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This final lecture will have three parts:

e A summary of some recent research on regular polytopes
e A summary of some recent research on chiral polytopes

e Finding the smallest finite regular polytopes of all ranks



Constructions for regular polytopes

e C-group permutation representation graphs (CPR graphs)

These used (as a tool) by Daniel Pellicer to construct regular
polyhedra with alternating groups A,, as the automorphism
groups (2008), and regular polytopes with given facets and
prescribed (even) last entry of the Schlafli symbol (2010).

e [ he mix of two polytopes

Egon Schulte and Peter McMullen (2002) introduced a new
group-theoretic method for constructing a new regular poly-
tope from two given regular polytopes P and Q, called the
‘mix’ of P and Q.



e Polytopes of given type

For example, Dimitri Leemans and Michael Hartley (2009)
constructed various regular 4-polytopes with type [5, 3, 5].
Similarly, many families of examples (of type [3,5,3] etc.)
arise from quotients of groups associated with hyperbolic
3-manifolds of small volume (by Lorimer, Jones, Conder,
Torstensson et al, 1990s—).

e Amalgamation of polytopes

Michael Hartley constructed regular polytopes with given
facets and given vertex-figures, in some special cases (2010).



Collecting small examples of regular polytopes

e Michael Hartley has created a web-based atlas of regular
polytopes with automorphism group of order at most 2000,
except those with autom group of order 512, 1024 or 1536
— see http://www.abstract-polytopes.com/atlas for this.

e Dimitri Leemans and Laurence Vauthier have found all
regular polytopes whose automorphism group GG is an almost
simple group with S < G < Aut(S) for some simple group
S of order less than 900,000 — for the complete list, see
http://cso.ulb.ac.be/ dleemans/polytopes.

Both of these two atlases were first published in 2006.



Regular polytopes with given group

e Dimitri Leemans and Laurence Vauthier proved (in 2006)
that the group PSL(2,¢) cannot be the automorphism group
of a regular n-polytope for any n > 5.

e Dimitri Leemans and Egon Schulte determined all regular
4-polytopes with automorphism group PSL(2,q) or PGL(2,q)
(in 2007 and 2009).

e Daniel Pellicer (2008) used CPR graphs to construct
regular polyhedra with automorphism group A, (and other
groups related to A, and S,), and Dimitri Leemans, Maria
Elisa Fernandes and Mark Mixer have extended this (2011).

e Barry Monson and Egon Schulte (2009) used modular re-
duction techniques to construct new regular 4-polytopes of



hyperbolic types {3,5,3} and {5,3,5} with a finite orthogo-
nal group as automorphism group.

e Peter Brooksbank and Deborah Vicinsky (2010) showed
that regular polytopes that have a 3-dimensional classical
group as automorphism group come from orthogonal groups.

e Ann Kiefer and Dimitri Leemans (2010) determined the
regular polyhedra whose automorphism group is a Suzuki
simple group Sz(q).

e Dimitri Leemans and Maria Elisa Fernandes (2011) proved
that for every n > 3, the symmetric group S, is the auto-
morphism group of some regular r-polytope, for each r such
that 3<r<n-—1, and hence for any given r > 3, all but
finitely many S, are the automorphism group of a regular
r-polytope.



Geometric and other considerations

e Barry Monson and Egon Schulte wrote a series of five
papers (2004—2009) on reflection groups and polytopes over
finite fields, producing (for example) a catalogue of modular
polytopes of small rank that are spherical or Euclidean.

e Peter McMullen (2004) classified all regular n-polytopes
(and apeirotopes) that are faithfully realisable in a Euclidean
space of minimum dimension n (resp. n — 1).

e Peter McMullen used similar techniques in order to classify
4-dimensional finite regular polyhedra (2007), and regular
apeirotopes of dimension 4 (2009).



e Michael Hartley and Gordon Williams (2010) used meth-
ods for finding quotients of regular polytopes to obtain rep-
resentations of the 14 sporadic Archimedean polyhedra.

e Isabel Hubard (2010) investigated ‘two-orbit’ polytopes,
determining when the automorphism group is transitive on
the faces of each rank, and used this to completely charac-
terise the groups of two-orbit polyhedra (3-polytopes).

e Mark Mixer (PhD) investigated the layer graphs (showing
incidence between two layers) of regular polytopes, esp. the
medial layer graph of regular n-polytopes for even n.



Properties of chiral polytopes

e Asia Weiss and Isabel Hubard (2005) proved that every
self-dual chiral polytope of odd rank admits a polarity, but
that this is not true for even ranks.

e Asia Weiss, Egon Schulte and Isabel Hubard (2006) then
showed how to construct chiral polyhedra from improperly
self-dual chiral polytopes of rank 4, and regular polyhedra
from properly self-dual ones.



Construction of chiral polytopes

e Isabel Hubard, Marston Conder and Tomo Pisanski (2008)
used computational group-theoretic methods to find sub-
groups of small index in Coxeter groups that are normal in
the orientation-preserving subgroup but not in the group it-
self. This produced the smallest examples of finite chiral
3- and 4-polytopes, and also the first known finite chiral
5-polytopes, in both the self-dual and non-self-dual cases.

e Alice Devillers and Marston Conder (2009) found the first
known finite chiral 6-, 7- and 8-polytopes, by group-theoretic
construction for types [3,3,...,3,k].

e Daniel Pellicer (2010) devised a construction for chiral
polytopes with prescribed regular facets, and used this to
prove the existence of chiral d-polytopes, for all d > 3.



Smallest (known) chiral polytopes

Rank Properly Improperly Non-
n self-dual self-dual self-dual
3 Type {7,7} Type {4,4} Type {3,6}
|Aut(P)| = 56 |Aut(P)| =20  |Aut(P)| =42
4 Type {4,4,4} Type {4,4,4}  Type {3,4,4}

AUt(P)| = 120  |Aut(P)| =400 |Aut(P)| = 120

5 Type {3,8,8,3} Type {3,4,4,3} Type {3,4,4,6}
Aut(P)| = 20!/2 |Aut(P)| =720 |Aut(P)| = 1440



The medial layer graph (showing incidences between 1- and
2-faces) of the smallest PSD chiral 4-polytope is interesting,
and can be defined in terms of a 1-factorisation of Kg:




The smallest regular polytopes in all ranks

Daniel Pellicer asked this question at SIGMAP in Oaxaca,
in June 2010:

For each n > 3, what are the regular n-polytopes with the
smallest numbers of flags? Call the smallest number M,,.

By reqgularity, this number M, is the order of the smallest
good quotient of an n-generator Coxeter group [k1,...,k,—1]
— with ‘good’ meaning that the orders of the generators
p; and their pairwise products p;p; are preserved, and the
intersection condition holds.

Also we may assume that k; > 2 for all 7 (for otherwise the
question is not very interesting).



A lower bound for the number of flags of a
regular n-polytope

Suppose P is a regular n-polytope, of type {k1,...,kn_1},
with automorphism group G = {pg, p1,-- - Pn—1)-

Then H = (pg, p1,---,pn—_2) iS the automorphism group of a
regular (n—1)-polytope (a facet of P), and D = (p,,—2, pr—1)
is dihedral of order 2k,,_1, with HN D = (p,,_1) of order 2.

By the intersection property,
|G| = [HD| = |H||D|/|H N D| = [H|(2kp—1)/2 = [H|kp—1,
and by induction, |Aut(P)| > 2kq1ko... k1.

If this lower bound is attained, we will say P is tight.



Small ranks

These results achievable by computation (using MAGMA):

Rank (n—4+1)! Min # flags Types of polytopes

n My, achieving minimum
2 6 6 {3}

3 24 24 {3,3}, {3,4}, {4,3}
4 120 96 {4,3,4}

5 720 432 {3,6,3,4}, {4,3,6,3}
6 5040 1728 {4,3,6,3,4}

Note that all but one of these examples are ‘tight’, but
surprisingly(?), the minimum type is not always {3,3,...,3}.

Is there a pattern evident here? Are extensions possible?



Two new families

MAGMA computations give also defining presentations for
the automorphism groups of small examples. Patterns in
these give rise to constructions for two infinite families:

e A regular n-polytope of type {4,3,6,3,6,3,6,...,3,6,3},
with 8-3(n=1)/2.6(n=3)/2 flags. for every odd n > 2

e A regular n-polytope of type {4,3,6,3,6,3,6,...,3,6,3,4},
with 32 .3(n=2)/2.6(n=4)/2 flags, for every even n > 2.

24 .18(n=3)/2  for n odd

Thus M, <
"= { 96 -18(n=4)/2  for n even.



Are these the best?

All the polytopes constructed in the families above (of types
{47 37 67 37 67 ceey 37 67 3} and {4, 3, 6, 3, 6, ooy 3, 6, 3, 4}) are tlght

Can we prove these give the smallest humbers of flags for
all n? or are there too many ‘6’'s in the type~?

In the course of trying to prove the above were the best,
another family emerged ...



Tight regular polytopes of type {4,4,...,4}

There exist regular polytopes of types {4,4}, {4,4,4} and
{4,4,4,4}, with 32, 128 and 512 flags. Closer inspection of
these (and their automorphism groups) gives a new family:

For every n > 2, take the Coxeter group [4,771 4], with
n involutory generators pqg, p1,-.-, Pn—1, and add relations of
the form [(p;—1p;)?% p;] = 1 to make the squares (p;—1p;)?
all central. This gives a group G whose centre Z(G) is
generated by the n — 1 involutions (p;_1p;)2.

In particular, Z(G) and G/Z(G) are elementary abelian, of
orders 2"~ 1 and 2", so G has order 22n—1 = 2.4n-1 Als0
the intersection property holds, so G is the automorphism
group of a tight regular n-polytope of type {4,4,...,4}.



Improved upper bounds on M,

Tight polytopes of type {4,...,4} give M, < 2-4"~1 for all n.

This is better than our earlier upper bound of 24 .18(n=3)/2
for n odd. and 96 - 18(n=4)/2 for n even, whenever n > 8.

Question: Is the bound M, < 2-4"~1 sharp for all n > 87

Question: We know M3 to Mg. What are M7 and Mg?



Key observation

Suppose P is a regular n-polytope, of type {k1,...,k,_1}.

Then each of the sections of P is also a regular polytope.

In fact, if A and B are - and j- faces of P with A < B,
then the section [A,B] ={F € P: A< F < B} is a regular
(j —i—1)-polytope with automorphism group (p;41,...,0;—1)-

Next, for any i, let L; = {(pg, ..., p;) and R; = {(p;_1,---Pn—1)-
By the intersection property, L; N R; = (p;—1,p;) = D}, and

so [Aut(P)| > |LiR;| = |Li||R;|/|Li N Ry| = |Lg||R;| /| Dy,

It follows that M, > “HInitl for 1 < i< n—1.

As L; N R;y1 = (p;), also M, > Mi+12M”_i for 1 <i<n-2.




Application

Suppose M, = 2-4"1 for all n in the range i < n < 2i.
Then D
Mip1 Mg, _ (2-4Y)

Mo >
21+1 = >

and similarly

Mip1 Mo _ (2-4)(2 411 5. 42i+1
2 2

Mpiyo 2
and so M, =2-4"1 for all n in the range i < n < 2i + 2.

This gives a possible basis for induction. We just have to
find a starting value of 7 ...



Finding M, for small n > 7

With the help of the LowIndexNormalSubgroups algorithm
in MAGMA (applied to Coxeter groups), we can find:

all regular 3-polytopes with at most 100 flags
all regular 4-polytopes with at most 300 flags
all regular 5-polytopes with at most 900 flags
all regular 6-polytopes with at most 2700 flags.

Then multiple applications of the intersection property show:

the only regular 7-polytopes with fewer than 2 - 46 flags

have type {4,3,6,3,6,3} or {3,6,3,6,3,4} (and 7776 flags)

the only regular 8-polytope with fewer than 2 - 47 flags

has type {4,3,6,3,6,3,4} (and 31104 flags), and

for 9 < n < 16, the smallest regular n-polytope is a tight

one of type {4,4,...,4} (with 2471 flags).



Example: n = 9 (to show what happens)

Suppose there is a regular 9-polytope of type {kq1,kp, ..., kg}
with fewer than 248 = 131072 flags.

By taking the dual if necessary, we can assume that some
5-face F has fewer than 2 -4% = 512 flags. Then F must
have exactly 432 flags and have type {3,6,3,4} or {4, 3, 6,3},
and its co-5-face must have at most 606 flags, with its type
{ks, kg, k7, kg} coming from a known list.

Then the given 9-polytope has type {3,6,3,4, ks, kg, k7, kg}
or {4,3,6, 3, ks, kg, k7, kg}, but from our lists of small regular
6-polytopes we find no 6-section of type {3,4, ks, kg, k7} Or
{6, 3, ks, kg, k7} small enough to give fewer than 243 flags.



T heorem

For n > 9, the smallest regular n-polytopes are the tight
polytopes of type {4,771 4} with 2.47"1 flags.

For n < 8, the smallest have the following parameters:

n

0 N o 00 WON

My,
6
24
96
432
1728
7776
31104

Type(s)

{3}

(3,3}, {3,4} (and dual {4,3})

{4,3,4}

{3,6,3,4} (and dual {4,3,6,3})
{4,3,6,3,4}

{3,6,3,6,3,4} (and dual {4,3,6,3,6,3})
{4,3,6,3,6,3,4}.



Regular polytopes with the fewest elements

The same kind of approach can be taken to find for all n the
regular n-polytopes with the smallest numbers of elements.

Let E,, be the smallest such number, for given n > 1, and
suppose that this is attained by the regular n-polytope P.
Also suppose that P has fj distinct j-faces, for 0 < j5 < n.

Thenl+4+ fo+f1+ -+ f,—3+ 1 is at least the number of
elements of an (n—2)-face of P, which is at least E,,_», so

En=1+4+fo+ 1+ -+ fn—ot+tfmnat+1>E, >+ [h—2o+ [n-1-

Since f,,_1 > k,—1 and f,,_o> > k,,_»>, again this gives a basis
for induction ...



Theorem: For all n > 9, the smallest number of elements
in a regular n-polytope is 8n—6, and this is achieved by tight
polytopes of type {4,771 4}.

For n < 8, the fewest elements are achieved as follows:

En
3
15
22
33
40
50
538

0 N O 00 & W N S

Type(s)

13}

{3,4} (and dual {4,3})

{4,3,4}

{3,6,3,4} (and dual {4,3,6,3)})
{4,3,6,3,4}

{4,4,4,4,4 4}
{4,3,6,3,6,3,4} and {4,4,4,4,4, 4 4}.



Similarly ...

T heorem: For all n > 7, the smallest number of direct
incidences in a regular n-polytope is 32n—56, and this is
achieved by tight polytopes of type {4,771 4}.

For n < 6, the fewest direct incidences are as follows:

n Lp Type(s)

2 12 {3}

3 31 {3,4} (and dual {4,3})

4 56 {4,3,4}

5 100 {3,6,3,4} (and dual {4,3,6,3)}
6 131 {4,3,6,3,4}.



