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1. Introduction

Rigidity theory has its origins in the work of Cauchy and Euler on con-
vex polyhedra. It is a fascinating subject that draws on many areas of
mathematics and has wide ranging applications in, for example, structural
engineering and material science.

A framework (G, p) is the combination of a graph G = (V,E) and a
map p : V → R

d. (G, p) is rigid, [1], if there is no edge length preserving
continuous deformation of the vertices that is not a rigid motion of R

d,
i.e. is not derived from translations and/or rotations. Moreover (G, p) is
minimally rigid if it is rigid but for all edges e ∈ E the framework (G− e, p)
is not rigid (flexible).

Rigidity is a generic property in the sense that if there is one choice of
p for which (G, p) is rigid then for almost all choices q, (G, q) is rigid. It
is standard therefore to take an algebraic definition of a generic framework
and then to refer to the abstract graph as rigid or flexible.

Combinatorially the main problem is to analyse classes of graphs deter-
mined by simple vertex/edge counting conditions. For example it is a fun-
damental result of Laman [6] that the class of (2, 3)-tight graphs are exactly
the graphs with minimally rigid generic realisations in the plane.

A graph G = (V,E) is (2, 3)-sparse if |E(X)| ≤ 2|V (X)| − 3 for every
subgraph X with |E(X)| > 0 and G is (2, 3)-tight if it is (2, 3)-sparse and
|E| = 2|V | − 3.

The key step in proving Laman’s theorem is to show that the Henneberg
construction moves (see, for example, [13]) generate all (2, 3)-tight graphs
from K2. This is an attractive result because the idea of the Henneberg
moves is easily understood, see Figure 1.
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Figure 1. A recursive construction of a (2, 3)-tight graph G

from the complete graph on two vertices, K2, by applying a
Henneberg 1 move and then a Henneberg 2 move.
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Algorithmically this class of graphs is difficult to check directly but Recski
[11] showed the equivalence with a variant of the well known spanning tree
decomposition for (2, 2)-tight graphs (see [14] and [8]). Such graphs can be
verified in polynomial time. There are also natural Pebble game algorithms
for such graphs [7].

More generally G is (k, l)-sparse if |E(X)| ≤ k|V (X)|− l and is (k, l)-tight
if it is (k, l)-sparse and |E| = k|V |−l. The natural generalisation of Laman’s
theorem to 3-dimensions fails (see, for example, [3]). Although solutions for
particular classes of graphs and of frameworks do exist, the relevant graphs,
the (3, 6)-tight graphs, are not fully understood.

A deeper related topic is the problem of global rigidity (when there is a
unique arrangement of the vertices subject to the edge length constraints),
here as for minimal rigidity there is a complete solution for generic frame-
works in 2-dimensions, see Jackson and Jordan [5], whose generalisation fails
in 3-dimensions. The approach in [5] uses the Henneberg construction moves
and the concept of a connected rigidity matroid. (A matroid is a combina-
torial structure generalising linear independence of vectors and the rigidity
matroid is a particular example arising from the linear independence of the
Jacobean derivative matrix of the system of edge (length) equations of a
given framework.)

It is also natural to consider an analysis of the classes of (2, l)-tight graphs,
for l = 3, 2, 1, 0. This has been done from a variety of perspectives, see for
example [6], [9], [10], [4] and [12].

By combining some of these ideas there are a number of open problems
that are reasonably accessible. In particular the following are potential
avenues of development.

(1) Henneberg-type recursive constructions for (2, l)-tight multigraphs.
(2) Algorithms for (2, l)-tight simple graphs.
(3) The set of (2, 2)-tight simple graphs (together with K2 and K3) forms

a matroid. The circuits of this matroid are (2, 1)-tight graphs in
which every proper subgraph is (2, 2)-sparse. The (2, 3)-tight variant
was explored in [2].

(4) Frameworks on surfaces [9], [15]. Here it is required to consider the
construction moves applied to frameworks (rather than graphs) via
geometric or linear algebra arguments.
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