.

» V,G = ker T,II and H,G = V;" give orthogonal decomposition of TG into
horizontal and vertical subbundles ‘ TG=HGao VG ‘

» If II(g) = g, then

VoG = (9q)9, HyeG = (93)9

» A curve g(t) € G is horizontal if § € H,G. This is equivalent to £ = gg~* € gj.
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Riemannian cubics

» Denote by the covariant derivative of the Levi—Civita connection. In
coordinates (D:q)* = ¢* +T'F¢'¢.

» Consider the second-order variational problem §.7 = 0 for

1
Tld = / D13,
0

with respect to curves with fixed end-point velocities.
» The Euler-Lagrange equation is [Noakes et al. 1989], [Crouch & Silva Leite 1995]

D}4(t) + R (Diq(t), d(t)) 4(t) = 0,

where R is the curvature tensor R(X,Y)Z :=VxVyZ — VyVxY — Vix v Z.

» Solutions to this equation are called Riemannian cubics.
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Cubics for normal metrics

Goal: Derive the equation for cubics in such a way that the horizontal generator of the
curve appears. This will be helpful for analysing horizontal lifting properties.

» The horizontal generator of a curve ¢(t) € Q is the unique curve £(¢) € g with
d = £o(q) (“generator”) and & € gy (“horizontal”).

» Define the map J : TQ — g by J :=t o J ob, which “marries” G-action and metric.

Then the horizontal generator of a curve q(t) € Q is given by | J(¢) |.

» Formula for the covariant derivative following from the horizontal lifting property of

geodesics: | Dy = (j+ adTJ- J)o(q), | where ad, =t o ad; ob.

» Fact: j+ ad},]_ is horizontal, that is, in gql.
~» Rewrite the Lagrangian:

. 7 = normal metric || ¥
IDedllE = [[(J + ad’ N ()] "= || + ad; |12

~> Euler-Lagrange equation:

6;7 *_2 57(7 * .b v e )
[(5(1) Dto((sq> } (77 + (adyn) adn.]),q

where 7 := j—i— ad} J and ng , g—‘g : TQ — g ~ horizontal generator has appeared ~~
Examples.
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Cubics on Lie groups Kl) A (1>] (# + Gaym® = a7 =0,

5q Dt 5q

» A computation yields

() B(3)]- ra -

for any curves g(t) € G and u(t) € g*.
» The Euler-Lagrange equation is therefore

(0 +ad$) [’ — (adyn)” + ad} J'] =0,

where 1 := J + ad’ J and J := J(g,9) = 99"
> If ¢ is bi-invariant this recovers the NHP equation [Noakes et al. 1989]

J+[JJ]=o0.

> Alternative derivation on Lie groups proceeds via second-order Euler—Poincaré
reduction: Lagrangian L(g,g) = 3|/ D:g||* = %H(JJr adT J)gl|3 is right-invariant
with reduced Lagrangian £(J, J) = 3||J + ad, J||2. Second-order Euler—Poincaré

equation is
Y4 Y4
10) d% 0:— ) =0.
(”LaJ)(éJ tw)

For bi-invariance, £(J, j) = %HJH@ ~+ NHP equation.
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Cubics on symmetric spaces [(L’> A (ZH (# + Gaym® = a7 =0,

5q Dt 54

Assume that ¢ is bi-invariant, and let () be a symmetric space for G. This means that

[g;‘,g;‘]ng for all g € Q.

» The Euler-Lagrange equation is equivalent to Hq(-j + 2[j7 J]) = 0.

> In addition it is true for any curve ¢(t) € Q that Vq(.j + 2[j, J]) =0.

» Therefore: A curve ¢(t) € Q is a Riemannian cubic <= J+ 2[j, J]=0.
Derived in a different way in [Crouch & Silva Leite 1995].

» Recall that cubics on the group G satisfy the NHP equation T+ [j, J]=0.
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Cubics on symmetric spaces [(L’> P (ZH (# + Gaym® = a7 =0,

5q Dt 54

Assume that ¢ is bi-invariant, and let () be a symmetric space for G. This means that

o5, 05] C gq | forall g € Q.

» The Euler-Lagrange equation is equivalent to H (J + 2[J J]) =
> In addition it is true for any curve ¢(t) € Q that Vq(J + 2[J J]) 0.

» Therefore: A curve ¢(t) € Q is a Riemannian cubic <= J + 2[(77 J] =
Derived in a different way in [Crouch & Silva Leite 1995].

» Recall that cubics on the group G satisfy the NHP equation T+ [j ]=0.

~~ make use of similarity to analyse horizontal lifting properties.
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Horizontal lifts of cubics on symmetric spaces

Goal: Find the cubics on @ that can be lifted horizontally to cubics on G.
> Recall the Riemannian submersion II : G — @, g — ga with reference object a.
> Let g(t) be a curve in Q with ¢(0) = a. The curve defined by ¢g(0) = e and

g = J(q)g is horizontal above q(¢).

» Therefore, we are looking for the curves ¢(t), which satisfy J+ 2[j, J] =0 (cubic

on @), and at the same time J+ [j, J] =0 (cubic on G).
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Horizontal lifts of cubics on symmetric spaces
Goal: Find the cubics on @ that can be lifted horizontally to cubics on G.
> Recall the Riemannian submersion II : G — @, g — ga with reference object a.
> Let g(t) be a curve in Q with ¢(0) = a. The curve defined by ¢g(0) = e and
g = J(q)g is horizontal above ¢(t).

» Therefore, we are looking for the curves ¢(t), which satisfy J+ 2[j, J] =0 (cubic

on @), and at the same time J + [J,J] =0 (cubic on G).
Theorem: A curve ¢(t) € Q is a Riemannian cubic and can be lifted horizontally to a

Riemannian cubic g(t) € G if and only if it satisfies ¢(t) = (£(¢))q(g(t)) for a curve
&(t) € g of the form

2
§t) = 5+t +w,

where u, v, w span an Abelian subalgebra that lies in qu(o)-
Proof: J solves  ~ [J, J] = 0 ~ it follows (SSP) that [J, J] = 0 ~+ from NHP

equation: J = constant ~ J is 2nd order polynomial in ¢. Coefficients mutually
commuting since [J, J] = [J, J] = 0, and horizontal since J and .J as well as J are
horizontal (SSP).

Assume ¢(0) = a. Start by showing that £(¢) is horizontal at all times. This makes
use of Exp(span(u,v,w)) being an Abelian subgroup, and bi-invariance of vg. ~» Curve
g(0) = e and g = &g horizontal lift of ¢(t). Both g(¢) and ¢(t) are cubics. B
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Horizontal lifts of cubics on symmetric spaces (cont’d)
Theorem: A curve ¢(t) € Q is a Riemannian cubic and can be lifted horizontally to a Riemannian cubic
g(t) € G if and only if it satisfies ¢(¢) = (£(t))q(g(t)) for a curve £(t) € g of the form

ut?
() = ES + vt + w,

where u, v, w span an Abelian subalgebra that lies in qu(o)-

» The rank of a symmetric space is the dimension of the maximal Abelian Lie
subalgebra of gql. ~~ The bigger the rank, the more vectors are compatible with the

Theorem.

> In rank-one symmetric spaces u, v, w are all collinear.

Corollary: In rank-one symmetric spaces (52, for example) the only cubics that can be
lifted horizontally to cubics are geodesics composed with a cubic polynomial in time.

at3 | bt ct |d
Proof: Integrate ¢ = (% + bt—|—c) do(q) . Find ¢(t) = e( R t) q(0). =
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Horizontal lifts of cubics on symmetric spaces (cont’d)
Theorem: A curve ¢(t) € Q is a Riemannian cubic and can be lifted horizontally to a Riemannian cubic
g(t) € G if and only if it satisfies ¢(¢) = (£(t))q(g(t)) for a curve £(t) € g of the form

ut?
() = ES + vt + w,

where u, v, w span an Abelian subalgebra that lies in qu(o)-

» The rank of a symmetric space is the dimension of the maximal Abelian Lie
subalgebra of gql. ~~ The bigger the rank, the more vectors are compatible with the
Theorem.

> In rank-one symmetric spaces u, v, w are all collinear.

Corollary: In rank-one symmetric spaces (52, for example) the only cubics that can be
lifted horizontally to cubics are geodesics composed with a cubic polynomial in time.

at3 | bt ct |d
Proof: Integrate ¢ = (% + bt—|—c) do(q) . Find ¢(t) = e( R t) q(0). =

~> include non-horizontal curves on G.
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Projections of non-horizontal geodesics
Stay in the symmetric space context for now. That is, 7 bi-invariant and [g;, 97] C gq-

Question: Which non-horizontal geodesics on G project to cubics on Q7

» First, describe geodesics on G. Euler—Poincaré equation is § =0, with
reconstruction relation g = £g.

> Let g(t) be the projected curve q(t) = II(g(t)) = g(t)a. Decompose & into
horizontal and vertical parts

§=Hy(§) +Vq(§) = j(‘]) +0.
Here we defined & := V4(&).

» Evolution equations are

J=15,7], &=][J,5

~~ have rewritten the geodesic equation on G.

> Recall that in order for g(t) to be a cubic T+ 2[j, J] = 0| must hold.

Theorem: The projection ¢(t) of a geodesic g(t) is a Riemannian cubic if and only if at
timet =20

[5—7 [5’, [6’ j]“ + [J_v [jv [j’ 5“] =0.
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Projections of non-horizontal geodesics (cont’d) ’j: 6,7, &=1[J,5]

Theorem: The projection ¢(t) of a geodesic g(t) is a Riemannian cubic if and only if at
timet =0

[5—’ [5—’ [5—7 j]“ + [j7 [jv [j’ 5]]] =0

Proof: Assume ¢(0) = a. We have J(t) = Adyx) J(0) and &(t) = Adyq) 5(0) ~ if true
at t = 0, then true at all times. Plugging in the geodesic equation into the equation for
cubics one finds

;o]

J+ Z[j’ j] = [67 [67 [67 J“] + [Jv [J7 [

<

Special cases:
» & =0~ g(t) is horizontal geodesic, ¢(t) is a geodesic.

> [5,J] =0~ g(t) is a geodesic due to D;g = jQ(q) = ([, J])aq(q) =0.
> [J,[J,5]] = ¢, [5,[5,J]] = cJ, for c € R.
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Projections of non-horizontal geodesics (cont’d)

Consider G = SO(3) and Q = S%. A curve x(t) € S? is generated by a rotation vector
(Iel* = 131%) I x &.

Q=J+&. Thatis, x = Q x x. The theorem is equivalent to
» J=0o0r & =0~ trivial projected curves x(t) = x(0), or projections of horizontal

geodesics.
> ||&||> = ||J||* ~ for given inital velocity x = v, the projection x(t) describes a

constant speed rotation of x(0) around the axis

Q=T+ =xxx=+|x||x.
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Include all cubics: Finding the obstruction term
Goal: Find the obstruction for the projection of a cubic to be again a cubic. We will use
second-order Lagrange—Poincaré reduction for this [Cendra, Marsden, Ratiu 2001],
[Gay-Balmaz, Holm, Ratiu 2011]. We still assume that ~y¢ is bi-invariant, but we drop
the condition [g;, 9] C gq.

» Fix reference object a € ). Stabilizer G, with Lie algebra g,. ~> will reduce by G,.

» Right-action of G,

Y:GxGq— G, (g,h)=gh.
> Quotient space G/G,, is diffeomorphic to Q. Recall the projection map II: G — Q,
g — ga.

~ Principal bundle ] (G,Q, Ga, L, 0)). \

> Introduce g,-valued principal connection A,
1 TG = oy vg = Ag(vg) = V(g™ vy)

» Adjoint bundle is the associated vector bundle := (G X ga)/Ga, Where the
quotient is taken wrt right-action of G, on G X g,

(G % ga) X Ga = G X ga, (9, h) = (gh,Ad; " €).

» Induced linear connection with covariant derivative
» Need map i: go — g, [9,&] — Adgy &, shorthand
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Include all cubics: Finding the obstruction term (cont’d)

Start by reviewing the geodesic case.
» First-order Lagrange—Poincaré reduction makes use of the bundle diffeomorphism

al) 1 TG/Ga = TQ xq §ar  [9.9] = (¢,4) x [9. A(9)].

» Reduced variables

» Geodesics on G arise as solutions to the kinetic energy action principle, where
L(g.9) = 3/11%. ~ Reduced Lagrangian £(q,4,0) = 3]dl% + 3llol}3,-

» Lagrange—Poincaré equations describing geodesics are

\ Dij=V5q, Di'c=0.

~~ this reveals the obstruction term for ¢(t) to be a geodesic.
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Include all cubics: Finding the obstruction term (cont’d)
Find the obstruction for a cubic to project to a cubic.

> Second-order Lagrange—Poincaré reduction uses bundle diffeomorphism
P THG/G, - TPQ xg 2,

[gag7g]'_>(q7q7 ) [97 ( }EBDt [7-’4(9)}

» Reduced variables

> Lagrangian of Riemannian cubics is L(g, g, ) = 5 ||Dtg||G
~> reduced Lagrangian

(q,4,4,0,6) *IIth— Vigallg + *IIUIIQG

> The Lagrange—Poincaré equations are

\th+R(th d) \ D2V yoq — Vo - DV, — V(0u3)5 -V,
+ R(D:4,50(9)) 4 + R(V4Gq,q — 5q(q)d
(s Ga300), 5 (7 (13.0))

(D{‘ + adj,) (& + iqTatJ(Vq)) =0.
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Thank you

(Fields July 2012) Riemannian cubics 18 July 20 / 20



