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VC dimension and VC density

Let (X,S) be a set system, i.e., X is a set (the base set), and
S is a collection of subsets of X. (We sometimes also speak of
a set system S on X.)

Given A C X, we let

SNA:={SNA:SeS}
and call (A,S N A) the set system on A induced by S.
We say A is shattered by S if SN A = 24,

If S # ), then we define the VC dimension of S, denoted by
VC(S), as the supremum (in N U {co}) of the sizes of all finite
subsets of X shattered by S. We also decree VC(0) := —oc.



VC dimension and VC density

©® X =R, S = all unbounded intervals. Then VC(S) = 2.
® X =R?, S = all halfspaces. Then VC(S) = 3.
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® Let S = half spaces in R?. Then VC(S) = d + 1.
(The inequality < follows from Radon’s Lemma.)



VC dimension and VC density

O X = R?, S = all convex polygons. Then VC(S) = cc.

(But VC({convex n-gons in R?}) = 2n + 1.)



VC dimension and VC density

The function

n — ms(n) ::max{]SﬂA|:A€ <X>}:N—>N
n

is called the shatter function of S. Then
VC(S) =sup {n: 7s(n) = 2"}.
One says that S is a VC class if VC(S) < oc.

The notion of VC dimension was
introduced by Vladimir Vapnik and
Alexey Chervonenkis in the early
1970s, in the context of
computational learning theory.




VC dimension and VC density

A surprising dichotomy holds for s:

The Sauer-Shelah dichotomy

Either
e 15(n) = 2" for every n (if S is not a VC class),
or
o ws(n) < (2) = (5) +- -+ (7) where d = VC(S) < cc.

One may now define the VC density of S as

Sy — inf{r e R>?: m5(n) = O(n")} if VC(S) < oo
)= 1w otherwise.

We also define ve(0) := —oo.



VC dimension and VC density

© S =(2)- Then VC(S) = ve(S) = d; in fact ms(n) = ().
® S = half spaces in R%. Then VC(S) = d + 1, ve(S) = d.

VC density is often the right measure for the combinatorial
complexity of a set system.

Some basic properties:

e vc(S) < VC(S), and if one is finite then so is the other;
e VC(S) =0 |S|=1;

e Sisfinite <= vc(S) =0 <= ve(S) < 1;

e §=85US; = ve(S) = max{ve(Sy), ve(Sa) }.



VC duality

Let X be a set (possibly finite). Given A4,..., A, C X, denote
by S(A4, ..., A,) the set of atoms of the Boolean subalgebra of
2X generated by A, ..., A,: those subsets of X of the form

ﬂAiﬁﬂX\Ai where I C {1,...,n}
il i¢l

which are non-empty (= “the non-empty sets in the Venn
diagram of A1,..., A,”).

Suppose now that S is a set system on X. We define

n— ms(n) = max {|S(A1,...,4,)| 1 A1,..., 4, € S}: N—= N,

We say that S is independent (in X) if 75(n) = 2" for every n,
and dependent (in X) otherwise.



VC duality

N maximum number of regions into which n half
planes partition the plane.

Adding one half plane to n — 1 given half planes divides at most
n of the existing regions into 2 pieces. So 7% (n) = O(n?).

The function 7% is called the dual shatter function of S.



VC duality
Let X, Y be infinite sets, ® C X x Y a binary relation. Put
S :={®,:ycY}C2¥ whered,:={zrcX:(z,y)cd},
and
T = TSg 7T:’I<> = ﬂ-gqﬂ
VC(®) := VC(Ss), ve(P) := ve(Ss).
We also write

P*CY xX:={(y,2) €Y x X : (z,y) € D}.

In this way we obtain two set systems: (X, S¢) and (Y, Sg+)

Given a finite set A C X we have a bijection

A (Vo0 [ Y\O: SenA—S(®;:zeA).
e A’ e A\A'



VC duality

Hence ¢ = 7. and me+ = 73, and thus

SpisaVCclass <= Sg- is dependent,
Sg-isaVCclass <= Sg is dependent.

Moreover (first noticed by Assouad):

SpisaVCclass <= Ss-isa VC class.



The model-theoretic context

We fix:
. afirst-order language,

x = (x1,.. object variables,

o(z;y): a partitioned L-formula,
an infinite £-structure, and

L:
s Tm)’
= (y1,...,yn): parameter variables,
y):
M:
T a complete £-theory without finite models.

The set system (on M™) associated with ¢ in M':
M M m. . n
S, ={p (M™;b):be M}
If M = N, then TSM = TSN - So, picking M = T arbitrary, set

Ty = 7TS£47 VC(@) = VC(SéW)7 VC(QD) = VC(8<,]0VI)



The model-theoretic context

The dual of ¢(x;y) is ¢*(y; x) := p(z;y). Put
VC*(p) :=VC(p®),  vc*(p) := ve(p™).

We have 7, = .+, hence VC*(¢) and ve*(¢) can be computed
using the dual shatter function of .

If VC(¢) < oo then we say that ¢ is dependent in 7. The
theory T does not have the independence property (is NIP) if
every partitioned £-formula is dependent in T

An important theorem of Shelah (given other proofs by
Laskowski and others) says that for T' to be NIP it is enough for
for every L-formula ¢(z;y) with |z| = 1 to be dependent.

Many (but not all) well-behaved theories arising naturally in
model theory are NIP.



The model-theoretic context

Some questions about vc in model theory

@ Possible values of ve(y). There exists a formula ¢(x; y) in
Lyings With |y| = 4 such that

veACFo(p) = 4; veAOFr(p) = 3 forp > 0.

We do not know an example of a formula ¢ in a NIP theory
with ve(p) ¢ Q.

@ Growth of 7. There is an example of an w-stable 7" and an
L-formula ¢(x; y) with |y| = 2 and

To(n) = snlogn (14 o(1)).

©® Uniform bounds on ve(y).




Uniform bounds on VC density

Some reasons why it should be interesting to obtain bounds on
ve(p) in terms of |y| = number of free parameters:

@ uniform bounds on VC density often “explain” why certain
bounds on the complexity of geometric arrangements,
used in computational geometry, are polynomial in the
number of objects involved;

@® connections to strengthenings of the NIP concept: if
ve(yp) < 2 for each ¢(x;y) with |y| = 1 then T' is dp-minimal.



Uniform bounds on VC density

Theorem

Suppose T expands the theory of linearly ordered sets, and
assume that T is weakly o-minimal, i.e., in every M =T,
every definable subset of M is a finite union of convex subsets
of M. Then for each ¢(z;y) we have m,(t) = O(t¥!), hence

ve(p) <yl

e Generalizes results due to Karpinski-Macintyre and Wilkie;
¢ |dea of the proof:

e generalize definition of 77 to finite sets A of formulas
instead of a single ;

¢ the number of parameters needed in a uniform definition of
A-types over finite parameter sets yields a bound on 7} (¢);

¢ reduce to the case where |z| = 1 and each instance of
¢ € A defines an initial segment, in which case each finite
A-type can be defined by a single parameter.



Uniform bounds on VC density

Interesting classes of NIP theories are provided by certain
valued fields. By a non-trivial elaboration of our methods:
Theorem

Suppose M = Q, is the field of p-adic numbers, construed as a
Structure in the language of rings. Then ve(p) < 2|y| — 1.

We also have uniform bounds on VC density (obtained by other
techniques) for certain stable structures; e.g., we characterize
those abelian groups for which we have such uniform bounds.

There are many open questions in this subject.

Open question

If there is some d; such that ve(y) < d; for each p(z;y) with
ly| = 1, is there is some d,,, such that vc(y) < d, for each
p(z;y) with |y| =m?



From Lipschitz maps to VC density

Let f: A — R", A CR™, be L-Lipschitz (where L € R*Y), i.e.,

f(@) = fWI < L-lle—yl| forallz,ye A

Can one extend f to an L-Lipschitz map R™ — R"?

Kirszbraun (1934): yes for all n

There always exists an L-Lipschitz extension R™ — R™ of f.

The usual proofs of this theorem all use some sort of transfinite
induction.



From Lipschitz maps to VC density

Let f: A— R", A CR™, be L-Lipschitz and semialgebraic. |s
there a semialgebraic L-Lipschitz map R™ — R”™ extending f?

More generally, one may ask this for Lipschitz maps definable
in an o-minimal expansion R = (R,0,1,+, x,<,...) of a real
closed field R, instead of R = (R, 0,1, +, x, <).

Why is this extra generality interesting?

¢ no “higher-order” Tarski principle for transfer from
o-minimal expansions of R to R;

e brings out the inherent uniformities in the construction.

In fact, o-minimality even turns out to be an unnecessarily
strong assumption.



From Lipschitz maps to VC density

Theorem A (A.-Fischer, Proc. LMS 2011)

Let R=(R,0,1,+, x,<,...) be a definably complete
expansion of an ordered field: every non-empty definable
subset of R which is bounded from above has a supremum.
Then every definable L-Lipschitz map A —+ R" (A C R™,

L € R?Y) has a definable L-Lipschitz extension R™ — R".

The proof of this theorem used convex analysis and is based
on a relationship between Lipschitz maps and monotone
set-valued maps (Minty; more recently, Bauschke & Wang).

Another crucial ingredient (in the case where R # R) is a
definable version of a classical theorem of Helly:



From Lipschitz maps to VC density

Theorem B (A.-Fischer, Proc. LMS 2011)

Let R be a definably complete expansion of an ordered field.
Let C be a definable family of closed bounded convex subsets
of R". Suppose C is (n + 1)-consistent:

(¢ #0  forall¢’ CCwith [C'| < n+1.

Then N C # 0.

Our proof of this theorem uses an optimization argument.

S. Starchenko pointed out that in the case of an o-minimal R,
our theorem follows from an analysis of the model-theoretic
notion of forking in o-minimal structures due to A. Dolich.



From Lipschitz maps to VC density

A subset T of X is called a transversal of a set system S on X
if every member of S contains an element of 7.

Theorem (Dolich ’04, made explicit by Peterzil & Pillay ’07)

Let R be an o-minimal expansion of a real closed field, and let
C = {Cy}aca be a definable family of closed and bounded
subsets of R™ parameterized by a subset A of R™. If C is

N (m, n)-consistent, where

N(m,n) = (1+2™)-(1+22")---  (nfactors),

then C has a finite transversal.



From Lipschitz maps to VC density

Can one do better than the bound N (m,n)?

Theorem (Matousek, 2004)

Let (X,S) be a set system of finite dual VC density vc*(S).
Suppose S is d-consistent, where d > vc*(S). Assume that X
comes equipped with a topology making all sets in S compact.
Then S has a finite transversal.

Corollary

Let R be an o-minimal structure on R, and letC = {C,}.c4 be
a definable family of compact subsets of R™. IfC is
(n + 1)-consistent, then C has a finite transversal.



From Lipschitz maps to VC density

Proof of Theorem B in the o-minimal case (Starchenko)
Suppose R is o-minimal, and write C = {Cj }4cAa-

By Helly’s Theorem for finite families, the (definable) family
whose members are the intersections of n + 1 members of C is
finitely consistent.

Apply Dolich’s Theorem to this family to obtain a finite set
PCR'WithPNCq, N---NC,,, #0forallay,...,anq € A.

Thus
P = {conv(Cy N P)}aca

is a family of convex subsets of R™ with only finitely many
distinct members, and P is (n + 1)-consistent.

Hence () £ (P C (\C by Helly’s Theorem for finite families. [



