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Singular 1-dimensional foliations F

• An analytic (real or complex manifold) M

• An open covering {Ui}i∈I of M

• For each i ∈ I , a vector field ∂i ∈ Der
(
O(Ui )

)
such that

∂i = gij ∂j , on Ui ∩ Uj

for some gij ∈ O∗(Ui ∩ Uj).

Each ∂ ∈ {∂i}i∈I is a local generator of the foliation,

∂ = a1
∂

∂x1
+ · · ·+ an

∂

∂xn

We say that the foliation is saturated if (a1, . . . , an) = 1.
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Singularities of a 1-dimensional foliation

Sing(F) = {a1 = · · · = an = 0}

A point p ∈ Sing(F) is elementary if the induced linear map

∂ : m/m2 → m/m2

has at least one non-zero eigenvalue. That is, the Jacobian matrix[
∂ai
∂xj

(p)

]
i , j=1,...,n

is non-nilpotent.
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Resolution of singularities

Let (M,F) be a saturated 1-dimensional singular foliation. Then,
there exists a finite sequence of blowing-ups

(M,F) = (M0,F0)← · · · ← (Mn,Fn) = (M̃, F̃)

such that all the singularities of (M̃, F̃) are elementary.

• dimM = 2, Bendixson and Seidenberg.

• dimM = 3, M analytic /R (2007).

• dimM = 3, M projective /C (joint with Mcquillan 2009).
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What are the final formal local models?

dim M = 2: There exists formal local coordinates x , y ∈ Ôp such
that a local generator of Fp is in:

• Linearisable case:

∂ = λx
∂

∂x
+ y

∂

∂y

• Positive resonance case:

∂ = (nx + νyn)
∂

∂x
+ y

∂

∂y

• Resonant saddle case:

∂ = −qx
∂

∂x
+ py

∂

∂y
+

(xpyq)r

1 + ν(xpyq)r
x
∂

∂x

• Saddle-node case:

∂ = y
∂

∂y
+

x r

1 + νx r
x
∂

∂x
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What are the final analytic local models?

dim M = 2: Many interesting phenomena can appear for the
analytic classification:

• Linearisable case: (small denominators)

• Positive resonance case: (always convergent)

• Resonant saddle case: (non-linear Stoke’s phenomena - Ecalle,
Ilyashenko, Martinet-Ramis, ...)

• Saddle-node case: (non-linear Stoke’s phenomena - Ecalle,
Ilyashenko, Martinet-Ramis, ...)

However, concerning the existence of invariant analytic curves
(separatrices), the problem is completely understood:
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The center manifold for a saddle-node

Consider a singularity of the form

∂ = a(x , y)
∂

∂x
+
(
y + b(x , y))

∂

∂y
a, b ∈ C{x , y} ∩m2

we can assume ∂ in Dulac normal form

x r+1 ∂

∂x
+
(

y(1 + ε)− g
) ∂
∂y
,

r ≥ 1, g ∈ C{x} ∩m2, ε ∈ C{x , y} ∩m
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The center manifold for a saddle-node

∂ = x r+1 ∂

∂x
+ (y(1 + ε)− g)

∂

∂y

We are are looking for an invariant curve of the form

S = {y = f (x)}, f ∈ C[[x ]]

If we consider the ideal I = 〈y − f (x)〉 ⊂ C[[x , y ]] then

S is invariant ⇐⇒ ∂(I ) ⊂ I

which gives the ODE{(
1+ ε

)
− x r+1 d

dx

}
(f ) = g

This is a nonlinear ODE, as ε usually depends on the unknown f .
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The center manifold for a saddle-node

Let us suppose r = 1, and let ξ = 1/x . Then, we get the ODE{
(1 + ε)1+

d

dξ

}
(f ) = g

For ε = 0, this is a linear ODE.

We solve by formal series (f , g ∈ C[[1/ξ]] ∩m)

f =
(
1+

d

dξ

)−1
g =

∑
n≥0

(−1)n
dn

dξn
g

and e.g. for g = 1/ξ, one gets

f (ξ) =
∑
n≥0

(n!)
1

ξn+1
(Divergent)

There is no holomorphic center manifold in a neigh. of ∞.
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dξn
g

and e.g. for g = 1/ξ, one gets

f (ξ) =
∑
n≥0

(n!)
1

ξn+1

(Divergent)

There is no holomorphic center manifold in a neigh. of ∞.
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The center manifold for a saddle-node

We consider again the ODE{
(1 + ε)1+

d

dξ

}
(f ) = g

For ε = 0, this is a linear ODE.

We solve by variation of constants (with initial condition f (∗) = 0),

f (ξ) = e−ξ
∫ ξ

∗
etg(t)dv = K (g)(ξ)

K is the right inverse of the operator
{
1+ d

dξ

}
. But we want to

have a bounded inverse on some functional space.
(remember that we want to solve the nonlinear ODE with ε 6= 0.)
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The center manifold

For all ξ ∈ U, we can choose a path γξ(t), t ∈ R<0 such that

γξ(0) = ξ

; lim
t→−∞

Re γξ(t) = −∞

and

‖γ̇ξ(t)‖ ≤ C
d

dt
Re(γξ)(t)

Then ∥∥∥K (g)
∥∥∥
U
≤ C

∥∥∥g
∥∥∥
U

Indeed,

‖K (g)‖ ≤e−Re ξ

∫ 0

−∞
eRe γ(t)‖γ̇(t)‖dt

≤C e−Re ξ

∫ 0

−∞
eRe γ(t)

d

dt
Re γ(t)dt = C‖g‖
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The center manifold

Now, we can solve the nonlinear case ε 6= 0 by writing{
(1 + ε)1+

d

dξ

}
K = 1+ Q, (where Q := εK is small)

and applying the iterative scheme f0 = 0, fn+1 = g − Q(fn).
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Notice however that the solution is multivalued on
U ∩ {Re(x) ≥ 0}.
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Going to the normal form...

Once one knows how to invert
{
1− x r+1 d

dx

}
in a bounded way,

we can obtain a conjugation from

∂ = x r+1 ∂

∂x
+ (y(1 + ε)− g)

∂

∂y

to its normal form
x r

1 + νx r
x
∂

∂x
+ y

∂

∂y

By successively inverting operators of type{
χ1− x r+1 d

dx

}
for χ ∈ Z∗≤1

Notice that the branch changes side for χ < 0.
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Center manifolds in dimension three

We consider the following typical situation

∂ = a
∂

∂x
+ b

∂

∂y
+
(
z(1 + ε)− g

) ∂
∂z
, a, b ∈ C{x , y , z} ∩m2,

g ∈ C{x , y} ∩m2

and look for a center manifold S = {z = f (x , y)}.
This gives the PDE{

(1 + ε)1−
(
a
∂

∂x
+ b

∂

∂y

)}
(f ) = g

notice that this is highly nonlinear, as ε usually depend on the
unknown f .
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New difficulties

• Find a right inverse K for the linearized PDE operator{
(1 + ε(x , y , 0))1−

(
a(x , y , 0)

∂

∂x
+ b(x , y , 0)

∂

∂y

)}
(f ) = g

integrating along paths (method of characteristics).

• Apply an iterative procedure to solve the nonlinear case.
Writing {

(1 + ε)1−
(
a
∂

∂x
+ b

∂

∂y

)}
K = 1+ Q

Notice that Q is now a differential operator

how can Q be small?
Can we apply the iterative procedure fn+1 = g − Q(fn)?
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An implicit function theorem (Mcquillan)

• U = P1 × · · · × Pn product domain in Cn

• (basic estimate) For ∂i = ∂
∂xi

,

∣∣∂i f (p)
∣∣ ≤ C

dist(pi , ∂Pi )
‖f ‖U

for some constant C depending only on U.

• More generally, for a = (a1, . . . , an),

∥∥∂a11 . . . ∂ann f
∥∥
U(d)
≤ a1! · · · an!

da1
1 · · · d

an
n

C |a| ‖f ‖U

for some constant C depending only on U and n.
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• More generally, for a = (a1, . . . , an) ∈ Zn
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An implicit function theorem (Mcquillan)

Coming back to our differential operator:

P =

{
(1 + ε)1−

(
a
∂

∂x
+ b

∂

∂y

)}

= P ′(0) + higher order terms

• We construct (see later!) an operator K such that
P ′(0)K = 1 and∥∥Kh

∥∥
U(d)
≤
∥∥h
∥∥
U(e)

ψ(d − e), for d ≥ e

for ψ : Rn
>0 → Rn

>1 decreasing.

• It can be shown that∥∥Ph − P ′(0)h
∥∥
U(d)
≤
∥∥h
∥∥1+α
U(e)

φ(d − e), for d ≥ e

for α > 0 and φ : Rn
>0 → Rn

>1 decreasing.
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Put PK = 1+ Q,

then for section h ∈ O(U),∥∥Qh
∥∥
U(d)
≤
∥∥h
∥∥1+α
U(e)

θ(d − e), for d ≥ e

we want to find a solution of P(f ) = g by the iteration

fn+1 = g − Q(fn), f0 = 0

This is possible provided that ‖g‖U is sufficiently small and ...
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An implicit function theorem (Mcquillan)
... the logarithm of the function

t 7→ θ(td) = φ(td)ψ(td)1+α

is absolutely integrable at t = 0.

We estimate
∥∥Qnf0

∥∥
U(d)

by

interpolating n domains U(d1), . . . ,U(dn).

U

U(d2)
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U(d1)
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Solving the linear PDE P ′(0)

Recall that

P ′(0) =

{
(1 + ε)−

(
a
∂

∂x
+ b

∂

∂y

)}
, a, b, ε ∈ C{x , y} ∩m2

and D =
(
a ∂
∂x + b ∂

∂y

)
is an arbitrary vector field in dimension two!

The paths which define K should be contained in the leafs of the
associated foliation LD in C2. Thus...

We must understand LD
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Going further in resolution...

Up to an additional finite number of (quadratic) blowing-ups, we
can suppose that

P ′(0) = {(1 + ε)− D} ,

is such that

D = xpyq
(

f
∂

∂x
+ g

∂

∂y

)
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Going further in resolution...

Up to a finite number of (quadratic) blowing-ups, we can suppose
that

P ′(0) = {(1 + ε)1− D} ,

is such that

D = xpyq︸ ︷︷ ︸
monomial

(
f
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∂x
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∂

∂y︸ ︷︷ ︸
Elementary

)

Then we can hope to find the right paths to define the operator K .
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Going further in resolution...

An example of integrable case:

P ′(0) =

{
1+ xp ∂

∂y

}
,

We consider the new coordinates

s = x , ξ = yx−p

In the variables (s, ξ), the PDE assumes the form

P ′(0) =

{
1+

∂

∂ξ

}
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An integrable case

{
1+

∂

∂ξ

}
(f ) = g

and the right inverse is

f = (Kg)(s, ξ) = e−ξ
∫ ξ

base
eρg(s, ρ)dρ

where the base point and the domain of existence is...
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The hardest case

The saddle-node

P ′(0) = xp

(
y
∂

∂y
+ x r+1 ∂

∂x
+ · · ·

)
, r ≥ 1

We can obtain the sectorial normal form

P ′(0) = xpR(x)y
∂

∂y
+

xp+r+1

1 + νxp+r

∂

∂x
,

ν ∈ C, R(x) polynomial of degree smaller than r , R(0) = 1.
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gk(ξ)yk

and solve separately each differential equation for fk .
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For R = 1, one gets(

1− xp
(x r+1

q

∂

∂x
+ y

∂

∂y

))
f = xpg (1)

We put ξ = x−r and obtain(
1+ ξ−α

( ∂
∂ξ
− y

∂

∂y

))
f = ξ−αg , where α = p/r > 0

Plugging into the differential equation, we obtain

d

dξ
fk = (k − ξα)fk + gk

whose general solution (vanishing at ξ = ξ0) is

fk(ξ) =

∫ ξ

ξ0

exp

(
k(ξ − s)− ξα+1 − sα+1

α + 1

)
gk(s)ds



φ(x) = xα+1/(α + 1)− x

Figure: Level curves of Re φ(x) for α = 1 (the saddle is at x = 1)



φ(x) = xα+1/(α + 1)− x

Figure: Level curves of Re φ(x) for α = 2 (there are two saddles saddles)



φ(x) = xα+1/(α + 1)− x

Figure: Integration paths for α = 2



The main result

Theorem
Let ∂ be a germ of vector field of the form

∂ = a
∂

∂x
+ b

∂

∂y
+
(
z(1 + ε)− g

) ∂
∂z

such that

a(x , y , 0)
∂

∂x
+ b(x , y , 0)

∂

∂y
= xpyq

(
elementary sing. of dim 2

)
Then there exists open sets Ui (for i = 1, . . . , n) which cover a full
neighborhood of 0 in C2 \ {0}, and holomorphic functions

fi ∈ O(Ui ) bounded at the origin

such that
∂
(
z − fi (x , y)

)
∈
〈
z − fi (x , y)〉
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Spiralling Sectors
At some situations, e.g.

P ′(0) = xp

(
x
∂

∂x
+ λy

∂

∂y

)

p ∈ N,Re(λ) < 0, λ 6∈ R

these regions Ui can be given by product domains like

×

Im(x)Im(y)

Re(y)

Re(x)
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The next step - Analytic NF in dim 3

Normal form for strongly elementary vector fields in dim. 3,

∂ = z
∂

∂z
+ D

where
D = xpyq∂1

with ∂1 an elementary vector field of dimension 2.

This is a new problem, even in the formal setting!

Apparently, we are always lead to solve PDE’s of type{
(1 + ε)1−

(
a
∂

∂x
+ b

∂

∂y

)}
(f ) = g
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