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Review of Shimura varieties:

Let G be a connected reductive group over Q and X a conjugacy class of
maps of algebraic groups over R

h : S = ResC/RGm → GR.

On R-points such a map induces a map of real groups C× → G(R).

We require that (G,X) satisfy certain conditions, but we only explain the
consequences of these.

Let K = KpK
p ⊂ G(Af) be a compact open subgroup.

A theorem of Baily-Borel asserts that

ShK(G,X) = G(Q)\X ×G(Af)/K

has a natural structure of an algebraic variety over C.
In fact ShK(G,X) has a model over a number field E = E(G,X) - the
reflex field - which does not depend on K (Shimura, Deligne, ...).

We will again denote by ShK(G,X) this algebraic variety over E(G,X).
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Abelian varieties with extra structure:

Heuristically Shimura varieties can be regarded as moduli spaces of “abelian
motives”. The simplest example is of course the moduli space of polarized
AV’s:

Let V be Q-vector space equipped with a perfect alternating pairing ψ.
Take G = GSp(V, ψ) the corresponding group of symplectic similitudes,
and let X = S± be the Siegel double space.

Each point of S± corresponds to a decomposition

VC
∼−→ V −1,0 ⊕ V 0,−1.

If VZ ⊂ V is a Z-lattice, and h ∈ S±, then V −1,0/VZ is an abelian variety,
which leads to an interpretation of ShK(GSp, S±) as a moduli space for
polarized abelian varieties.

3



A Shimura datum (G,X) is called of Hodge type if there is an embedding

(G,X) ↪→ (GSp, S±).
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A Shimura datum (G,X) is called of Hodge type if there is an embedding

(G,X) ↪→ (GSp, S±).

This implies that
ShK(G,X) ↪→ ShK ′(GSp, S±)

so that ShK(G,X) can really be regarded as a moduli space for abelian
varieties equipped with extra structures (Hodge cycles).

If these extra structures can be taken to be endomorphisms of the abelian
variety, then (G,X) is called of PEL type.

Almost all Shimura varieties where G is a classical group are quotients of
ones of Hodge type. These quotients are called abelian type.
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Hyperspecial subgroups and integral models:

We are interested in studying ShK(G,X)(F̄p). Possible applications:

• An analogue of Honda-Tate theory: Every isogeny class contains a point
which lifts to a CM point.

• Counting the points mod p, to express the zeta function of ShK(G,X)(F̄p)
in terms of automorphic L-functions (Langlands’ program).

To do this we need a reasonable notion of integral model for ShK(G,X).
One can expect a smooth model when Kp is hyperspecial:

A compact open subgroupKp ⊂ G(Qp) is called hyperspecial if there exists
a reductive group G over Zp extending GQp and such that Kp = G(Zp).
(This implies Kp is maximal compact.)

Such subgroups exist if G is quasi-split at p and split over an unramified
extension.
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Example: Take (G,X) = (GSp, S±), defined by (V, ψ) as above. Let
VZ ⊂ V be a Z-lattice, and Kp the stabilizer of VZp = VZ⊗Z Zp ⊂ V ⊗Qp.
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Example: Take (G,X) = (GSp, S±), defined by (V, ψ) as above. Let
VZ ⊂ V be a Z-lattice, and Kp the stabilizer of VZp = VZ⊗Z Zp ⊂ V ⊗Qp.

Kp is hyperspecial if and only if a scalar multiple of ψ induces a perfect,
Zp-valued pairing on VZp. Then Kp = GSp(VZp, ψ)(Zp).

The choice of VZ makes ShK(GSp, S±) as a moduli space for polarized
abelian varieties, which leads to a model S K(GSp, S±) over O(λ).

The S K(GSp, S±) are smooth over O(λ) if and only if the degree of the
polarization in the moduli problem is prime to p. This corresponds to the
condition that ψ induces a perfect pairing on VZp.
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Let O ⊂ E = E(G,X) be the ring of integers. For a prime λ|p of E let
O(λ) be the localization of O at λ.
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Let O ⊂ E = E(G,X) be the ring of integers. For a prime λ|p of E let
O(λ) be the localization of O at λ.

Conjecture. (Langlands-Milne) Suppose that K = KpK
p ⊂ G(Af) is

open compact and Kp is hyperspecial. Then for λ|p, The tower

ShKp(G,X) = lim
← Kp

ShKpKp(G,X)

has a G(Ap
f)-equivariant extension to a smooth O(λ)-scheme satisfying

a certain extension property.

Theorem. If p > 2, Kp hyperspecial and (G,X) is of abelian type,
then ShKp(G,X) admits a smooth integral model S Kp(G,X).

In the case of Hodge type, S Kp(G,X) is given by taking the normal-
ization of the closure of

ShKp(G,X) ↪→ ShK ′p(GSp, S±) ↪→ S K ′p(GSp, S±)

into a suitable moduli space of polarized abelian varieties.
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Mod p points - the Langlands-Rapoport conjecture:

We continue to assume Kp is hyperspecial.

Conjecture. (Langlands-Rapoport) There exists a bijection∐
ϕ

S(ϕ)
∼−→ S Kp(G,X)(F̄p)

which is compatible with the action of G(Ap
f) and Frobenius on both

sides.

This requires some explanation but, heuristically, the ϕ parameterize ”G-
isogeny classes”, while the S(ϕ) parameterize the points in a given isogeny
class.

We will indicate the definition of the ϕ and then explain the definition of
S(ϕ).

The precise definition of the ϕ involves the fundamental groupoid P of
the category of motives over F̄p. Then PQ̄ is a pro-torus. The ϕ run over
representations ϕ : P → G satisfying certain conditions.
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The rough idea is that one can attach to each isogeny class the conjugacy
class of Frobenius.
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It is easier to explain some invariants which can be attached to each ϕ.
The rough idea is that one can attach to each isogeny class the conjugacy
class of Frobenius.

Fix an integer r >> 0. Then attached to ϕ is a triple (γ0, b, (γl)l 6=p) where

• γ0 ∈ G(Q) is semi-simple, defined up to conjugacy in G(Q̄) (stable
conjugacy).

• For l 6= p, γl ∈ G(Ql) is a semi-simple conjugacy class, stably conjugate
to γ0 ∈ G(Q̄l).

• b ∈ G(Fr W (Fpr)) is an element defined up to Frobenius conjugacy
(b 7→ g−1bσ(g), σ abs. Frobenius)
such that Nb = bσ(b) . . . σr−1(b) is stably conjugate to γ0.

The data is required to satisfy certain conditions (corresponding to those
on the ϕ).
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Then we can define S(ϕ).

S(ϕ) = lim
← Kp

I(Q)\(Xp(ϕ)×G(Ap
f))/K

p

Recall that S(ϕ) is meant to parameterize points in a fixed isogeny class.
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Then we can define S(ϕ).

S(ϕ) = lim
← Kp

I(Q)\(Xp(ϕ)×G(Ap
f))/K

p

Recall that S(ϕ) is meant to parameterize points in a fixed isogeny class.

Xp(ϕ)←→ p-power isogenies

G(Ap
f)←→ prime to p-isogenies

I(Q)←→ automorphisms of the AV+extra structure

and I is a compact (mod center) form of the centralizer Gγ0.
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Let OL = W (F̄p) and L = FrOL. Then we have

Xp(ϕ) = {g ∈ G(L)/G(OL) : g−1bσ(g) ∈ G(OL)µσ(p−1)G(OL)}
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S(ϕ) = lim
← Kp

I(Q)\(Xp(ϕ)×G(Ap
f))/K

p

Let OL = W (F̄p) and L = FrOL. Then we have

Xp(ϕ) = {g ∈ G(L)/G(OL) : g−1bσ(g) ∈ G(OL)µσ(p−1)G(OL)}

The condition in the definition of Xp(ϕ) corresponds is a group theoretic
version of the usual condition on the shape of Frobenius on the Dieudonné
module of a p-divisible group.

Here µ is a cocharacter of G conjugate to the cocharacter µh corresponding
to h

µh : C→ ResC/RGm(C) = C× C h→ G(C).

If the conjugacy class of µ is fixed by σs, then the ps-Frobenius acts on
Xp(ϕ) by Φs(g) = (bσ)s(g) = bσ(b) . . . σs−1(b)σs(g)
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p

Remarks:
(1) Implicit in the statement is a generalization of Tate’s theorem on the
Tate conjecture for endomorphisms of AV’s over finite fields, since one seeks
to classify isogeny classes in terms of Frobenius conjugacy classes.

(2) The LR conjecture is related to the conjecture that every isogeny class
contains a CM lifting. In fact Langlands-Rapoport showed that the first
conjecture implies the second. In practice one ends up proving the second
conjecture on the way to proving the first.

(3) In the case of PEL type (A,C) this is due to Kottwitz and Zink. A
subtle point is that Kottwitz doesn’t quite construct a canonical bijection,
and neither do we. (This seems to me to require a new idea.)
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Conjecture. ∐
ϕ

S(ϕ)
∼−→ S Kp(G,X)(F̄p)

S(ϕ) = lim
← Kp

I(Q)\(Xp(ϕ)×G(Ap
f))/K

p

(4) The conjecture leads, via the Lefschetz trace formula, to an expres-
sions for ShKp(G,X)(Fq) in terms of (twisted) orbital integrals involving
(γ0, (γl)l 6=p, δ).

Kottwitz has explained how one can use the Fundamental Lemma to sta-
bilize this expression, and compare it with the stabilized geometric side of
the trace formula. This should allow one to express the zeta function of
ShKp(G,X) in terms of automorphic L-functions.
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Then the LR conjecture holds for S Kp(G,X).

Moreover, every mod p isogeny class contains a point which lifts to a
CM point.

First consider (G,X) of Hodge type. What are the difficulties compared
to the PEL case ?
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1) Suppose x ∈ S Kp(G,X)(F̄p) so that x ; Ax an AV. If

g ∈ Xp(b) = {g ∈ G(L)/G(OL) : g−1bσ(g) ∈ G(OL)µσ(p−1)G(OL)}
then gx ; Agx.
But it is not clear that gx ∈ S Kp(G,X)(F̄p) because this is defined as a
closure and has no easy moduli theoretic description. So it isn’t clear there
is a map

Xp → S Kp(G,X); g ; Agx.
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3) Even once one has a map

Xp ×G(Ap
f)→ S Kp(G,X); g ; Agx

It isn’t clear that the stabilizer of a point is a compact form of Gγ0.

i.e we need to know that Aut(Ax, (sα)) is big enough. Here Ax is thought
of as an abelian variety up to isogeny, and the sα are certain cohomology
classes (coming from the Hodge cycles).

In the PEL case one can deduce this from Tate’s theorem.
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Xp → S Kp(G,X).

is well defined on a connected component once it is defined at a point. This
is a deformation theoretic argument.

To solve 3) (that I is big enough) one uses a reformulation of the proof
of Tate’s theorem. (It uses the same key inputs, but is phrased so that it
applies to AV’s with Hodge cycles.)

We’ll sketch this in Tate’s original context of principally polarized AV’s.
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Proof. By independence of l it is enough to prove this for one l 6= p.

Fix a compact open Kl ⊂ GSp(Ql). Then we have

I(Q)\Il(Ql)/I(Ql) ∩Kl ⊂ I(Q)\GSp(Ql)/Kl

and the quotient on the right parameterizes PPAV’s which are l-power
isogenous to A.
These corresponds to (some) points on a quasi-projective variety over Fq,
but they need not be defined over the same finite field as A so the quotient
on the right is not finite.

However automorphisms in the definition of Il commute with Frobenius,
so the quotient on the left is finite. (First ingredient used by Tate !).
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In particular

I(Ql)\Il(Ql) is compact

Now we choose l so that Il is a split group (use the compatible system -
this choice of l is also made by Tate !).

The theorem follows from the following

Lemma. Let I ′ be a connected algebraic group over Ql, whose reductive
quotient is split. If I ⊂ I ′ is a closed subgroup such that I(Ql)\I ′(Ql)
is compact, then I contains a Borel subgroup of I ′.

By the lemma Il/IQl
is projective. But since I is reductive the quotient is

also affine, and connected, hence a point.
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arbitrary G. Still the above argument shows I = Aut(Ax, (sα)) has the
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Above we used ’independence of l’, and we haven’t proved this yet for
arbitrary G. Still the above argument shows I = Aut(Ax, (sα)) has the
same rank as G. One can use this to construct enough special points

Theorem. Every isogeny class in S K(G,X)(F̄p) contains a point which
admits a special lifting.

Using the theorem one can solve the problem 2) about existence of γ0 and
γl being stably conjugate, and hence get the indepenence of l.
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Shimura varieties of Abelian type:

Recall that a Shimura datum (G2, X2) is called of Abelian type if there is
a Shimura datum of Hodge type (G,X) and a central isogeny Gder → Gder
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which induces an isomorphism on adjoint Shimura data
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a Shimura datum of Hodge type (G,X) and a central isogeny Gder → Gder
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which induces an isomorphism on adjoint Shimura data

(Gad, Xad)
∼−→ (Gad

2 , X
ad
2 ).

The pro-scheme

Sh(G,X) = lim
← K

G(Q)\X ×G(Af)/K

has a natural conjugation action by Gad(Q)+ = Gad(Q) ∩G(R)+.

If Kp = G(Zp) is hyperspecial, then this induces an action of G(Z(p))
+ on

ShKp(G,X) = lim
← Kp

G(Q)\X ×G(Af)/K
pKp

which extends to an action on S Kp(G,X).
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The integral model S Kp(G2, X2) is constructed from S Kp(G,X) using
this action; the geometrically connected components of the former are quo-
tients of those of the latter. This is analogous to Deligne’s construction of
canonical models.
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there is a G(Z(p))

+-action and a notion of connected components. This
bijection

S Kp(G,X)
∼−→

∐
ϕ

S(ϕ)

can be made compatible with G(Z(p))
+-actions.

To do this it seems essential to work with the morphisms ϕ and not just
the triples (γ0, (γl)l 6=p, δ).
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+-actions.

To do this one needs a moduli theoretic description of the action of the
adjoint group: This is based on the following construction.

Suppose that x ∈ ShK(G,X) and Ax the corresponding abelian scheme.
If γ ∈ Gad(Q) we can construct a twist of Ax by γ as follows.

The fibre of G → Gad by γ is a ZG-torsor P . On the other hand Ax is
equipped with an action of ZG(Q) (in the isogeny category).

We can form an abelian scheme up to isogeny

APx = (Ax ⊗Q OP)ZG

where the RHS can be thought of in terms of fppf sheaves.
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