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An EP theorem is an existence theorem  
where each possible instance of what exists (a possible output)  
is algorithmically easy to recognize relative to the size of the input.   
 
We like proofs of EP theorems which are algorithms for finding an 
instance of what exists.  We like the algorithms to be polynomial time 
(i.e.,“polytime”).  Open: If you know it is there, can it be hard to find? 
 
EP theorems are everywhere.  You know many.  You often know them 
with non-algorithmic proofs.  We give here a tiny number of examples. 
 
The Marriage Theorem 
For any set of boy-nodes and any set of girl-nodes  
and an edge between boy and girl if she loves him,  
either there exists a way for all the boys to marry girls who love them  
or there exists a subset of boys who aren’t loved by enough girls. (Not 
both) 
 
The most beautiful and practical proof of this is a simple algorithm for finding a 
matching of boys to girls or finding an insufficiently loved subset of boys.   
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We don’t know a good characterization in general  

of graphs with Hamiltonian cycles,  

but we know some EP theorems giving sufficient conditions  

for Hamiltonian cycles.  

 

For example, Dirac’s Theorem: 

If every node in graph G has degree at least half the number n of nodes, 

there exists a Hamiltonian cycle. 

 

This is proved by a polytime algorithm which finds a Hamiltonian cycle or 

a node of degree less than n/2. 

 

In fact, we have the Dirac-Ore Lemma: 

For a graph G containing a Hamiltonian cycle H containing edge d = (u,v)  

if the (degree of u) + (degree of v) in G-v is at least the number of nodes, 

then there exists another Hamitonian cycle H’ in G which does not 

contain edge d. 
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Another Theorem which looks similar:  

For any graph G containing a Hamiltonian cycle H containing edge d,  

if G-E(H) is connected, there exists in G another Hamiltonian cycle H’ 

which contains edge d. 

 

The proof is a lovely algorithm.   

It is an open question whether or not this algorithm is polytime.   
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A non-standard way of saying  

the Strong Perfect Graph Theorem  

(which until recently was a conjecture): 

 

For any graph G, either there exists a Berge obstruction  

or there exists a colouring of nodes and a clique  

which are the same size. 

 

Berge obstruction: an odd hole or an odd antihole. 

 

Favourite Open Question: Does there exist a reasonably 

simple direct polytime algorithm for finding a Berge 

obstruction or a clique and colouring of the same size? 
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Partial results in this direction: 

For a 0-1 matrix, a balance obstruction is an odd order submatrix  

with two 1’s in each row and each column.  

A “balanced matrix” means a 0-1 matrix without a balance obstruction. 

 

Old Theorem of Berge and Las Vergnas:                                               

A matrix of 0’s and 1’s contains a balance obstruction                             

or there exists a colouring of the columns  

such that the ones of any row are differently coloured and such that 

the number of colours is the largest number of 1’s in a row. 

 

Proved by a very simple algorithm for finding such a colouring  

or finding an instance of a balance obstruction. 

There is also known a very deep theory and algorithm for recognizing whether or 

not a given graph is balanced. However if what you want is hopefully  

a desired colouring of columns regardless of balance,  

then you don’t need to first recognize whether or not the matrix is balanced. 
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A Meyniel obstruction is an induced subgraph which is a simple odd cycle with 

at most one chord.  A Meyniel graph is a graph without a Meyniel obstruction. 

 

A graph, G, is called strongly perfect (do not confuse with the SPGT)  

when for every node v in every induced subgraph G’ of G,  

there is an independent set of nodes in G’ (called a “strong independent set”)  

which hits every maximal clique of G’. 

Using an algorithm for this, it is obvious how algorithmically to find in G  

a colouring of the nodes and a clique which are the same size. 

 

Open: Virtually nothing is known about strongly perfect graphs  

other than that Meyniel graphs are strongly perfect. 

That is, we only know the following theorem:  

For any graph G, either there is a Meyniel obstruction  

or there is a strong independent set.  

 

This is not an EP theorem since in general there is no easy way in general to 

recognize a strong independent set of nodes. (The predicate ``G contains a strong stable set" 

may not be an NP-predicate because the definition of strong independent set is not a polytime 

certificate.) 
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To get an EP theorem we have discovered “nice independent sets”           

which are strong and which are easy to recognize.                                             

We prove that Meyniel graphs are strongly perfect by a polytime algorithm 

which in any graph, and for any node v,                                                              

finds either a nice independent set S containing v or else a Meyniel obstruction. 

 

Meyniel graphs, in fact, illustrate three levels of algorithm: 

 

First level: we assume the input graph has no Meyniel obstruction.                 

Thus the input to the algorithm is a Meyniel graph G and a vertex v of G,  

and the output is a nice stable set S containing v. 

 

Second level (a ``robust" algorithm in the sense of Spinrad):                                           

The input is any graph G and any vertex v of G.                                                                

The output is a nice stable set S containing v  

or a declaration that G is not a Meyniel graph. 

 

Third level (an EP search algorithm where each possible output                                          

must be ``easily recognizable").                                                                                             

The input is any graph G and any vertex v of G.                                                                 

The output is a nice stable set containing v or a Meyniel obstruction. 
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Euler complexes (OIKs):  

A d-oik C = (V, F), d >1, is a finite set V of elements called the vertices of C  

and a family of (d+1)-element subsets of V , called the rooms of C,  

such that every d-element subset of V is in an even number of the rooms. 
 

A wall of a room means a set obtained by deleting one vertex of the room.      

Any wall of a room in an oik is the wall of a positive even number of rooms. 

 

A room-partition R for oik M means a room-family whose rooms partition V,  

i.e., each vertex is in exactly one room of R.  

 

Theorem: For any oik and any given room-partition, there exists another different 

room-partition.  In fact, any oik has an even number of room partitions. 

 
An OIK is called a pseudo-manifold when each wall is in exactly two rooms. 

There is a very simple algorithm for proving this theorem which we state for a 

pseudo-manifold. 
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Pick a vertex, w.  

Unchoose the room r of our chosen starting room-partition  

which contains w.  But keep its wall, r-w.  

There is a unique other room s containing wall r-w.   

Choose room s. Room s either contains w,  

or else shares a vertex v with another chosen room, say r’.  

Unchoose r’.  Choose the room s’ 

which is the unique other room containing wall r’-v. 

Room s’ either contains w 

or else shares a vertex v’ with another chosen room, say r’’.  

Unchoose r’’. Choose the room s’’ 

which is the unique other room containing wall r’’-v’. And so on. 

This algorithm eventually stops when the newly chosen room contains w 

instead of having a vertex in common with another chosen room. 

 

Surprisingly, we show that this algorithm is exponential. 

Open: we do not know whether there exists a polytime algorithm. 
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Polytopal oiks: 

Let Ax = b be non-degenerate linear system with positive b. 

A feasible basis is maximal linearly independent set, B, of columns of A such that 

the solution, x, of Bx = b, is positive. 

 

Theorem. The column-subsets of A, which are compliments of feasible bases of 

A, are the rooms of an oik manifold, in fact “the facets of a simplicial polytope”. 

 

John Nash won a Noble prize, and had a movie made about him, by showing 

non-algorithmically that a two-person (bimatrix) game has a Nash equilibrium.  

Lemke gave an algorithm applied to a pair of simplicial polytopes, which is 

essentially the same as our algorithm for finding a second room-partition. 

 

The exponentiality of that algorithm depends on the polytopes having  

an exponential number of rooms relative to the size matrix A. 

Our algorithm for finding a second room partition is exponential relative to the 

number of rooms. 
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A problem q is said to be g-complete for a class g of problems which includes q  

when a polytime algorithm for q would provide a polytime algorithm for any 

problem in g. 

 

There is a class of problems called PPAD which includes  

finding a second room-partition and finding a 2-person Nash equilibrium. 

 

Finding a 2-person Nash equilibrium has been shown to be PPAD-complete  

by a very difficult and technical proof involving matrices. 

 

Open: Show that some simpler problem, 

like finding a second room-partition for explicitly listed rooms,  

is PPAD-complete. 

 

 Curiously, another open question is to find a theory that includes finding  

a second room-partitioning and finding a second Hamiltonian path.   

The algorithms are similar.   
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Necklace Theorem: Two thieves have an open necklace 

with k colours of beads, an even number of each colour.   

No matter how the beads are linearly arranged,  

it is possible, by making only k cuts, for the thieves to share  

so that each gets the same number of each colour. 

 

This is easily proved from  

the k-dimensional Ham-Sandwich Theorem  

(discussed by Luis Montejano in the 1
st
 talk) 

(see www.math.cornell.edu/~eranevo/homepage/ 

TopMethNotes-2Margarita.pdf) 

 

Open: Find a reasonable algorithmic proof! 

http://www.math.cornell.edu/~eranevo/homepage/

