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Reduction is an essential tool in variational equations

In Mechanics (L : TQ)Q — R) the first main example is

Euler-Poincaré
L:TG—-R ~ [:(TG)/G=g—R.

with equations

d ol 0l
%g = :liadag

d 0l
<dt$ad ) 5 = 0.

Further results: Lagrange-Poincaré, by stages, semidirect,...

or

There is also the Hamiltonian picture of this formulation.
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In Field Theories, the equivalent result takes place in principal
bundles 7 : P — M. The objects are (local) sections and the
Lagrangian is defined in the phase bundle

L:J'P—R.

Geometry of covariant Euler-Poincaré:

e The BUNDLE:
P—-M ~ (J'P)/G=C—M

the bundle of connections (affine bundle whose sections are
connections). Then [ : C' — R.

e The VARIATIONS:

s € I'(P) ~ Jsfree
o € I'(C) ~ do gauge
Gauge vector fields in P — M (G-invariant and vertical vector

fields) induce vector fields in C' — M. They can be seen as
sections of the adjoint bundle g — M.



Given a local section s : U — P of m and the section
o:U — C, 0 =[jls], the following are equivalent:

1.-s satisfies the Euler-Lagrange equations for L,

2.-the variational principle

(5/ L(jls)dx =0
M

holds, for arbitrary variations with compact support,

3.-the Euler-Poincaré equations hold:

ol
dive — =0
v’ :

4.-the variational principle
(5/ [(o(x))dx =0
M
holds, using variations of the form
00 =Von

where n : U — g is an arbitrary section of the adjoint bundle.
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e Remark:

.J(Sl_ - H * 5l_
div 5o =0 <= (le —|—ad0H> 5o = 0.

e Remark: If 0 = [j's], then o is flat (Curv(c) = 0) and the
integral leaves of o are the solutions s.

. loc 579(1)(0) =0
L) =0 = Curv(c) =0

e There are some topological “issues” (defects, phases,...)
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Higher order variational problems are found in important situations

e In Mechanics
L:T®Q >R

(splines, optimal control...)

e For Field Theories, they are found in
KdV, Camassa-Holm, ....Relativity!

What about reduction in this context?

In Mechanics, the basic instance is higher-order Euler-Poincaré
L:T®G SR ~ [1:(TG)/G=a&%g—R

with equations
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e We now consider a fiber bundle
E— M

a Lagrangian L : J*E — R and the action

/ L(j%s)v =0, s section.
M

A section s is critical (solution of the variational problem) iff
the Euler-Lagrange equations are satisfied

ELL(L)(s) = 0.

Locally, for a fiber coordinate system (z%,y®) in E, we have

k

k
EL(L)(s) = (1) ( o oj%s)@dyﬂ

i1 s T
dx® - - dx (’9yz-1mij

j=0
with (z*,y#) fibred coordinates (v = da® A ... A dz™).

e A covariant definition of £L£;(L) as a fiber map from
J?*E — V*FE requires the introduction of a connection V in M.
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bundle P — M and have a Lagrangian

L:JP—R
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[:(JFP)/G — R.

(JEP)/G =7
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e In Mechanics

(TG)/G~g ~ (T(k)G)/G ~ @kg :T(k_l)g

(J'P)/G~C ~ (J°P)/G ~27777

e We have that
(JP)/G # JF1C

(though valid for M =R or k =1).
We have diagram of bundles

Jk—l(JlP) SN Jk—lC

| !
JIP — C

Then, for k£ > 1, we consider
JFP — gt p)

then
(JEP)/G = CF1 — JgRlc.
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Q: J'C — AN*T*M ® g
jio = Q2 = Curv(o),
and its prolongation
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A
then, for k > 2,
C* = ker j*71Q.
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If we consider the mapping
Q: J'C — AN*T*M ® g
jio = Q2 = Curv(o),
and its prolongation
T JC — JTHAT*M ®§)
A
then, for k > 2,
C* = ker j*71Q.

In other words
(J*P)/G C*=1 = ker j* 720

= {jFloc g0 5207 =0},

Example k = 2
(J?°P)/G =C* = {jlo € J'C: Q7 =0}.
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The bundle
JEp — Jilp
is an affine subbundle of
JFHWJP) — JP
(this last bundle is the prolongation of J'P — P.)

e Locally, if (z*,y*) are fiber coordinates in P — M, we consider
the induced coordinates (z*,y*,y%) in J'P. Then the
coordinates in J¥~1(JP) are

(xiayaay;l;ygl...is7y?;i1...,is)7 1 S S S k — 17
so that J*P c JF~1(JP) is given by

(84 (87

g = Yy

yioi;in---is — yjq;il’ig...is 1 S S S k —1



The bundle

Ck—l

is an affine subbundle.
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Let L : J*P — R a G-invariant Lagrangian and

[:(J"P)/)G=CF1 SR
the dropped Lagrangian.

e The reduced SECTIONS ¢*=1) = [j*s5] of C*~1 — M are
(pointwise) FLAT connections. The compatibility condition is
given at the beginning!

e The VARIATIONS. For a (local) section s of P — M and any
ds, consider the gauge vector field X (identified with a section
n of g — M) such that
Xl|s =9s

We have the prolongations:
X exJtr), j*X ex(J*P)
JTTHGNX) e X(JPTHIP)).
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We have that
P71 X) = %X on JEP c JFL(JP).

Then, as 7' X projects to do = Vn:

7*71(1 X) along j*s projects to j*~1(d0) = 7* 71 (V) along ;" lo

e Then the variations of the reduced sections of C*—1 — M are

restriction of the jet prolongation of gauge vector fields to the
subbundle C*~1 c J¥~1C.

Gauge transformations send flat connections to flat
connections. Then, gauge vector fields (the jet prolongation) are
tangent to the subbundle C*~1 ¢ J=1C.
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e The VARIATIONAL PRINCIPLE

How do we study the reduction of the variational principle?
1) Using Lagrange multipliers C*~! c Jk¥=1(.
2) Extending the (dropped) Lagrangian to J*~1C.

e We consider an extended Lagrangian
[:J10 =R
with constrained variations

00 =Von gauge vector fields

e For a variation

a
de

€:O/Ml_(jk_1g€)v - /M<5£k—1(l)(0),van>v

= /M<div‘75£k_1(l_), n)v

where the variation is admissible, i.e., j* 1o, € C*~1 Vo € M.



e The higher-order Euler-Poincaré equations are

EP_1(D)(0) = div° [ELy_1(D)(0)] = 0,

for a section o such that j*~1o € C*~!, that is, for o flat.



e The higher-order Euler-Poincaré equations are

EPr_1(l)(0) =div? [ELr_1(I)(0)] = 0,
for a section o such that j*~1o € C*~!, that is, for o flat.

e We recover the equivalence

ELL(L)(s) =0 docy div? [ELk_1(I)(o)] =0
Curv(oc) =0



e The higher-order Euler-Poincaré equations are

EPr_1(l)(0) =div? [ELr_1(I)(0)] = 0,
for a section o such that j*~1o € C*~!, that is, for o flat.

e We recover the equivalence

ELL(L)(s) =0 docy div? [ELk_1(I)(o)] =0
Curv(oc) =0

The complete result:



Given a local section s : U — P of m and the section
o:U — C, 0 =[jls], the following are equivalent:

1.-s satisfies the Euler-Lagrange equations ELx(L)(s) = 0,

2.-the variational principle

5/ L(j¥s)dx =0
M

holds, for arbitrary variations with compact support,

3.-the Euler-Poincaré equations hold, for any extensién [

EPr_1(l)(o) =div? [ELr_1(I)(0)] = 0,
4.-the variational principle
5/ (5 o (2))dz = 0
M
holds, using variations of the form
0o =V

where 1 : U — g is an arbitrary section of the adjoint bundle.



Remark

For M = R (Mechanics) we recover the existing result

k—1
d dF 5l
- * 1)\ _

7=0

without any condition about the curvature of o.
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IV.- NOETHER CONSERVATION LAW

e Let © be a Poincaré-Cartan n-form of L : J*P — R. Then for

critical sections
(2 1s)*iydO =0, VY € X(J*71P).
e In addition
0= £2k-15:0 = 1,26-15-dO + dij2r-1p-0O,
for any B € g, so that

d ((j2k_18)*7:j2k—13* @) = O,

which is



The form
J =10
is a g*-valued (n — 1)-form in J2*~1P that projects to a g*-valued
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The form
J =10

is a g*-valued (n — 1)-form in J2*~1P that projects to a g*-valued
(n — 1)-form in (J?*71P)/G. Using the volume form v we have a
section J of TM ® g* in (J?*~1P)/G.

For any section o, we have that
ELk-1(1)(0) = (2 20)*T

The equation (for o flat)

div? [ELk_1(1)(0)] =0
is equivalent to

d ((j%_ls)* (’L '2k—1B*@)) — O,

J

for any integral leaf of o.

e The FEuler-Poincaré equation is equivalent to the higher order
Noether conservation law.
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V.- EXAMPLE

e We consider M = R x R with points = = (¢, z) and
P = M x GG. The group G is endowed with an invariant
Riemannian norm ||-||.

e The Lagrangian

L . J°P >R
Vs Vs, 2 2 2
oo |+ [T A (hsl? + e 1?)
where
0s 0s
St = 3, Sx = {0y
LT oot ox
and A\ € R.

e This is a “model” of a two dimensional cubic spline in a group
(A =0) or two dimensional elastica (A > 0).

o For M =R x S, the “model” describes the evolution of a

closed curve. (?)



e [ is G-invariant and the (extended) reduced Lagrangian is

[:J'C >R
2

H—+ad o +Alo|?

‘—+ad o

where 0 = 01dt + oodx is a section of C = T*R? ® g, and the

norm in g is given by the invariant metric.



e [ is G-invariant and the (extended) reduced Lagrangian is

[:J'C—>R
2

H—+ad o +Allo|?

‘—+ad o

where 0 = 01dt + oadx is a section of C = T*R? ® g, and the

norm in g is given by the invariant metric.

e The reduced equations are a bit involved, but if the metric in
GG is bi-invariant, we get (A = 0)

(div 4 ad®) (00”4 Oppo”) = 0

together with
do + |o,0] = 0.



FUTURE WORK

e FExtension to other bundles and actions (higher-order

Lagrange-Poincaré)
e Higher order semidirect product reduction
e The Hamiltonian picture (Lie-Poisson)
e Study of the problem of Lagrange

e Reduction under other symmetries (diffeomorphisms...)
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