Center manifolds for holomorphic vector fields in
dimension three
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e An analytic (real or complex manifold) M
e An open covering {U;};c) of M
e For each i € I, a vector field 9; € Der(O(U;)) such that

o = gij aj, on U;N U_,'
for some gj; € O*(U; N U;).

Each 0 € {0;}ies is a local generator of the foliation,

8—ai+ +ai
- 18x1 "ax,,

We say that the foliation is saturated if (a1,...,a,) = 1.
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Sing(F)={a1=---=a,=0}

A point p € Sing(F) is elementary if the induced linear map
d:m/m? — m/m?

has at least one non-zero eigenvalue. That is, the Jacobian matrix

[g;;(p)]

i,j=1,...,n

is non-nilpotent.
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Let (M, F) be a saturated 1-dimensional singular foliation. Then,
there exists a finite sequence of blowing-ups

(M7‘F) = (MOMTU) AR (an’rn) = (M7f)

such that all the singularities of (M, F) are elementary.
e dim M = 2, Bendixson and Seidenberg.
e dim M = 3, M analytic /R (2007).
o dim M = 3, M projective /C (joint with Mcquillan 2009).
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What are the final formal local models?
dim M = 2: There exists formal local coordinates x,y € (5,, such
that a local generator of F, is in:
e Linearisable case:

0 0

e Positive resonance case:

m 0 0
9= (nx+vy )a%—y@
e Resonant saddle case:
B 0 0 (xPy9)" 0
0= e + py@ + Tt u(xPyQ)’Xax

e Saddle-node case:
0= 9 + X xﬁ
N y(‘?y 14+ vx" Ox
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¢ Resonant saddle case: (non-linear Stoke's phenomena - Ecalle,
llyashenko, Martinet-Ramis, ...)
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However, concerning the existence of invariant analytic curves
(separatrices), the problem is completely understood:
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The center manifold for a saddle-node



The center manifold for a saddle-node

Consider a singularity of the form

0 0
aza(x,y)a—k (y—i—b(x,y))a—y a,be (E{x,y}ﬁm2



The center manifold for a saddle-node

Consider a singularity of the form
0 = a(x )E—F( + b(x ))2 a,be C{x,y} Nm?
- 7.y 8X y 7.y ay ) 7)/
we can assume 9 in Dulac normal form

X (Y1) —g)



The center manifold for a saddle-node

Consider a singularity of the form
0 = a(x )E—F( + b(x ))2 a,be C{x,y} Nm?
- 7.y 8X y 7.y ay ) 7)/
we can assume 9 in Dulac normal form
0 0
r+1 ¥ _ -~
- + (y(l +¢) g) dy’

r>1, geC{x}nm?



The center manifold for a saddle-node

Consider a singularity of the form
0 = a(x )E—F( + b(x ))2 a,be C{x,y} Nm?
- 7.y 8X y 7.y ay ) 7)/
we can assume 9 in Dulac normal form
0 0
r+1 ¥ _ -~
- + (y(l +¢) g) dy’

r>1, geC{x}nm?, ccC{x,y}Nm



The center manifold for a saddle-node



The center manifold for a saddle-node

0 0
_ 1 _
0=x 8X—i—(y(l—i—zs) g)ay



The center manifold for a saddle-node

B B
_ 1 9 1 —g) —
0= x 8X+(y( +¢€) g)ay

We are are looking for an invariant curve of the form

S ={y ="},



The center manifold for a saddle-node

B B
_ 1 9 1 —g) —
0= x 8X+(y( +¢€) g)ay

We are are looking for an invariant curve of the form

S={yr=Ff}  fedXl



The center manifold for a saddle-node

0 0
o= r+1 ¥ 1 o v
X+ vl +e) —g) 3y
We are are looking for an invariant curve of the form
S={y=70},  fel[x]
If we consider the ideal | = (y — f(x)) C C[[x, y]] then

Sisinvariant <= 0(/)C



The center manifold for a saddle-node
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We are are looking for an invariant curve of the form
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If we consider the ideal | = (y — f(x)) C C[[x, y]] then
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The center manifold for a saddle-node

0 0
r—+1
0=x —8X+(y(1+5)—g)—8y

We are are looking for an invariant curve of the form
S={yr=Ff}  fedXl

If we consider the ideal | = (y — f(x)) C C[[x, y]] then
Sisinvariant <= 0(/)C

which gives the ODE

farg-v12hn-e

This is a nonlinear ODE, as ¢ usually depends on the unknown f.



The center manifold for a saddle-node

Let us suppose r =1, and let £ = 1/x. Then, we get the ODE

{(1—1—5)1—1—:;}(1‘) =g

For ¢ = 0, this is a linear ODE.



The center manifold for a saddle-node
Let us suppose r =1, and let £ = 1/x. Then, we get the ODE
(l—i-a)]l—i—i (f) =
dé =&

For ¢ = 0, this is a linear ODE.
We solve by formal series (f, g € C[[1/£]] N m)

f= (]l+:£)1g



The center manifold for a saddle-node
Let us suppose r =1, and let £ = 1/x. Then, we get the ODE
(l—i-a)]l—i—i (f) =
dé =&

For ¢ = 0, this is a linear ODE.
We solve by formal series (f, g € C[[1/£]] N m)

f— (11 + :g)lg = Z(—l)”:gn,,g

n>0




The center manifold for a saddle-node
Let us suppose r =1, and let £ = 1/x. Then, we get the ODE
(l—i-a)]l—i—i (f) =
dé =&

For ¢ = 0, this is a linear ODE.
We solve by formal series (f, g € C[[1/£]] N m)

f— (11 + :g)lg = Z(—l)”:gn,,g

n>0

and eg. forg=1/¢



The center manifold for a saddle-node
Let us suppose r =1, and let £ = 1/x. Then, we get the ODE
(l—i-s)]l—i—i (f) =
dé =&

For ¢ = 0, this is a linear ODE.
We solve by formal series (f, g € C[[1/£]] N m)

f— (11 + :g)lg = Z(—l)”:gn,,g

n>0

and e.g. for g =1/, one gets

() = Z(n!)éfﬂ

n>0



The center manifold for a saddle-node
Let us suppose r =1, and let £ = 1/x. Then, we get the ODE
(l—i-a)]l—i—i (f) =
dé =&

For ¢ = 0, this is a linear ODE.
We solve by formal series (f, g € C[[1/£]] N m)

f— (11 + :g)lg = Z(—l)”:gn,,g

n>0

and e.g. for g =1/, one gets

(&= Z(n')énl_s_1 (Divergent)

n>0



The center manifold for a saddle-node
Let us suppose r =1, and let £ = 1/x. Then, we get the ODE
(l—i-s)]l—i—i (f) =
dé =&

For ¢ = 0, this is a linear ODE.
We solve by formal series (f, g € C[[1/£]] N m)

f— (11 + :g)lg = Z(—l)”:gn,,g

n>0

and e.g. for g =1/, one gets

(&= Z(n')gnl_s_1 (Divergent)

n>0

There is no holomorphic center manifold in a neigh. of co.
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We consider again the ODE
(1+5)]l+—d ()=
dé =8

For ¢ = 0, this is a linear ODE.
We solve by variation of constants (with initial condition f(x) = 0),

13
F&) = e / etg(t)dv = K(g)(€)

K is the right inverse of the operator {]l + d%}. But we want to

have a bounded inverse on some functional space.
(remember that we want to solve the nonlinear ODE with ¢ # 0.)
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We will choose * = —oo and the paths of integration as follows:
Im(¢)
V)
branch
—00
Re(¢)

Re(&) = const

DA
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The center manifold

Now, we can solve the nonlinear case € # 0 by writing

{(1+€)1+:§}K:1+Q’ (where Q := &K is small)

and applying the iterative scheme fo =0, f,11 = g — Q(f).
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Going back to the x-variable, one gets existence of solution in a
sectorial region U of opening 37

Im(x)

\

Notice however that the solution is multivalued on
Un{Re(x) > 0}.
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Going to the normal form...

Once one knows how to invert {]1 — xr+1d%} in a bounded way,
we can obtain a conjugation from

0 0
_ Jr+1 _
0=x 8X—I—(y(1+5) g)é?y

to its normal form

00
14+ wvx" Ox yc')y

By successively inverting operators of type

d
{X]l - XerX} for x € 74

Notice that the branch changes side for x < 0.
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O
Domains of existence of the normal form

Im(x)

Re(x)

Q_

General philosophy: The invariant curves are the organizing centers

of the dynamics (Thom).-

=
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notice that this is highly nonlinear, as €, and a, b usually depend
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New difficulties

e Find a right inverse K for the linearized PDE operator
0
(1+e(x,y,0)1 = (alx,y, 0) 5~ + b(x,y,0) = ) (f) =

integrating along paths (method of characteristics).
e Apply an iterative procedure to solve the nonlinear case.
Writing
0 0
l1+e)l—(am—+b—)  K=1+
{( + o)L — (a5 ay)} Q
Notice that Q is now a differential operator

how can @ be small?
Can we apply the iterative procedure fr11 = g — Q(f,)?



An implicit function theorem (Mcquillan)



An implicit function theorem (Mcquillan)

e U= P; x---x P, product domain in C"



An implicit function theorem (Mcquillan)

e U= P; x---x P, product domain in C"

o (basic estimate) For 0; = 8%,_,



An implicit function theorem (Mcquillan)

e U= P; x---x P, product domain in C"

o (basic estimate) For 0; = 8%;’

C

; < —
|alf(p)‘ = dist(p,-,aP,-) HfHU

for some constant C depending only on U.



An implicit function theorem (Mcquillan)

e U= P; x---x P, product domain in C"

o (basic estimate) For 0; = 8%;’

C

; < —
|alf(p)‘ = dist(p,-,aP,-) HfHU

for some constant C depending only on U.

e More generally, for a = (a1,...,an),



An implicit function theorem (Mcquillan)

e U= P; x---x P, product domain in C"

o (basic estimate) For 0; = 8%;’

C
Fp) < ———=_|If
|a f(p)‘ = dist(p,-,(?P,-) H ||U

for some constant C depending only on U.

e More generally, for a = (a1,...,an),
3 n 31!-~-an! |a|
05" 07 Fllyga) < gar g € Il

for some constant C depending only on U and n.
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e U= P; x---x P, product domain in C"

e (basic estimate) For 0; = 8%;,

C
F(p)| < ————|If
|a f-(p)‘ = dist(p,-,aP,-) H ||U

for some constant C depending only on U.

* More generally, for a = (a1,...,an) € Z%,
n al'
05 92 F| ) < W - c el

for some constant C depending only on U and n.
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An implicit function theorem (Mcquillan)

We consider the Fréchet space O(U) with the family of seminorms

d>20 = HfHU(d) :XGSZE’C’)V(X)\’

1l < 1Fllygey » ford =e
We are going to need a IFT in scales of seminorms

(similar to Nash-Moser's).
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Coming back to our differential operator:

B 9] o\ o _
P = {(1 +e)l — (aa + bay)} = P'(0) + higher order terms

e We construct (see later!) an operator K such that
P'(0)K =1 and
HKhHU(d) = HhHU(e) b(d —e), ford > e

for ¢ : RZy — RZ, decreasing.

e |t can be shown that

1Ph— P'(0)h]] 4oy Hh}}}jj) o(d—e), ford>e

fora >0 and ¢ : Ry — RZ; decreasing.
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An implicit function theorem (Mcquillan)
... the logarithm of the function

t — 0(td) = ¢(td)y(td) T
is absolutely integrable at t = 0.

interpolating n domains U(d1), ..., U(dy).

We estimate HQ"foHU(d) by
]
ST U(dh)
T U(dh)
T U(dy)
= = =
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Solving the linear PDE P’(0)

Recall that

P’(O):{(1+€)—(a£<+b(§/)}’ a,b,sGC{X,y}ﬂmZ

and D = (3% + b%) is an arbitrary vector field in dimension two!

The paths which define K should be contained in the leafs of the
associated foliation £p in C2. Thus...

We must understand Lp I
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Solving the linear PDE P’(0)

&,

|
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that
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Going further in resolution...

Up to a finite number of (quadratic) blowing-ups, we can suppose
that
P'(0) = {(1 +¢)1 — D},

is such that 5 9
D= xPy9 (f——i—g—)
—— Ox Ay
monomial M——~——
Elementary

Then we can hope to find the right paths to define the operator K.
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Going further in resolution...

An example of integrable case:
0
P'0)=<1+x" ¢,
(©) { o 0y}
We consider the new coordinates
s=x, E=yxP

In the variables (s, ¢), the PDE assumes the form

P'(0) = {11 + 885}
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An integrable case

o o=

¢
f=(Kg)(s,§) = eg/ e’g(s,p)dp

base

and the right inverse is

where the base point and the domain of existence is...
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An integrable case
For x € S (sector of opening at most 7/p), we consider the domain

Im(y)
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The hardest case

The saddle-node

0 0
/ — P -~ r+1 ¥ >
P'(0) = x (y8y+x 8x+ >, r>1

We can obtain the sectorial normal form

0 XP+r+1 o

P'(0) = xPR(X)y — + ——
(0) =x (X)yay—i_1—1—1/x1"+r8x7

v € C, R(x) polynomial of degree smaller than r, R(0) = 1.
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The hardest case

For R =1, one gets

x99 0
1 — xP — P
( (= 8X+y8y)>f xPg (1)
We put £ = x~" and obtain

<]1+§ (;E yaa))f=§ag, where o = p/r >0

We expand f(§,y) and g(&,y) in powers of y

y) =Y A&y, &l&y) =) ey

and solve separately each differential equation for f.



The hardest case
For R =1, one gets

r+1 o o
(ﬂ_xp( a ox Yoy ))f:ng @

We put £ = x~" and obtain

(1+§— (88& y(‘)a )) f=¢"1g, where o = p/r >0

Plugging into the differential equation, we obtain
9 (k- &)t
de k = k T 8k

whose general solution (vanishing at £ = &) is

£ a+l _ ca+l
(€)= [ e (ke - o) = ST el



Figure: Level curves of Re ¢(x) for « =1 (the saddle is at x = 1)



Figure: Level curves of Re ¢(x) for o = 2 (there are two saddles saddles)



$(x) =x*T/(a+1) - x

Figure: Integration paths for o = 2
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The main result

Theorem
Let O be a germ of vector field of the form
0 0 0
—3— - 1 )=
0 aax+b8y+ (z(1+¢) g)é?z
such that

a(x,y, O)E?X + b(x, y, O)Efy = xpyq( elementary sing. of dim 2 )

Then there exists open sets U; (for i =1,...,n) which cover a full
neighborhood of 0 in C2\ {0}, and holomorphic functions

fi € O(U;) bounded at the origin

such that
d(z — fi(x,y)) € (z - fi(x,y))
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Spiralling Sectors

At some situations, e.g.

P'(0) = xP (Xa% +)\y%> p € N,Re(N) <0, AR

these regions U; can be given by product domains like

Im(y) Im(x)

Re(x)
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The next step - Analytic NF in dim 3

Normal form for strongly elementary vector fields in dim. 3,

15)
=z—+D
0 282 +
where
D = xPy90,

with J;1 an elementary vector field of dimension 2.
This is a new problem, even in the formal setting!

Apparently, we are always lead to solve PDE's of type



