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Hamilton’s principle

• Q = M × G (configuration manifold)

• TQ ' TM × TG

• L : TQ → R (Lagrangian function)

• TG ' g× G (right-trivialization)

• L : TM × g× G → R.

Hamilton’s principle

The motion of the mechanical system is described by applying the

Hamilton’s principle,

δ

∫ T

0
L(q(t), q̇(t), ξ(t), g(t))dt = 0

for all variations δq(t) where δq(0) = δq(T ) = 0, q(t) ∈ M and δξ
verifying δξ(t) = η̇(t)− [ξ(t), η(t)], where η(t) is an arbitrary curve on
the Lie algebra with η(0) = η(T ) = 0 and η = (δg)g−1.
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Euler-Lagrange equations on trivial

principal bundles

Euler-Lagrange equations on trivial principal bundles

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
, ξ = ġg−1

d

dt

(
δL

δξ

)
= −ad∗ξ

(
δL

δξ

)
+ r∗g

δL

δg
,

If the Lagrangian L is right-invariant the above equations are written as

d

dt

(
∂L

∂q̇

)
=
∂L

∂q

d

dt

(
δL

δξ

)
= −ad∗ξ

(
δL

δξ

)
, ξ = ġg−1.
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Euler-Lagrange equations on trivial principal

bundles for systems with constraints

We suppose that the system is subject to some constraints equations,
Φα : TM × g× G → R with α = 1, . . . ,m ≤ n. The equations of motion
for this kind of systems are given using the Lagrange multipliers theorem
defining the extended Lagrangian L̃ = L + λαΦα, α = 1, . . . ,m.

Euler-Lagrange equations on trivial principal bundles
for systems with constraints

d

dt

(
∂L

∂q̇

)
+

d

dt

(
λα
∂Φα

∂q̇

)
=

∂L

∂q
+ λα

∂Φα

∂q
, ξ = ġg−1

d

dt

(
δL

δξ

)
+ λα

d

dt

(
δΦα

δξ

)
= −ad∗ξ

(
δL

δξ

)
− ad∗ξ

(
λα
δΦα

δξ

)
+ r∗g

δL

δg
,

+r∗g (λα
δΦα

δg
) + λ̇α

δΦα

δξ

Φα(q, q̇, g , ξ) = 0
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Euler-Lagrange equations on trivial principal

bundles for systems with constraints

If the Lagrangian L an the constraints Φα are right-invariant the above
equations are written as

d

dt

(
∂L

∂q̇

)
+

d

dt

(
λα
∂Φα

∂q̇

)
=
∂L

∂q
+ λα

∂Φα

∂q

d

dt

(
δL

δξ

)
+

d

dt

(
λα
δΦα

δξ

)
= −ad∗ξ

(
δL

δξ

)
− ad∗ξ

(
λα
δΦα

δξ

)
,

ξ = ġg−1, Φα(q, q̇, g , ξ) = 0
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Optimal control problem

• The first step for studying control systems with symmetries is to take as
a configuration manifold a trivial principal bundle Q = M × G .
• In what follows we assume that all the control systems are controllable,
that is, for any two points x0 and xf in the configuration space Q, there
exists an admissible control u(t) ∈ U ⊂ Rr defined on some interval [0,T ]
such that the system with initial condition x0 reaches the point xf in time
T .
• A control system is called underactuated if the number of control inputs
is less than the dimension of the configuration space.
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Underactuated systems
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Optimal control problem

Controlled Euler-Lagrange equations

d

dt

(
∂L

∂q̇A

)
− ∂L

∂qA
= uaµ

a
A(q),

d

dt

(
∂L

∂ξ

)
+ ad∗ξ

(
∂L

∂ξ

)
= uaη

a(q),

where we denote by Ba = {(µa, ηa)}, µa(q) ∈ T ∗qM, ηa(q) ∈ g∗,
a = 1, . . . , r ; and A = 1, . . . , n. Here, we are assuming that {(µa, ηa)} are
independent elements of Γ(T ∗M × g∗) and ua are admissible controls.
Taking this into account, the optimal control problem can be formulated
as...
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Optimal control problem

Optimal control problem:

Finding trajectories (q(t), ξ(t), u(t)) of the state variables and the inputs

satisfying the control equations, subject to initial conditions

(q(0), q̇(0), ξ(0)) and final conditions (q(T ), q̇(T ), ξ(T )), and, moreover,

extremizing the functional

J (q, q̇, ξ, u) =

∫ T

0
C (q(t), q̇(t), ξ(t), u(t)) dt.
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Optimal control problem

We can reformulate this optimal control problem as a higher-order order
variational problem subject to higher-order constraints by the following
procedure: complete Ba to a basis {Ba,Bα} of Γ(T ∗M × g∗). Take its
dual basis {Ba,Bα} on Γ(TM × g). This basis induces coordinates
(qA, q̇, ξa, ξα) on TM × g. If we denote by Ba = {(Xa, χa)} ∈ Γ(TM × g)
(resp. Bα = {(Xα, χα)} ∈ Γ(TM × g)), controlled equations are rewritten
as

Controlled Euler Lagrange equations

(
d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa

)
Xa(q) +

(
d

dt

(
∂L

∂ξ

)
+

(
ad∗ξ

∂L

∂ξ

))
χa(q) = ua,(

d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα

)
Xα(q) +

(
d

dt

(
∂L

∂ξ

)
+

(
ad∗ξ

∂L

∂ξ

))
χα(q) = 0.
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Optimal control problem

The proposed optimal control problem is equivalent to a variational
problem with second order constraints, where we define the Lagrangian
L̃ : T (2)M × g2 → R given, in the selected coordinates, by

L̃(qA, q̇A, q̈A, ξi , ξ̇i ) = C
(
qA, q̇A, ξi ,Fa(qA, q̇A, q̈A, ξi , ξ̇i )

)
,

where C is the cost function and

Fa(qA, q̇A, q̈A, ξi , ξ̇i ) =

(
d

dt

(
∂L

∂q̇a

)
− ∂L

∂qa

)
Xa(q)

+

(
d

dt

(
∂L

∂ξ

)
+

(
ad∗ξ

∂L

∂ξ

))
χa(q).
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Optimal control problem

subjected to the second-order constraints:

Φα(qA, q̇A, q̈A, ξi , ξ̇i ) =

(
d

dt

(
∂L

∂q̇α

)
− ∂L

∂qα

)
Xα(q)

+

(
d

dt

(
∂L

∂ξ

)
+

(
ad∗ξ

∂L

∂ξ

))
χα(q).

• A.M. Bloch. Nonholonomic Mechanics and Control. Interdisciplinary
Applied Mathematics Series, 24, Springer-Verlag, New York (2003).

Leo Colombo (ICMAT-CSIC) Focus program, Fields Institute July, 2012 14 / 32



Outline

1 Introduction and motivation

Euler-Lagrange equations on trivial principal bundles

Optimal control problem

2 Second-order Euler-Lagrange equations on trivial
principal bundles

3 Optimal control of a homogeneous ball on a
rotating plate



Hamilton’s principle

Now we derive the Euler-Lagrange equations for Lagrangians defined on
T (2)Q ' T (2)M × 2g× G .
• The Lie algebra structure of 2g is given by
[(ξ1, η1), (ξ2, η2)] = ([ξ1, ξ2], [ξ1, η2]− [ξ2, η1]) ∈ 2g.

Hamilton’s principle

Finding the critical curves of the action defined by

A(c(t)) =

∫ T

0
L(q, q̇, q̈, g , ξ, ξ̇)dt

among all the curves c(t) ∈ C(2)(T (2)M × 2g×G ) satisfying the boundary
conditions for arbitrary variations δc = (δq, δq(1), δq(2), δg , δξ, δξ̇), where

δq = d
dε |ε=0qε, δq

(l) = d l

dt l δq, for l = 1, 2; and δg = d
dε |ε=0gε.

The corresponding variations δξ induced by δg are given by δξ = η̇ − [ξ, η]
where η := δgg−1 ∈ g (δg = ηg).
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Second-order Euler-Lagrange equations on

trivial principal bundles

Second-order Euler-Lagrange equations on trivial
principal bundles

(
− d

dt
− ad∗ξ

)(
δL

δξ
− d

dt

δL

δξ̇

)
= −r∗g

∂L

∂g
, ġ = ξg , (1a)

d

dt

(
d

dt

∂L

∂q̈
− ∂L

∂q̇

)
= −∂L

∂q
, (1b)

which splits into a M part (1a) and a G part (1b).
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Higher-order Euler-Lagrange equations on

trivial principal bundles for systems with

constraints

The equations of motion given by the higher-order variational principle for
L : T (k)M × kg× G → R with higher-order constraints
Φα : T (k)M × kg× G → R reads:

Higher-order Euler-Lagrange equations on trivial
principal bundles for systems with constraints

0 =
k∑

l=0

(−1)l d
l

dt l

(
∂L

∂q(l)i
− λα

∂Φα

∂q(l)i

)
,

0 =

(
d

dt
+ ad∗

ξ

) k−1∑
l=0

(−1)l d
l

dt l

(
∂L

∂ξ(l)
− λα

∂Φα

∂ξ(l)

)
− r∗g

(
∂L

∂g
− λα

∂Φα

∂g

)
,

0 = Φα(c(t)),

ġ = ξg ,
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Optimal control of a homogeneous ball on a

rotating plate

• Neimark, Ju. Fufaev, N.A; Dynamics of nonholonomic systems
Translations of Mathematical Monographs, Amer. Math. Soc., 33 (1972).
• Koon, Wang-Sang; Marsden, Jerrold E. Optimal control for holonomic
and nonholonomic mechanical systems with symmetry and Lagrangian
reduction. SIAM J. Control Optim. 35 (1997), no. 3, 901929.
• Bloch, Anthony; Krishnaprasad, P. S; Marsden, Jerrold E; Murray,
Richard M. Nonholonomic mechanical systems with symmetry. Arch.
Rational Mech. Anal. 136 (1996), no. 1, 2199.
• Bloch, A. M.J. Baillieul, P. Crouch and J. Marsden. Nonholonomic
mechanics and control. Interdisciplinary Applied Mathematics, 24.
Systems and Control. Springer-Verlag, New York, 2003.
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Optimal Control of an homogeneous ball on

a rotating plate

A (homogeneous) ball of radius r > 0, mass m and inertia mk2 about any
axis rolls without sliding on a horizontal table which rotates with angular
velocity Ω about a vertical axis x3 through one of its points. Apart from
the constant gravitational force, no other external forces are assumed to
act on the sphere.

• (x , y) denotes the position of the point of contact of the sphere with the
table.
•Q = R2 × SO(3) where may be parametrized Q by (x , y , g), g ∈ SO(3),
all measured with respect to the inertial frame.
• Let ω = (ωx , ωy , ωz ) be the angular velocity vector of the sphere
measured also with respect to the inertial frame.
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Optimal Control of an homogeneous ball on

a rotating plate

• The potential energy is constant, so we may put V = 0.
The nonholonomic constraints are

ẋ +
r

2
Tr(ġgTE2) = −Ω(t)y ,

ẏ − r

2
Tr(ġgTE1) = Ω(t)x ,

where {E1,E2,E3} is the standard basis of so(3).
The matrix ġgT is skew-symmetric therefore we may write

ġgT =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


where (ω1, ω2, ω3) represents the angular velocity vector of the sphere
measured with respect to the inertial frame.
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Optimal Control of an homogeneous ball on

a rotating plate

Then, we may rewrite the constraints in the usual form:

ẋ − rω2 = −Ω(t)y ,

ẏ + rω1 = Ω(t)x .

In addition, since we do not consider external forces the Lagrangian of the
system corresponds with the kinetic energy

K (x , y , ẋ , ẏ , ω1, ω2, ω3) =
1

2
(mẋ2 + mẏ2 + mk2(ω2

1 + ω2
2 + ω2

3)).
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Optimal Control of an homogeneous ball on

a rotating plate

•Q = R2 × SO(3) is the total space of a trivial principal SO(3)-bundle
over R2

• the bundle projection φ : Q → M = R2 is just the canonical projection
on the first factor.

Therefore, we may consider the corresponding quotient bundle
E = TQ/SO(3) over M = R2.
• TSO(3) ' so(3)× SO(3) by using right translation.
• The tangent action of SO(3) on T (SO(3)) ∼= so(3)× SO(3) is the
trivial action

(so(3)× SO(3))× SO(3)→ so(3)× SO(3), ((ω, g), h) 7→ (ω, gh).

Thus, the quotient bundle TQ/SO(3) is isomorphic to the product
manifold TR2 × so(3), and the vector bundle projection is τR2 ◦ pr1, where
pr1 : TR2 × so(3)→ TR2 and τR2 : TR2 → R2 are the canonical
projections.
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Optimal Control of an homogeneous ball on

a rotating plate

A section of E = TQ/SO(3) ∼= TR2 × so(3)→ R2 is a pair (X , f ), where
X is a vector field on R2 and f : R2 → so(3) is a smooth map. Therefore,
a global basis of sections of TR2 × so(3)→ R2 is

e1 = (
∂

∂x
, 0), e2 = (

∂

∂y
, 0),

e3 = (0,E1), e4 = (0,E2), e5 = (0,E3).

There exists a one-to-one correspondence between the space
Γ(E = TQ/SO(3)) and the G -invariant vector fields on Q. If [[·, ·]] is the
Lie bracket on the space Γ(E = TQ/SO(3)), then the only non-zero
fundamental Lie brackets are

[[e4, e3]] = e5, [[e5, e4]] = e3, [[e3, e5]] = e4.

Moreover, it follows that the Lagrangian function L = K and the
constraints are SO(3)-invariant. Consequently, L induces a Lagrangian
function L′ on E = TQ/SO(3) ' TR2 × so(3).
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Optimal Control of an homogeneous ball on

a rotating plate

We have a constrained system on E = TQ/SO(3) ' TR2 × so(3) and
note that in this case the constraints are nonholonomic and affine in the
velocities. The constraints define an affine subbundle of the vector bundle
E ' TR2 × so(3)→ R2 which is modeled over the vector subbundle D
generated by the sections

D = span{e5; re1 + e4; re2 − e3}

After some computations the equations of motion for this constrained
system are precisely

ẋ − rω2 = −Ω(t)y ,
ẏ + rω1 = Ω(t)x ,

ω̇3 = 0,


together with

ẍ +
k2Ω(t)

r2 + k2
ẏ = 0, ÿ − k2Ω(t)

r2 + k2
ẋ = 0
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Optimal Control of an homogeneous ball on

a rotating plate

Assume full control over the motion of the center of the ball (the shape
variables). The controlled system can be written as,

ẍ +
k2Ω(t)

r2 + k2
ẏ = u1,

ÿ − k2Ω(t)

r2 + k2
ẋ = u2

subject to

ω2 − 1
r ẋ = Ω(t)y

r ,

ω1 + 1
r ẏ = Ω(t)x

r ,
ω̇3 = 0.



Now, consider the cost function

C =
1

2

(
u2

1 + u2
2

)
,
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ẏ = u1,

ÿ − k2Ω(t)

r2 + k2
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Plate ball problem

Plate ball problem

Given q0, qf ∈ R2, q̇0 ∈ Tq0R2, q̇f ∈ Tqf
R2, q = (x , y) ∈ R2,

ω0, ωf ∈ so(3) find an optimal control curve (q(t), ω(t), u(t)) on the

reduced space that steer the system from q0, ω0 to qf , ωf minimizing∫ 1

0

1

2

(
u2

1 + u2
2

)
dt,
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Plate ball problem

We define the second order Lagrangian L̃ : T (2)R2 × 2so(3)→ R given by

L̃(x , y , ẋ , ẏ , ẍ , ÿ , ω1, ω2, ω3, ω̇1, ω̇2, ω̇3) =

1

2

(
ẍ +

k2Ω(t)

r2 + k2
ẏ

)2

+
1

2

(
ÿ − k2Ω(t)

r2 + k2
ẋ

)2

subject to second-order constraints Φα : T (2)R2 × 2so(3)→ R,
α = 1, 2, 3.

Φ1 = ω1 +
1

r
ẏ − Ω(t)x

r
,

Φ2 = ω2 −
1

r
ẋ − Ω(t)y

r
,

Φ3 = ω̇3.

The optimal control problem is prescribed by solving the following system
of 4-order differential equations (ODEs).
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Plate ball problem

0 = λ1
Ω(t)

r
+
λ̇2

r
+ x (iv) +

k2Ω′′(t)ẏ

r2 + k2
+

2k2Ω′(t)ÿ

r2 + k2
+

2k2Ω(t)
...
y

r2 + k2
,

+
k2Ω′(t)

...
y

r2 + k2
− k4Ω2(t)ẍ

(r2 + k2)2
− 2k4Ω′(t)Ω(t)ẋ

(r2 + k2)2

0 = λ2
Ω(t)

r
+
λ̇1

r
+ y (iv) − k2Ω′′(t)ẋ

r2 + k2
− 3k2Ω′(t)ẍ

r2 + k2
− 2k2Ω(t)

...
x

r2 + k2
,

− k4Ω2(t)ÿ

(r2 + y2)2
− 2k4Ω(t)Ω′(t)ẏ

(r2 + k2)2
,

0 = λ̇1 − λ2ω3 + λ3ω2, 0 = λ̇2 + λ1ω3 − λ3ω1,

0 = λ̇3 − λ1ω2 + λ2ω1, 0 = ω2 −
1

r
ẋ − Ω(t)y

r
,

0 = ω1 +
1

r
ẏ − Ω(t)x

r
, 0 = ω̇3.
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Geometric formalism for optimal control

problem of underactuated mechanical systems

A Geometric formalism for solve underactuated mechanical systems can be
developed using the Skinnr-Rusk formalism. The idea is the following.

? The Skinner and Rusk formulation is a simultaneous mixed formulation
of the mechanics between the Lagrangian and Hamiltonian formalism.
? Solve an optimal control problem is equivalent to solve a higher-order
problem with higher-order constraints (under some regularity conditions).
? Solve a higher-order problem with higher-order constraints is equivalent
to solve a presymplectic Hamiltonian problem.
? With the Skinner-Rusk formalism we solve a presymplectic Hamiltonian
problem and therefore we solve the optimal control problem for
underactuated mechanical systems.
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¡¡Thank you!!
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