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Abstract. A probabilistic model was proposed in this research for fully-
automated segmentation of liver region in non-contrast X-ray torso CT images. 
This probabilistic model was composed of two kinds of probability that show 
the location and density (CT number) of the liver in CT images.  The probabil-
ity of the liver on the spatial location was constructed from a number of CT 
scans in which the liver regions were pre-segmented manually as gold stan-
dards. The probability of the liver on density was estimated specifically using a 
Gaussian function. The proposed probabilistic model was used for automated 
liver segmentation from non-contrast CT images. 132 cases of the CT scans 
were used for the probabilistic model construction and then this model was ap-
plied to segment liver region based on a leave-one-out method. The perform-
ances of the probabilistic model were evaluated by comparing the segmented 
liver with the gold standard in each CT case. The validity and usefulness of the 
proposed model were proved. 

1   Introduction 

With the development of the CT technology, the whole body scans using X-ray CT or 
MRI scanner are practicable for the clinical purpose. Now, the radiologists can easily 
make a volumetric torso X-ray CT scan in as little as 20-30 seconds to examine 
health-related issues such as vascular problems, liver problems and the detection of 
lesions in different organs and tissue within the torso region. However, the interpreta-
tion for such a torso CT scan that includes over 1000 axial slices of CT images on a 
screen or films without any oversight is tedious for radiologists, The computer-aided 
diagnosis (CAD) system that can show the 3-D anatomical structure of human body 
and find out the location of the suspicious regions is strongly expected to reduce the 
burden and increase the accuracy of the medical image interpretation. 

Among the different organ and tissue regions, liver is one of the most important di-
agnosis target organs of the CAD system. Lesion detection and surgery planning of 
liver always require the CAD system to extract the liver region firstly from CT im-
ages. However, without any prior knowledge or assistance of human operators, the 
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traditional image processing methods (such as gray-level thresholding, region grow-
ing, etc.) can not provide a reliable automated extraction of liver region especially in 
non-contrast CT images.  The prior knowledge (always appears as an atlas) that 
shows the spatial location, shape and density (CT number) of liver region are required 
as the assistance for the automated liver segmentation process. 

In order to provide the prior knowledge for abdominal organ segmentations, Park 
et al. proposed a method for abdominal probabilistic atlas construction [1] using the 
contrast abdominal CT images and some further approaches were also reported [2,3]. 
However, how to use the atlas to realize a fully-automated liver segmentation could 
not be solved completely and the performance evaluations of such atlases were lim-
ited based on a small database [1, 2]. In this paper, we proposed a method to estimate 
the liver probability in each of CT cases specifically and use the estimated probability 
to segment the liver region automatically. The performance of the estimated liver 
probability and liver segmentation results were evaluated by a coincidence ratio 
measurement and a characteristic curve analysis based on manual extraction results of 
liver regions in 132 normal liver CT cases and 20 abnormal CT cases. In the follow-
ing sections, we firstly describe the outline of our liver segmentation method in Sec-
tion 2, and then, show the details of liver probability estimation method in Section 3. 
Experimental results are presented in Section 4 and discussions on the accuracy 
evaluations of the probability estimation and liver segmentation are described in Sec-
tion 5. Finally, a conclusion is given in Section 6. 

2   Outline of the Liver Segmentation 

The outline of our proposed liver region segmentation scheme is shown in Fig. 1. The 
input of the scheme is a non-contrast CT scan covering human torso region with an 
isotopic spatial resolution. The output of the scheme is a 3-D binary image in which 
the voxels of the liver region are labeled with ‘1’ and the voxels of other regions are 
labeled with ‘0’. The proposed scheme is composed of 2 principal steps: (1) Auto-
mated estimation of the liver probability in the inputted CT images. After this step, 
each voxel in the CT images is attached with a value (0.0-1.0) showing the probability 
belongs to the liver region. (2) Automated segmentation of liver region in CT images 
based on the estimated liver probability.  

Liver probability estimation

Liver segmentation

Input OutputLiver probability

Liver probability estimation

Liver segmentation

Input OutputLiver probability
 

Fig. 1. Outline of our automated liver segmentation scheme 
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3   Automated Estimation of Liver Probability  

3.1   Definition of the Probabilistic Liver Model  

The simplest model of liver region (described as  event A) can be considered as a 3-D 
connected component that appears in a special location (event B) of human body with 
a special CT number (event C) in CT images. We define the P(A) as the probability of 
each voxel that belongs to liver region on CT images, P(B) as the probability of liver 
location in the spatial anatomical structure of human torso, and P(C|B) as the prob-
ability of the density (CT number) in liver region on CT images. Using the above 
definitions, we can get the following equation. 

)B|C(P)B(P)CB(P)A(P ×== ∩  (1) 

The liver probability P(A) for a special CT scan can be calculated by P(B) [prob-
ability of the anatomical location of liver region in human torso] and P(C|B) [prob-
ability of liver density on CT images]. This research tries to develop the methods to 
estimate the P(B) and P(C|B) dynamically and generate the probability P(A) for liver 
segmentation.  

3.2   Construction of a Liver Atlas  

The liver atlas that used in this research is defined as a probability of liver location 
(includes shape and position) under a normalized anatomical structure of human body 
[3].  In order to guarantee the correctness and accuracy of the atlas, arranging the ana-
tomical structure (composed of bone frame, diaphragm, and body surface) in different 
CT cases and investigating the variation of the liver locations based on a large number 
of the CT cases are necessary. A standard anatomical structure surrounding the liver 
region is defined for liver region arrangements [3]. We deform the anatomical struc-
tures in different CT cases to the position of the standard anatomical structure firstly, 
and then vote the liver region in each CT case to the spatial positions of the standard 
anatomical structure. The voting result that shows the liver probabilities in each spatial 
position in the standard anatomical structure is regarded as the liver atlas [3]. 

3.3   Estimation of the Liver Probability on Spatial Location 

Using the constructed liver atlas in Section 3.2, we developed a procedure to estimate 
the probability of the liver region in an inputted CT case automatically as shown in 
Fig.2. This procedure included following 3 processing steps: (1): The bone region was 
extracted using a gray-level thresholding method [5] and the diaphragm was identified 
based on the shape of air regions inside of lung [6]. (2): Using a calibration of the 
landmarks (composed of 8 vertexes of a circumscribed hexahedron of bone frame and 
body surface, 200-300 sampling points of diaphragm surface) between the inputted 
CT cases and standard anatomical structure [3], a transformation matrix of the Thin-
plate spline (TPS) [4] was calculated. (3): The liver atlas in the standard anatomical 
structure was deformed by TPS using the calculated transformation matrix to show 
the probability P(B) of liver location in the inputted CT images [Fig.2]. 
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Fig. 2. Estimation of the liver probability on spatial location (P(B)) based on liver atlas 

3.4   Estimation of the Liver Probability on Density 

After the P(B) estimation, we proposed a method to estimate the P(C|B) that can be 
considered as the liver probability on density (CT number) feature. We assumed a 
Gaussian distribution to approximate the density distribution of liver by the following 
equation. 
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The Gaussian parameters could be estimated by observing the density histogram of 
the region that each voxel i should satisfy the condition [Pi(B)>0]. The CT number 
which was the maximum peak in the histogram was selected as the mean value μ and 

a Gaussian distribution ),(N σμ which has the same FWHM (full width half maxi-

mum) with the observed density histogram was decided. Then, we calculated the  
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Fig. 3. Estimation of the liver probability on density (P(C|B)) 
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P(C|B) from the CT images by a probability transformation using the ),(N σμ as a 

characteristic curve [Fig.3]. A likelihood image was generated to show the probability 
P(C|B) which indicates the probability of liver on CT numbers [Fig.3]. 

3.5   Calculating the Liver Probability for Automated Segmentation 

The probability P(A) for CT images can be obtained simply by a multiplication of 
P(B) and P(C|B). In fact, we generated a total likelihood image to show the liver 
probability P(A) by an image multiplication. Based on the P(A), the liver region can 
be extracted by simply selecting the voxel i that satisfied the condition [Pi(A) > th], 
and then, the binary regions were refined by a binary morphological processing [using 
a ball kernel with a radius = r]. At last, the biggest connected component in 3-D was 
decided as the liver region. The procedure was designed in a fully-automatic mode 
without any assistance by operators. 

4   Experiments 

132 normal liver cases of non-contrast torso CT images were used in experiment. 
Each CT case has an isotopic spatial resolution of about 0.6 mm and density (CT 
number) resolution of 12 bits. The ground truth of liver region (gold standard) in each 
CT case was instructed by two experienced radiologists (authors H.K. and M.K.) 
using a semi-automatic segmentation method for atlas construction and accuracy 
evaluation for segmentation results. The performance of our method was evaluated 
based on a leave-one-out method that selects 131 cases to construct a liver atlas and 
use it to segment the liver region from the surplus 1 case. The proposed liver segmen-
tation method was also applied to the additional 20 abnormal liver cases (fat liver) 
using the constructed liver atlas from 132 normal cases. The parameters (th =0.03, r 
=2 (voxels)) were determined by our experience in liver segmentation. The experi-
mental results of one CT case is shown in Fig.4. 

(b) (c) (d) (e) (f) (h)

(g)

(a) (b) (c) (d) (e) (f) (h)

(g)
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Fig. 4. An example of liver segmentation results. (a) original CT image (1 coronal slice), (b) 
liver atlas, (c) P(B) : liver probability on spatial location, (d) P(C|B) : liver probability on den-
sity, (e) P(A) : liver probability, (f) liver segmentation result (1 coronal slice), (g) ground truth 
of liver (3-D view), (h) liver segmentation result (3-D view). 
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The coincidence ratio between the segmented liver region and the ground truth of 
liver region was used to evaluate the accuracy of the liver segmentation method. A 
characteristic curve analysis shows the relationship between the liver extraction ratio 
and over extraction ratio of liver was used to evaluate the performance and accuracy 
of proposed liver model (liver probabilities). 

5   Discussion 

We found that the liver region was segmented correctly in each of CT cases. The 
mean value of the coincidence ratio between segmentation results and gold standards 
was 0.932 for normal liver cases and 0.898 for fatty liver cases, respectively. The 
results showed that the proposed method has the ability to segment the liver region in 
non-contrast CT images even for the abnormal liver cases. The error was caused by 
the misrecognition of a part of muscles and other tissues around the liver regions. 
Refining the liver segmentation results based on edge information of liver will be 
applied to reduce such error in the future. 

The performance and accuracy of the estimated liver probability were evaluated by 
the described characteristic curve analysis which is similar to the ROC analysis 
[Fig.5]. The area A under the curve was used as the evaluation standard. The mean 
value of the A was 0.99 with the standard deviation of 0.02 for 132 normal cases us-
ing leave-one-out method [Fig.5]. We confirmed that the liver probability estimation 
based on liver atlas can provide satisfied information for liver segmentation from non-
contrast CT images. 
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Fig. 5. Performance evaluation results of the liver probabilities using a characteristic curve 
analysis 

We found the density distribution of the ground truth of liver region in each CT 
case was quite close to a Gaussian distribution [Fig.2].  However, the mean value and 
standard deviation of the liver density in each case varied largely. Using our Gaussian 
parameter estimation, we confirmed the mean value of the coincidence ratios between 
the real density distribution and estimated Gaussian model was about 94%. The  
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margin of the error was caused by the vessels that were recognized incorrectly as a 
part of liver region during the semi-automatic segment process. The experiential  
result showed that the density of liver region can be presented by a Gaussian distribu-
tion and Gaussian parameters should be estimated respectively from the CT images 
for the different patient cases. 

Normalizing the liver location in different patient cases was very important before 
the liver atlas construction; we compared the results of the liver atlas with and without 
the normalization [Fig.6]. We measured the convergence of probability of liver loca-
tion and confirmed that our method (warping the diaphragm and bone structure to 
reduce the variance of liver location and shape in different CT images) was very ef-
fective to improve the accuracy of the atlas on liver location [Fig.6].  
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Fig. 6. Liver atlas construction results (a) liver atlas without anatomical structure arrangements, 
(b) liver atlas with anatomical structure arrangements, (c) probability convergences of the (a) 
and (b) 

6   Conclusion 

We proposed a method to construct a probabilistic liver model for automated liver 
segmentation from non-contrast CT images. The proposed method was applied to 
segment liver regions in 152 CT cases for performance evaluations. We confirmed 
that the proposed liver model can improve the robustness and effectiveness of liver 
segmentation process and provide a feasible solution to extract the liver region from 
the non-contrast CT images automatically. 
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