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Polytopes

A polytope is a geometric structure with vertices, edges,
and (usually) other elements of higher rank, and with some
degree of uniformity and symmetry.

There are many different kinds of polytope, including both
convex polytopes like the Platonic solids, and non-convex

‘star’ polytopes:

Tetrahedron Icosahedron Dodecahedron Octahedron Cube




Abstract polytopes

An abstract polytopes is a generalised form of polytope,
considered as a partially ordered set:




Definition

O
—1

An abstract polytope of rank n is a partially ordered set
P endowed with a strictly monotone rank function having
range {—1,...,n}. For —1 < j < n, elements of P of rank j
are called the j-faces, and a typical j-face is denoted by Fj.

This poset must satisfy certain combinatorial conditions
which generalise the properties of geometric polytopes.



We require that P has a smallest (—1)-face F';, and a
greatest n-face Fjp, and that each maximal chain (or flag)
of P haslengthn+2, eg. F.1—Fog—F1—Fo—...— F,_1— Fj.

The faces of rank 0,1 and n—1 are called the vertices, edges
and facets of the polytope, respectively.

Two flags are called adjacent if they differ by just one face.

We require that P is strongly flag-connected, that is, any
two flags ® and W of P can be joined by a sequence of flags
D = Py, Pq,...,P, = WV such that each two successive faces
®,_1 and P; are adjacent, and NV C b, for all q.



Finally, we require the following homogeneity property, which
is often called the diamond condition:

Whenever F < G, with rank(F) = j—1 and rank(G) = j4+1,
there are exactly two faces H of rank 5 such that FF < H < .



A little history

Regular maps
Brahana (1927), Coxeter (1948), ...

Convex geometric polytopes
Various (e.g. Coxeter, Griinbaum, et al)

‘Non-spherical’ polytopes
Griinbaum (1970s)

Incidence polytopes
Danzer & Schulte (1983)

Reqgular & chiral polytopes
Weber & Seifert (1933), Coxeter, Schulte, Weiss,
McMullen, Monson, Leemans, Hubard, Pellicer et al



Relationship with maps

Every abstract 3-polytope is a map, with vertices, edges and
faces of the map being 0-, 1- and 2-faces of the polytope.

But the converse is not always true. For a map to be a
3-polytope, the diamond condition must hold, and therefore

e every edge has two vertices (so there are no loops), and
e cvery edge lies on two faces (so there can be no ‘bridge’).

e given any face f and any vertex v on the boundary of f,
there are exactly two edges incident with v and f.

Maps that satisfy these two conditions are called polytopal.

Note that flags of a 3-polytope are essentially the same as
flags of a map: incident vertex-edge-face triples (v, e, f).

The same goes for automorphisms ...



Symmetries of abstract polytopes

An automorphism of an abstract polytope P is an order-
preserving bijection P — P.

Just as for maps, every automorphism is uniquely determined
by its effect on any given flag. Why?

Suppose P is any flag FFy — Fg — F1 — Fo — ... — F,,_1 — Fh,
and « is any the automorphism of P. Then for 0 <:<n-1,
the diamond condition tells us there are unique flags ®* and
()t adjacent to ® and P respectively, and differing in
only the i-face, and it follows that a takes ®! to (PdQ).
Then by strong flag connectedness, we know how « acts on
every flag, and hence on every element of P.



Regular polytopes

The number of automorphisms of an abstract polytope P is
bounded above by the number of flags of P.

When the upper bound is attained, we say that P is regular:

An abstract polytope P is regular if its automorphism group
Aut P is transitive (and hence regular) on the flags of P.

This is analogous to the definition of regular maps (although
the latter is often weakened to include the case of orientable
but irreflexible maps with the largest possible number of
orientation-preserving automorphisms ... the chiral case).



Involutory ‘swap’ automorphisms
Let P be a regular abstract polytope, and let ® be any flag
Fqi—Fo—Fy —F>r—..—F,_1— Fn. Call this the base flag.

For 0 <+ <n-—1, there is an automorphism p; that maps &
to the adjacent flag ®* (differing from & only in its i-face).

Then also p; also takes ®t to @ (by the diamond condition),
so p; swaps & with & hence p;2 fixes ®, so p; has order 2:

Fitq

b F! ... p; swaps F; with F/
and fixes every other F;



Properties of the swap automorphisms

First, p;, commutes with p; whenever |j —i| > 2:

Fjt1
/ ) . . /
Fj Fj ... pj Swaps F] with Fj
and fixes all other Fj
|
I
Fiqq
F; F! ... p; Swaps F; with F!

and fixes all other Fj,



Second, for any two ¢ and j, the conjugate p;p;p; Of p; by p;
takes ®* to the flag ($*)7 that is adjacent to ®* and differs
from @ in the g-face, and therefore differs from & in the i-
and j-faces. By induction (and strong flag connectedness),
the group generated by the automorphisms pg,p1,...,0Pn—1
IS transitive on flags, and hence equals AutP.

Third, consider the product p;_1p;, and let k; be its order.

This element fixes the (¢—2)-face F;_» and the (i+1)-face
F;41 of &, and induces a cycle of length k; on :-faces and a
similar cycle of length k; on (i—1)-faces in the 2-section

[Fi—o, Fiqp1] ={FeP | F;o<F<Fy1},

which is like a regular polygon with k; vertices and k; edges.



Connection with Coxeter groups

We have seen that the automorphism group Aut’P of our
regular polytope of rank n (or ‘n-polytope’) P is generated
by the ‘swap’ automorphisms pg, p1,---, pn—1, Which satisfy
the following relations

e p?=1 for0<i<n-1,

e (pi_1p)ti=1 for1<i<n-—1,

e (pipj)?=1 for0<i<i4+1l<j<n—L.

These are precisely the defining relations for the Coxeter
group [ k1, ko, ..., kp—1] (with Schlafli symbol { kq | ko |.. | kn—1}).
In particular, Aut’/P is a quotient of this Coxeter group.

Note: [k, m] Coxeter group = full (2,k,m) triangle group



Stabilizers and cosets

StabAutP(FO) — <:017:0271037--->pn—27pn—1>
Stabaytp(F1) = (p0; 2,035+ Pn—2,Pn—1)
Stabaytp(F2) = (p0;P1,P35- > Pn—2,Pn—1)

(POy P1, P2y Pr—3y Pr—1)
(PO, P15 P25 - -+ s Pn—3s Pn—2)

Sta bAutP(Fn—l)

As P is flag-transitive, Aut’P acts transitively on :-faces for
all i, so i-faces can be labelled with cosets of Staba ,+ p(F;),
for all ¢z, and incidence is given by non-empty intersection.

Also this can be reversed, giving a construction for regular
polytopes from smooth quotients of (string) Coxeter groups,
as for regular maps, but under certain extra assumptions ...



T he Intersection Condition

When P is regular, the generators p; for Aut’P satisfy an
extra condition known as the intersection condition, namely

(piiel)y N (pied) = (p;iielnd)
for every two subsets I and J of the index set {0,1,...,n—1}.

Conversely, this condition on generators pg,p1,-..,pn—1 OF
a quotient of a Coxeter group [kq,ko,..,k,_1] ensures the
diamond condition and strong flag connectedness. Hence:

If G is a finite group generated by n elements pg, p1,...,Pn—1
which satisfy the defining relations for a string Coxeter group
of rank n, with orders of the p; and products p;p; preserved,
and these generators p; satisfy the intersection condition,
then there exists a regular polytope P with AutP = .



Infinite families of regular polytopes

T here are many families of regular polytopes, including these:
e Regular n-simplex, type [3,771,3], autom group S,11
e Cross polytope (or n-orthoplex), type [3,772,3,4]

e n-dimensional cubic honeycomb, type [4,3,772,3,4]

Other examples and families (including regular maps) can
be constructed from smooth quotients of Coxeter groups,
as described earlier.



The ‘rotation subgroup’ of a regular polytope

In the group AutP = {(pg, p1,---,Pn—2, Pn—1), We may define
0j = Pj—1Pj for 1§j§n—1.

These generate a subgroup of index 1 or 2 in Aut’P, con-
taining all all words of even length in pg,p1,...,Pn—2, Prn—1-

This subgroup may be denoted by AutT™P, or Aut®p.

If the index is 1, then AutT™P = AutP has a single orbit on
flags of P, but if the index is 2, then Aut™P has two orbits
on flags, with adjacent flags in different orbits.

1 —
Note also that 01;00 = pg (pop1)po = p1po = 01 L

and similarly ¢,° = po(p1p2)po = pop1pop2 = 01%02,

while ¢,”° = (p;—1p;)P° = pj—1p; = 0; for 3 <i<n-—1.



Chirality

If the map M is orientable and has maximum rotational
symmetry but admits no reflections, then its automorphism
group has at least two orbits on flags (with adjacent flags
being in different orbits), and the map is chiral.

This can be generalised: an abstract n-polytope P is said to
be chiral if its automorphism group has two orbits on flags,
with adjacent flags being in distinct orbits.

In this case, for each flag ® = {F_q, Fyp, ..., Fn}, there exist
automorphisms o1, ...,0,_1 Such that each o; fixes all faces
in &\ {F;_1, F;}, and cyclically permutes j-faces of P in the
rank 2 section [F;_o,Fj11] = {FeP | Fj_><F<Fjq}.



Now given any base flag ® = {F_4, Fp,...,Fp} of P, the
automorphisms o1,...,0,_1 described above may be chosen
such that o; takes & to the flag ®%“'~1 (which differs from
& in only its (:—1)- and ¢-faces), for 1 <i < n.

Whenever 1 < 3, the automorphism 0;0i41---0j fixes all of
b except its (:—1)- and j-faces, and so has order 2.

Hence for a chiral n-polytope P, these automorphisms o;
generate Aut P, and satisfy (among others) the relations

(0'7;0'2'_|_1...O'j)2=1 for 1 <i1<j5<n,

which are defining relations for the orientation-preserving
subgroup of the Coxeter group [ki,...,k,_1], namely the
subgroup generated by the elements o, = p;_1p; for 1 <i1<n.



Conversely, if G is any finite group generated by elements
01,09,...,0,_1 Satisfying these relations, with orders of the
o; and products ;0,41 .. .0 preserved, and these ¢; satisfy
a modified version of the intersection condition, then there
exists an abstract n-polytope P of type [kq,...,k,_1] which is
regular or chiral, with G = Aut P if P is chiral, or G = AuttP
of index 2 in Aut’P if P is regular.

Moreover, the polytope P is regular if and only if there
exists an involutory group automorphism p: Aut’P — Aut?P
such that p(o1) = o171, p(on) = 01205, and p(o;) = o; for
3 <i<n-—1 (or in other words, acting like conjugation by
the generator pg in the regular case).

Chiral polytopes (for which no such p exists) occur in pairs,
with one being the ‘mirror image’ of the other.



Duality

The dual of an n-polytope P is the n-polytope P* obtained
from P by reversing the partial order. The polytope P
is called self-dual if P = P*. In that case an incidence-
reversing bijection ¢: P — P is called a duality.

If P is a chiral n-polytope, the reverse of a flag can lie in
either one of two flag orbits. We say that P is properly
self-dual if there exists a duality of P mapping a flag ® to a
flag @9 in the same orbit as & (under AutP), or improperly
self-dual if /P has a duality mapping the flag ® to a flag in
the other orbit of AutP.

For 3-polytopes considered as maps, the polytope dual is a
mirror image of the map dual. Hence the map is self-dual
(as a map) iff it is improperly self-dual as a 3-polytope.



Finding chiral polytopes

Chiral polytopes appear to be much more rare than regular
polytopes, which is surprising since they have a smaller de-
gree of symmetry. This may just hold for small examples,
or for small ranks, or of course it could be simply that we
don’t know enough examples!

Chiral polytopes can be constructed from string Coxeter
groups, or by using other algebraic/combinatorial /geometric
methods (e.g. building ‘new’ ones from old).

More on that in tomorrow’s lecture, after just one more ob-
servation, about the apparent impossibility of building chiral
polytopes from one rank to the next ...



Drawback to inductive construction(s)

If P is a chiral n-polytope, then the stabilizer in Aut’P of
each (n—2)-face F,,_» of P is transitive on the flags of F,,_»,
and therefore every (n—2)-face of P is regular!

%
F,_1 F' . ... oswaps F,_1 with F/ 4
Fn_2
:
I
Figq
F; F! ... o swaps F; with F/



