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Abstract

Background: Over time, methods for the development of clinical decision support (CDS) systems have evolved from
interpretable and easy-to-use scoring systems to very complex and non-interpretable mathematical models. In order to
accomplish effective decision support, CDS systems should provide information on how the model arrives at a certain
decision. To address the issue of incompatibility between performance, interpretability and applicability of CDS systems, this
paper proposes an innovative model structure, automatically leading to interpretable and easily applicable models. The
resulting models can be used to guide clinicians when deciding upon the appropriate treatment, estimating patient-specific
risks and to improve communication with patients.

Methods and Findings: We propose the interval coded scoring (ICS) system, which imposes that the effect of each variable
on the estimated risk is constant within consecutive intervals. The number and position of the intervals are automatically
obtained by solving an optimization problem, which additionally performs variable selection. The resulting model can be
visualised by means of appealing scoring tables and color bars. ICS models can be used within software packages, in
smartphone applications, or on paper, which is particularly useful for bedside medicine and home-monitoring. The ICS
approach is illustrated on two gynecological problems: diagnosis of malignancy of ovarian tumors using a dataset
containing 3,511 patients, and prediction of first trimester viability of pregnancies using a dataset of 1,435 women.
Comparison of the performance of the ICS approach with a range of prediction models proposed in the literature illustrates
the ability of ICS to combine optimal performance with the interpretability of simple scoring systems.

Conclusions: The ICS approach can improve patient-clinician communication and will provide additional insights in the
importance and influence of available variables. Future challenges include extensions of the proposed methodology
towards automated detection of interaction effects, multi-class decision support systems, prognosis and high-dimensional
data.
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Introduction

Since the invention of the computer, people have acknowledged

the possible advantages that computers might offer in clinical

decision making. In 1960, Ledley and Lusted [1] summarized

ideas on how computers could be used for medical data

processing. Clinical Decision Support (CDS) systems have

changed extensively since these days. Thanks to increased

computing power and the collection and storage of medical data,

mathematical models designed for decision making are based on

increasingly complex formulations. As a result, the obtained

models often perform better than in the early days. However, the

price to be paid is the lower interpretability of the model by the

user. The earliest CDS systems were problem-specific flowcharts

designed by clinicians and encoded for use by a computer [2],

whereas later systems are based on logistic regression models,

PLoS ONE | www.plosone.org 1 March 2012 | Volume 7 | Issue 3 | e34312



artificial neural networks, support vector machines, among others.

Although the possible use of computers in medical decision making

was mentioned 50 years ago, CDS systems are still not widely

applied nor accepted in clinical practice [3–6]. Potential features to

make them more acceptable for clinical practice have been

proposed by several authors [7–9]. Kawamoto [8] identified four

features which are crucial for CDS systems: the system should (i) be

provided to clinicians in an automatic way, without interfering with

the workflow, (ii) provide decision support at the time and location

of decision making, (iii) provide a recommendation and (iv) be

implemented on a computer. However, there is no real consensus

on the properties of CDS systems. While some suggest that they

should be implemented on a computer, others state that prediction

models should be taken to the bedside. Kattan [10] proposed the use

of nomograms [11–19] as a paper-based CDS system. A nomogram

is defined as a graphical tool representing a regression model, such

that the user is able to calculate the patient-specific risk without the

use of a calculator or computer, given certain variables (see Text

S1). However, applications of nomograms in clinical practice are

rare and mostly used within software applications. The problem of

application and interpretation becomes even harder when using

more advanced models. Musen [2] summarized this issue as:

‘‘There is no way that an observer can directly understand why an

artificial neural network might reach a particular decision’’.

Although rule extraction methods have been proposed [20], the

transformation of advanced mathematical models into a CDS

system remains difficultly acceptable for clinicians. A summary of

classification methods, their advantages and disadvantages together

with their clinical use according to the current state-of-the art is

given in Table 1. Logistic regression models are very popular in

clinical decision making, mainly thanks to the simple model

structure. However, they are mainly used within software

implementations or within score systems that simplify the original

model. Although this simplification is advantageous with respect to

applicability, it is uncertain what the effects are on model

performance due to this additional post-processing of the model.

Nomograms are graphical tools that visualize logistic regression

models and thus increase their interpretability. The use of

nomograms is very easy when embedded in a software package.

However, when used manually, this method is time-consuming and

prone to errors of which the impact has, to our knowledge, never

been studied. More advanced models such as artificial neural

networks and (least-squares) support vector machines are very

flexible models able to model non-linearities and interactions

between covariates in an automatic way. Unfortunately, this

reduces the model’s interpretability. As a result, these types of

models are only sporadically used in clinical decision making.

It is the goal of this work to combine the advantages of non-

linear modeling using advanced models with the easy applicability

and interpretability of score systems [21] in such a way that the

obtained models directly correspond to automatically generated

questionnaires. The resulting models can be used in clinical

practice in different ways: (i) paper- or computer-based, (ii) figure-

or table-based, (iii) with or without additional colors for a more

explicit visualization of the covariate effects. Depending on the

user’s preferences one modality can be chosen for implementation

in clinical practice, which will increase the use of more flexible

models and improve patient-doctor communication.

Methods

Mathematical modelling
Consider a problem where dvariables are measured for npatients.

We denote the variables of the ith patient as xi [ Rd . The pth

variable of this patient will be indicated as x
p
i . The outcome (benign

or malignant) will be represented by yi [ f{1,1g. The mathemat-

ical model proposed by Vapnik [22] for linear classification (linear

support vector machine) is formulated as follows

min
w,b,e

1

2

Xd

p~1

w2
pzc

Xn

i~1

ei

subject to
yi
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p~1

wpx
p
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" #
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In short, one tries to find the coefficients wp with p~1, . . . ,d and a

constant b, such that the model ŷy~sign
Pd

p~1 wpx
p
i zb

� �
indicates

Table 1. Advantages and disadvantages of different classification methods in clinical decision making.

LR1
Nomogram
after LR

Score system
after LR

(LS-)SVM2

non-additive
kernel
or ANN3

(LS-)SVM
additive
kernel

Rule extraction
after (LS-)SVM ICS

Interpretability + ++ +++ 2 2 + 2 +++

Speed when used manually 2 2 2 + 2 2 2 22 + ++

Communication to patients 2 2 ++ 2 2 2 + ++

Usable by patients 2 + ++ 2 2 2 ++ +++

Underlying model structure simple simple simple very flexible flexible flexible flexible

Applicability

By hand 2 + ++ 2 2 2 2 2 ++ +++

In software + + + + + + ++

Post-processing4 yes yes no

1Logistic regression.
2(Least-squares) Support Vector Machine.
3Artificial Neural Network.
4Post-processing in order to obtain interpretable and easily applicable models.
doi:10.1371/journal.pone.0034312.t001
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what the estimated outcome for observation i is. In practice, a tumor

is predicted to be benign if ŷy~{1 and malignant if ŷy~1. The

other elements in equation (1) are included to ensure that the model

performs well on other data than the data it is trained upon. The

parameter c is a strictly positive constant, which enables to make a

trade-off between tolerating misclassifications on the training data

and having large coefficients wp. This method is extended towards

non-linear classifiers by means of a feature map Q(x), representing

an unknown transformation function of the variables x.

The method that we present here involves three modifications

with respect to the above model. The first two modifications

involve the type of transformation Q(x)of the variables. A major

problem for the application of models built using (1) is that the

transformation can involve all variables. To enhance the

interpretability, we will consider separate transformations for each

covariate. In fact, the presented method is a special case of

generalized additive models [23]. If for the problem at hand one is

interested in specific interactions, or data in the literature suggest

an interaction between two variables, one can include interaction

terms as additional variables (see the example on prediction of

non-viability in early pregnancies). The second modification in the

transformation function implies that we impose the transformation

to be a step function. Thus, the model is a generalized additive

model with functional forms closely related to constant B-splines

[24,25]. The method itself will find out how many intervals are

relevant, where these intervals should be located and how big the

intervals should be. A third adaptation involves the sparsity of the

model, implying that we want only a small number of variables to

be included in the model, and in general, typically only a small

number of intervals will be used in the step function for each

variable. This feature is obtained within a convex optimization

problem [26] by minimizing the total variation of the coefficient

vector w (see [27] and references therein). Inclusion of all above-

mentioned adaptations leads to the following model:

min
w,b,e
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In the above formulation, a number of kpz2 thresholds

tp,l ,l~0, . . . ,kpz1 are included for variablep, such that kpz1

binary indicators I
tp,l{1ƒx

p
i
vtp,l

h i, corresponding to 0/1 values

represent one variable. Here, I is the indicator function defined as:

I z½ �~1 if z is true and zero otherwise. Note the link with

compressed sensing [28] and constant B-splines [24,25]. The

weight wp,l represents the effect on the risk of the variable p having

a value within the lth interval. For categorical variables, the binary

indicators are indicating whether or not the value of the variable

equals the first level, the second level, etc. For binary variables, the

binary indicator indicates whether or not the value of the variable

equals one. To achieve a very simple model including only a few

intervals in the transformation of some of the variables, the

absolute value of the difference between the coefficients is

minimized (see (2)) [27]. After all the adaptations, model (2)

retains the same loss function as model (1).

A problem with the proposed method is that it can still lead to a

solution including small intervals, which are often irrelevant for

clinicians. In order to reduce the number of small intervals,

equation (2) is iteratively reweighted as follows (see [29] for more

information). First, equation (2) is solved. In a second step,

weighting factors are calculated as

xp,l~
1

0:0005za wp,l{wp,l{1

�� �� , V l~1, . . . ,k: ð3Þ

By choosing the constanta, the amount of weighting, and thus the

resulting number of selected variables and the number of intervals,

can be controlled. Now, the weighted model
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is solved iteratively, until the differences between the estimated

coefficients in subsequent iterations are bounded by a predefined

small number (here 10{8). The result of the iteratively reweighted

procedure is illustrated in Figure 1.

Although the result is easy to interpret, it is not yet easy to apply.

We therefore propose to normalize the coefficients such that the

absolute value of the smallest non-zero weight becomes 1. All

other normalized coefficients are rounded to the nearest integer.

Finally, the resulting score for any observation with variables x� is

given by

score~
Xd

p~1

Xkpz1

l~1

~wwp,l I
tp,l{1ƒx

p
�vtp,l

h i,

Figure 1. Illustration of the effect of iteratively reweighted L1

regularization. The unweighted model results in the black solid
functional form. After iteratively reweighted L1 regularization, the
estimated functional form becomes much sparser (see gray dashed
line). Small and clinically irrelevant intervals are removed from the
functional form.
doi:10.1371/journal.pone.0034312.g001
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with ~wwp,l the normalized and rounded coefficients. The score is

thus found by a weighted sum of binary values. Each binary

operation corresponds to the question whether the covariate

value lies within an interval. Since the resulting score is found as

coding the variables by means of intervals, the method is referred

to as the Interval Coded Score (ICS) index. Although the score

will be higher for patients with higher risk, it is not an estimate of

the risk. To obtain the risk, a link function, which links the final

score with the risk, needs to be estimated. The link function is

estimated by means of monotonic least squares support vector

regression [30–32].

Model selection
The area under the receiver operating curve (AUC) was used as

a model selection criterion with 10-fold cross-validation. For

estimation of the link function (risk prediction), the 10-fold cross-

validated likelihood using a clinical kernel [33] was minimized.

The optimal level of weighting for the iterative reweighting of the

model was determined such that the model’s performance

(expressed by the AUC, the likelihood and the level of explained

variance (R2
adj) [34] in 5-fold cross-validation) was comparable

with the performance of the unweighted model while selecting a

minimal number of intervals.

Statistical analysis
The performance of the model was expressed in terms of

discrimination and calibration [34]. The discrimination perfor-

mance was expressed by means of the AUC. The 95% confidence

intervals were calculated using the bias corrected percentile

bootstrap method based on 1,000 bootstrap samples [35].

Calibration performance was illustrated with calibration plots

[36] and expressed by the ratio of the average predicted risk to the

observed risk (the prevalence of the event). The average predicted

risk in groups of at least 10% of the data were calculated, and

plotted against the prevalence. Additionally, the R2
adj is reported.

For the first illustration, clinicians were interested in the model’s

performance when using a cut-off on the estimated risk.

Sensitivity, specificity, positive and negative likelihood ratios

(LR+ and LR2) and the diagnostic odds ratio (DOR) [37] were

reported based on the selected cut-off.

Use and visualization
In order to visualize the resulting models for use in clinical

practice, one needs to get an idea on who will use the model and in

which circumstances. A first class of users will be clinicians, who

may want to use it in an examination room, at the bedside of the

patient, or during a consultation. The clinician might therefore opt

for a computer-based application or an application on a portable

device such as a smartphone. A second class of users might be the

patients. Depending on the problem at hand, the model might be

created from variables that the patient can calculate at home.

Using a paper-based version, the patient will be able to check the

evolution of his risk during treatment. A paper-based version

might also be helpful for the clinician when explaining the results

to a patient. Additionally, one might opt for a table or figure

representation. Different possible implementations are discussed

and illustrated below. Table 2 summarizes the properties of

different implementations. Different computer-based alternatives

are provided as Movie S1, Movie S2, Movie S3 and Text S1.

Since the outcome of an ICS model consists of variable intervals

and their corresponding weights, the model can be implemented

in a user-friendly way. As illustrated in Table 3, each interval can

be represented by means of simple yes/no questions. When the

answer to the question is yes, the points to the right need to be

added to the score. In Table 4, the final score is linked with the

estimated risk. Alternatively, instead of questions, one could opt

for a bar-representation, as illustrated in Figure 2. Each bar

represents one variable. The bars are divided into different regions

in which the corresponding points are denoted. Addition of the

points corresponding to the patient’s variable values yields the final

score, which can again be linked with the estimated risk by means

of the lowest part of the figure. Figure 3 shows an alternative,

where colors are added such that regions with higher risks (i.e.

higher points) are marked in red and regions with lower risks are

indicated in blue. In a software implementation, tick boxes are

provided, such that the user only has to indicate the correct

interval for each covariate, whereafter the score and risk estimate

are calculated (either automatically or manually).

Results

The proposed method is illustrated on two diagnostic problems.

For the first illustration, we used a dataset of 3,511 patients with an

adnexal mass recruited within the framework of a large multi-

center study using standardized examination techniques and

definitions [38]. The model was trained on 2,514 patients from

9 centers and tested on 997 patients from 12 other centers. The

second illustration involves prediction of the non-viability of

pregnancies at 11–14 weeks, based upon variables known at the

first ultrasound scan. This data included 1,435 patients from an

Early Pregnancy Unit in London. More information on both

datasets can be found in Text S1.

Diagnosing malignancy of adnexal masses
The model was trained on 2,514 patients from 9 international

centers and tested on 997 patients from 12 other centers. From

the ICS model (Figure 2 and Tables 3 and 4), the clinician knows

which questions need to be answered in order to estimate the risk

that an adnexal mass is malignant. Consider a 56-year-old patient

Table 2. Properties of different model implementations for clinical use.

Representation Table or figure Paper or software Color representation Illustrative example

1 Table Paper No Table 3

2 Figure Paper No Figure 1

3 Figure Paper No Figure 2

4 Table Software No Movie S1

5 Figure Software No Movie S2

6 figure Software Yes Movie S3

doi:10.1371/journal.pone.0034312.t002
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from the database, with a maximum lesion diameter of 133 mm,

a ratio of the solid component diameter versus the lesion

diameter of 0.74, more than three papillations with blood flow,

an irregular cyst wall, no acoustic shadows, no ascites, a color

score of 3 and 18 mm of free fluid in the pouch of Douglas. This

patient receives one point for age, two points for the amount of

free fluid, three each for the irregular cyst wall, the blood flow

within the papillations, and the color score, four each for the

lesion diameter and the number of papillations, and seven for the

ratio of the solid component diameter and the lesion diameter.

The total score is 27, which is translated into an estimated risk of

malignancy of 0.96 by means of the estimated link function (see

Figure 2(a–b) and Table 4). The true outcome for this patient was

malignancy (clear cell carcinoma). The area under the receiver

operating characteristic curve (AUC) on the training set was 0.95

(95% CI: 0.94–0.95). The AUC on the test set was 0.96 (95% CI:

0.94–0.97). The R2
adj equaled 0.73 on the training and 0.72 on

the test set. The model underestimated the risk of malignancy on

the test set (Figure 2(c)). However, this problem of underestima-

tion was previously noted when using other models as well [39],

and is probably caused by case-mix differences between the

training and test sets. The ratio of the average predicted risk to

the observed prevalence equaled 0.78 on the test set, confirming

the underestimation of the risk. A decision cut-off was determined

to obtain the best specificity for a sensitivity of at least 90%. This

resulted in predicting a malignant tumor for a score of 10 or

more. This cut-off resulted in a sensitivity and specificity of

respectively 94% and 76% on the training set and of 93% and

86% on the test set. The positive and negative likelihood ratio on

the test set were 6.53 and 0.078, respectively, corresponding to a

DOR of 84.

Predicting non-viability of pregnancies
For a second illustration a dataset of 1,435 women with a

positive pregnancy test was available from an Early Pregnancy

Unit in London. The data were randomly split into a training set

of 955 patients and a test set of 480 patients. Little research [40,41]

has been done with respect to prediction of pregnancy non-

viability. Moreover, this research concentrated on the prediction

of ultimately non-viable pregnancies. We aimed at predicting non-

viability at the end of the first trimester. Since the effect of

gestational sac diameter was considered to be different for fetuses

with or without a visualized heart rate, an interaction between

these variables was considered during model building. The

resulting ICS model (Figure 3) includes six variables: maternal

age, bleeding score, gestational age, mean gestational sac

diameter, mean yolk sac diameter and whether or not a fetal

heart beat is seen. A higher score corresponds to a higher risk of a

non-viable pregnancy. The AUC was 0.90 (95% CI = 0.88–0.92)

on the training set and 0.92 (95% CI = 0.90–0.94) on the test set.

The R2
adj equaled 0.64 and 0.62 on the training and test set,

respectively. The ratio of the average predicted risk to the

Table 3. Illustration of a table-based representation which
can be filled out by hand for the ICS index in diagnosing
malignancies in adnexal masses.

Question Points

Is the patient

between 40 (included) and 60 years old? 1

older than 60 (included) years old? 3

Is the maximal diameter of the lesion

between 40 (included) and 75 mm? 1

between 75 (included) and 95 mm? 3

between 95 (included) and 140 mm? 4

between 140 (included) and 200 mm? 5

larger than 200 (included) mm? 8

Is the ratio of the solid component and the lesion

between 0.25 (included) and 0.55? 4

between 0.55 (included) and 0.9? 7

larger than 0.9 (included)? 8

Are there

4 or more papillations? 4

Is there any blood flow in the papillary structures?

yes 3

Is the internal cyst wall

irregular? 3

Are there acoustic shadows present?

yes 25

Is the color score equal to

2? 1

3? 3

4? 5

Are there ascites present?

yes 4

Is the measurement of Free fluid in the pouch of Douglas

between 10 (included) and 20 mm? 2

more than 20 mm (included)? 4

For each variable several questions, corresponding to the different variables
intervals, are posed. If the answer to the question is yes, the points in the last
column, need to be added to the score. The software based version is provided
as Supporting Information: movie1.
doi:10.1371/journal.pone.0034312.t003

Table 4. Link between the scores obtained from Table 3 and
the estimate of the risk.

Score Risk

#1 ,0.001

2 to 4 0.01

5 0.04

6 to 9 0.06

10 to 11 0.10

12 0.12

13 0.24

14 0.36

15 0.54

16 to 17 0.63

18 to 19 0.69

20 to 23 0.91

24 to 25 0.93

26 to 27 0.96

28 to 30 0.98

$31 .0.99

doi:10.1371/journal.pone.0034312.t004

Interpretable Clinical Decision Support Systems
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Figure 2. Application of the ICS approach to the diagnosis of the malignancy of adnexal masses. (a) Picture-based representation by
means of bar charts (without color indications) representing the intervals in which the variable effect is estimated to be constant. The bottom bar
represents the predicted risk associated with the final score, obtained by summing all contributions of all variables. A software implementation is
provided as Movie S2 and Movie S3. (b) Estimated link function, linking the score with the risk of a malignant tumor. (c) Calibration of the ICS model
on the test set. For each possible value of the predicted risk (some values were taken together in order to obtain at least 10% of the patients in each
group), the observed percentage of malignancies is calculated (dots). A 95% confidence interval on the percentage of the observed malignancies is
illustrated by means of the vertical lines.
doi:10.1371/journal.pone.0034312.g002

Interpretable Clinical Decision Support Systems

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e34312



observed risk was 0.98 on the test set, indicating adequate

calibration (Figure 3(c)).

Comparison with other methods
The literature describes different models for diagnosing the

malignancy of adnexal masses. A selection of these were used for

comparison: the risk of malignancy index (RMI) [42], a logistic

regression model (LR1) [39], a least-squares support vector

machine (LS-SVM) and a relevance vector machine (RVM)

[43], both with an RBF kernel. All models were tested on the same

test set, but derived from different training sets. All compared

models used feature selection techniques in order to reduce the

number of necessary variables. Table 5 shows that the ICS model

could compete with the other models. In addition, the ICS has the

advantage of being highly interpretable and easily applicable.

Since a nomogram is a graphical representation of a (logistic)

Figure 3. Application of the ICS approach to the prediction of non-viable pregnancies. (a) Picture-based representation by means of color
bars, representing the intervals in which the variable effect is estimated to be constant. For each of the represented bars, the points corresponding to
the value of the patient’s covariates are obtained. The total score is obtained by summing all points. The color bar at the bottom represents the
predicted risk associated with the final score. (b) Estimated link function, linking the score with the risk of a non-viable pregnancy at the end of the
first trimester. (c) Calibration of the ICS model on the test set. For each possible value of the predicted risk (some values were taken together in order
to obtain at least 10% of the patients in each group), the observed percentage of non-viable pregnancies is calculated (dots). A 95% confidence
interval on the percentage of the observed non-viable pregnancies is illustrated by means of the vertical lines. Fhr: fetal heart rate.
doi:10.1371/journal.pone.0034312.g003
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regression model, the use of a computer-based nomogram would

yield results identical to those of the LR1 model. However, a

paper-based version of a nomogram would be prone to errors due

to drawing lines that are not exactly vertical, and due to errors in

reading the points. The ICS methodology solves these issues by

indicating in which areas the risk estimates are robust to these

errors (since risks are assumed to be constant over intervals) and by

visualizing the awarded points for each interval as obtained from

the estimated model.

In a second study, we compared the ICS approach with the

classical score system approach, i.e. score systems obtained by

approximating a logistic regression model (see [21]). In the latter

case, a logistic regression model is built in a first step. Then, in

order to make the model easy to use, the variables are divided into

consecutive intervals that are chosen by the user. Within each

interval, the effect for the midpoint of the interval is applied.

Although both methods obtain the same type of score system, the

results are quite different. The major difference lies in the fact that

in the second model, the intervals are set by the user. Therefore,

within the model building step, no control exists over the

information that might be lost by choosing intervals. On the

contrary, the ICS method is especially designed to select, already

during the phase of model estimation, those intervals that retain as

much information as possible. To illustrate this point, we built for

both applications two classical score systems based on a logistic

regression model that used the variables selected with the ICS

methodology. The first score system used a high number of

consecutive intervals for continuous variables (using intervals of 5

years for age, 10 mm for lesion and gestational sac diameter, 0.1

for the ratio, 15 mm for free fluid, 10 days for gestational age and

1.5 mm for yolk sac diameter), the second score system used a

smaller number of consecutive intervals for continuous variables

(using intervals of 10 years for age, 30 mm for lesion and 20 mm

for gestational sac diameter, 0.25 for the ratio, 30 mm for free

fluid, 20 days for gestational age and 3 mm for yolk sac diameter).

The results indicate that ICS performed comparable to or better

than both classical score systems while using fewer intervals (see

Tables 6 and 7). Due to the fact that the user has to set the

intervals, information might be lost when reducing the number of

intervals in other scoring systems approaches. The ICS approach

is able to obtain models with fewer intervals than other approaches

by incorporating an interval selection procedure during model

training, without affecting the model’s performance.

Discussion

This paper proposes a new methodology in order to bridge the

gap between advanced mathematical diagnostic models and their

applicability in clinical practice. This gap is the consequence of

increasingly complex models which can no longer be interpreted

nor applied by clinicians. Where others proposed to approximate

advanced models by means of score systems or rules in a post-

processing step, our approach starts from a model representation

which is interpretable and usable in a clinical setting. By building

an additive model with constant effects within intervals, the result

can be represented as a questionnaire or score chart. However, as

opposed to other score system approaches, the ICS enables better

Table 5. Summary of the performance of previously built models and the ICS model for the prediction of malignancy of adnexal
masses.

Model AUC (95% CI) Sensitivity Specificity LR+ LR2 DOR (95% CI)

RMI 0.911 (0.880–0.935) 67.5 94.6 12.60 0.343 37 (24–57)

LR1 0.956 (0.939–0.968) 92.2 86.5 6.84 0.091 75 (46–125)

LS-SVM RBF 0.954 (0.935–0.967) 89.4 89.9 8.85 0.118 75 (47–120)

RVM RBF 0.951 (0.933–0.965) 90.6 87.7 7.39 0.107 69 (43–111)

ICS 0.958 (0.943–0.969) 93.3 85.7 6.53 0.078 84 (51–150)

The measures are calculated on the test set of 997 patients from external centers. Except for the AUC, all measures were calculated using the cut-off mentioned in the
original paper.
doi:10.1371/journal.pone.0034312.t005

Table 6. Summary of the test set performance of the ICS-
based score system and two classical score systems (M1 and
M2) for the prediction of malignancy of adnexal masses.

Model AUC (95% CI) R2
adj # intervals

ICS 0.958 (0.943–0.969) 0.72 30

LR 0.963 (0.947–0.974) 0.73

M1 0.961 (0.944–0.971) 0.71 57

M2 0.933 (0.911–0.949) 0.58 36

The classical score systems are based on a logistic regression model using the
variables selected with ICS (LR). In a second step, the variables are manually
divided into intervals. M1 uses a high number of intervals for continuous
variables, M2 uses fewer intervals. The ICS approach is able to obtain good
performance using a small number of intervals. The classical score systems are
able to obtain good performance provided that a large number of intervals is
considered.
doi:10.1371/journal.pone.0034312.t006

Table 7. Summary of the test set performance of the ICS-
based score system and two classical score systems (M1 and
M2) for the prediction of non-viability of pregnancies.

Model AUC (95% CI) R2
adj # intervals

ICS 0.924 (0.897–0.942) 0.62 17

LR 0.940 (0.916–0.957) 0.69

M1 0.897 (0.872–0.922) 0.65 31

M2 0.788 (0.749–0.823) 0.36 23

The classical score systems are based on a logistic regression model using the
variables selected with ICS (LR). In a second step, the variables are manually
divided into intervals. M1 uses a high number of intervals for continuous
variables, M2 uses fewer intervals. The ICS approach is able to obtain good
performance using a small number of intervals. The classical score systems are
able to obtain good performance provided that a large number of intervals is
considered.
doi:10.1371/journal.pone.0034312.t007
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control of possible information loss since the number, position, and

length of the intervals are automatically optimized by the model.

The ICS model presented here can be used in daily clinical

practice to solve a broad range of clinical questions. The class of

binary classification problems can be solved with the current

model equations of the ICS methodology. The areas of application

include, but are not restricted to, diagnosing tumor malignancy,

detecting abnormalities in biomedical signals, estimating the risk of

cardiovascular disease, diabetes, pregnancy failure, tumor recur-

rence within 5 years after surgery, estimating the therapeutic effect

of different therapies, and detecting predictive factors for various

conditions. Thanks to the different implementation possibilities,

the model and the resulting risk estimate or diagnosis can be

presented to the patient in a more understandable way than any

existing method. The improved interpretability in combination

with good model performance enables a better doctor-patient

communication which is becoming increasingly important in the

age of informed patient decision making. In particular, the color-

based representation can be suitable for this task. Patients will

easily understand that the addition of a variable value within a red

area increases while a value within a blue area decreases their risk.

In order for the ICS methodology to become a widely

applicable model, extensions to model architectures for problem

settings other than binary classification are needed. Firstly, the

additive model structure can be expanded such that problems with

more complex covariate effects can be modeled as well. The

current equations can be extended to an ANOVA structure, where

interactions between different covariates can be further included.

Where the current model is able to include interactions that are

known from the literature, an ANOVA extension will make it

possible to include additional interactions.

A second extension involves clinical classification problems with

more than two outcomes (multi-class problems). Although clinical

multi-class problems are most often reduced to binary classifica-

tion problems, only multi-class models can give the most

appropriate answer to the problem. Adnexal tumors are often

categorized as being benign or malignant, whereas four or more

categories could be considered, such as benign, borderline,

primary invasive and metastatic [44]. Since the optimal manage-

ment depends on the type of malignancy, a model taking all these

categories together is sub-optimal. In contrast with binary logistic

regression models, multi-class logistic regression models are only

sporadically used in medical problem settings, the reason being the

reduced model interpretability. By extending the current ICS

methodology to multi-class classifiers, a tool can be provided that

enables the development of a more appropriate multi-class model

structure which remains interpretable and easily applicable.

A third extension of the ICS methodology relates to disease

prognosis. Survival studies are very common in clinical research. A

few examples are the prognosis of primary operable breast cancer

patients after surgery, the prognosis after organ transplantations,

the prognosis of severely burnt patients and the prognosis of

patients after a stroke. By incorporating the ICS methodology in

flexible models for the analysis of survival data [45], easily

applicable score systems for survival analysis can be developed.

A last challenge concerns the increasing number of high-

dimensional data, such as genomics and proteomics data. The

current ICS model equations are able to deal with clinical datasets,

containing a large number of patients and a moderate number of

covariates. In order to apply this model to high-dimensional data,

specialized optimization algorithms will need to be developed.

Further research on the ICS methodology together with

preprocessing and feature selection algorithms for high-dimen-

sional data, are needed for this purpose.
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