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Motivation: Approximation of tame sets by compact sets.

Tame = definable in an o-minimal structure over R.

All sets and families below are tame.

A family of compact sets {Sδ, δ > 0} is monotone if Sδ ⊂ Sη for

δ > η. We say that Sδ approximates S = ∪δ>0Sδ.

A monotone family Sδ can be defined as {f ≥ δ} where f is an

upper semi-continuous function. Then S = {f > 0}.

1



Theorem. (A.G., Vorobjov, 2009). Let Sδ be a monotone

family approximating S. For each δ, let Sδ,ǫ ց Sδ as ǫ ց 0, so

that Sδ,ǫ is a compact neighborhood of Sη for η > δ.

Then, for 0 ≤ ǫ0 ≪ δ0 ≪ . . .≪ ǫk ≪ δk ≪ 1,

Tk = Sδ0,ǫ0 ∪ . . . ∪ Sδk,ǫk

satisfies πi(Tk) ։ πi(S) for i ≤ k.

Conjecture. πi(Tk)
∼= πi(S) for i < k.

If k ≥ dimS, then Tk is homotopy equivalent to S.

Proved when Sδ = {f ≥ δ} is separable: There is a triangulation

of K such that, for any open simplex Λ, the closures of the sets

{f = δ} ∩ Λ and {f = η} ∩ Λ are disjoint for 0 < η ≪ δ.
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Triangulation of Monotone Families

Conjecture. Given a monotone family Sδ in a compact K ⊂ Rn,

there is an (ordered) triangulation of K such that, for each open

k-simplex Λ, Λ ∩ Sδ is equivalent to one of explicitly defined

standard families in the standard k-simplex ∆.

Proved for n ≤ 3.

Equivalent means that

(a) There exist a standard family {Vδ} in ∆ and a face-preserving

PL-homeomorphism h : Λ → ∆ such that, for every δ > 0, there

is η > 0 such that Vδ ⊂ h(Sη) and h(Sδ) ⊂ Vη;

(b) For small δ > 0, there exist face-preserving PL-homeomorphisms

hδ : Λ → ∆ such that hδ(Sδ) = Vδ.
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Theorem. Each standard family is equivalent to a family that

can be partitioned into separable families.

@

+=

Example. A non-separable 2D family, and an equivalent family

that can be partitioned into two separable families.
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Monotone Boolean Functions

A Boolean function ψ : {0,1}n → {0,1} is monotone (decreas-

ing) if replacing 0 by 1 at any position of its argument either

preserves its value or changes it from 1 to 0.

Function ψ is lex-monotone if it is monotone with respect to

the lexicographic order of its arguments, assuming x1 ≺ . . . ≺ xn.

Each standard family {Vδ} in the standard n-simplex ∆ is assigned

a lex-monotone Boolean function ψ(x1, . . . , xn) so that

ψ|xj=0 is assigned to Vδ|∆j
for j 6= 0,

ψ|x1=1 is assigned to Vδ|∆0
.

Here ∆j is the facet of ∆ opposite its vertex j.
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Regular Cells

Definition. A bounded set X ⊂ Rm is a regular n-cell if (X,X)

is homeomorphic to (B,B) where B = (0,1)n.

X is PL-regular if (X,X) is PL-homeomorphic to (B,B).

Conjecture. Given a tame monotone family Sδ in a compact K,

there exists a PL-regular cell decomposition of K such that,

for each open n-cell C,

C ∩ Sδ is a family of PL-regular n-cells,

C ∩ ∂Sδ is a family of PL-regular (n− 1)-cells in ∂C.

Need a decent supply of regular cells to prove this Conjecture.
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Remark. A cylindrical n-cell is called regular in “Tame topology

and o-minimal structures” by L. van den Dries if its upper and

lower bounds are monotone in each of the variables, and its

projection to Rn−1 is a regular (in the same sense) (n− 1)-cell.

Such a cell is not necessarily topologically regular.

Example Let X = {x > 0, y > 0, x+ y < 1, 0 < z < x2 + y2}, and

Y = {(x, y, z, t) : 0 < t < 1, (x/t, y/t, z) ∈ X}.

Then Y is regular in the sense of van den Dries.

However, for 1/2 < c < 1, ∂Y ∩{z = c} is a cone over two disjoint

segments, so ∂Y is not a manifold, hence Y is not topologically

regular.
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Semi-Monotone Sets

A coordinate cone is an intersection of the sets {xj ? 0} where

? ∈ {<,=, >}.

An open bounded set X ⊂ Rn is semi-monotone if its intersec-

tion with any translation of any coordinate cone is either empty

or connected.

Theorem. (Basu, A.G., Vorobjov, 2010) A tame semi-monotone

set X ⊂ Rn is a PL-regular n-cell.

Remark. Theorem can be proved for semi-algebraic sets over

any real closed field.
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Examples of semi-monotone (above) and not semi-monotone

(below) sets in R2
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Proof of Theorem: Induction on the dimension n. Use local

conical structure of tame sets. A cone over a regular (n−1)-cell

is a regular n-cell.

To glue things together, we need to cut a semi-monotone regular

cell by generic coordinate hyperplanes and prove that the pieces

are again regular cells.

Generalized Schönflies Theorem. If Sm−1 is a locally flat

PL-sphere embedded in Sm, then it cuts Sm into two PL-cubes.

True for m 6= 4, unknown for m = 4. We need it for m = n, n−1.

For n ≤ 5, we circumvent Generalized Schönflies Theorem with

Proposition. Any acyclic simplicial complex with ≤ 5 vertices

has a vertex with the acyclic link.
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Acyclic 2D complex with 6 vertices, each having non-acyclic link

15



Acyclic 2D complex with 6 vertices, each having non-acyclic link
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Acyclic 2D complex with 6 vertices, each having non-acyclic link
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Regular Boolean Functions

A Boolean function ψ : {0,1}n → {0,1} is regular if, for any

sequence of quantifiers ∃j and ∀k applied to ψ, the result does

not depend on the order of quantifiers.

Here ∃j(ψ) = ψ|xj=0 ∨ ψ|xj=1, ∀k(ψ) = ψ|xk=0 ∧ ψ|xk=1.

Theorem. Let us subtract from the cube (−1,1)n the union of

closed octants corresponding to {ψ = 1} for a Boolean function

ψ.

The result is a regular cell iff ψ is regular.

Theorem. (Basu, A.G., Vorobjov, 2010) A tame open bounded

set is semi-monotone iff, for each x /∈ X, the set of octants with

the vertex at x that do not intersect X corresponds to a non-zero

regular Boolean function.
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A bounded upper semi-continuous function f defined on a semi-

monotone set U ⊂ Rn is submonotone if, for any t, the set

{f < t} is either empty or semi-monotone.

A function f is supermonotone if −f is submonotone.

Theorem. (Basu, A.G., Vorobjov, 2010). An open and bounded

set X ⊂ Rn+1 is semi-monotone iff X = {f(x) < t < g(x)}

for some functions f and g on a semi-monotone set U ⊂ Rn,

where f(x) < g(x) for all x ∈ U , f is submonotone and g is

supermonotone.
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A bounded continuous function f defined on a semi-monotone

set X is monotone if it is sub- and supermonotone, and either

strictly monotone or constant in each variable.

A map f : X → Rk is monotone if each fj is a monotone func-

tion on X and, for any n functions selected from xi and fj,

each of them is monotone (either strictly increasing, or strictly

decreasing, or constant) on the level curves of the other n − 1

functions.

In both definitions, independence of the type of monotonicity on

the choice of constants should be assumed.

This is true if all fj are monotone and smooth, and all differen-

tials dxi, dfj are in general position at each point of X.
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Theorem. Let f : X → Rk be a monotone map, X ⊂ Rn.

Let Y = {x ∈ X, y = f(x)} ⊂ Rn+k be the graph of f .

Then, for every n-dimensional coordinate subspace L of Rn+k

such that projection Z of Y to L is open, Z is a semi-monotone

set, and Y is a graph of a monotone map Z → Rk.
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