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In the study of maps and polytopes (and other discrete struc-
tures) with a high degree of symmetry, frequently the most
symmetric examples fall into classes with the property that
the automorphism group of every member of the class is a
quotient of some ‘universal’ group — e.g. automorphism
groups of regular maps are quotients of triangle groups.

There are several ideas and techniques from combinatorial
and computational group theory that can be very helpful in
dealing with such families. Some of these are as follows:

e Schreier coset graphs

e Coset enumeration

e Subgroups of small index in finitely-presented groups

e Double-coset graphs



Schreier coset graphs
Let G be a group generated by a finite set X = {x1,zo,...,x4}.

Given any transitive permutation representation of G on a
finite set €2, we may form a graph with vertex-set €2, and
with edges of the form a—ax; for 1<:<d.

Similarly, if H is a subgroup of finite index in G, we may
form a graph whose vertices are the right cosets of H and
whose edges are of the form Hg— Hgx; for 1<:<d.

These two graphs are the same when €2 is the coset space
(G : H), or when H is the stabilizer of a point of Q. It is
called the Schreier coset graph (G, X, H).



Schreier coset graphs (cont.)

The Schreier coset graph >(G, X, H) gives a diagrammatic
representation of the natural action of G on cosets of H.

This can also be given by a coset table, e.g. as follows:

. . -1 41
) 1] 2 1 > 1
2 1 3 1 4
2 4 3| 3 5 3 2
4| 5 2 5 5
5 5| 4 4 4 3

when z~ (1,2)(4,5) and y— (2,3,5,4)



Some observations

e Generators of H correspond to circuits in the coset graph
2> based at the vertex labelled H

Why? Any path in X corresponds to a word w = w(X)
in the generators of G, and such a path from H is closed
whenever Hw = H, which occurs if and only if w e H.

e A Schreier transversal 1" for H in G corresponds to a
spanning tree for the coset graph

Why? Any path in a spanning tree based at the vertex H
corresponds to a word w = w(X), with initial sub-words
corresponding to initial sub-paths of the given path.



Hax;x

J/ Hv = Huxy

Hx,, Hwka:l_l

e A Schreier generating-set for H in G corresponds to edges
of the coset graph not used in the spanning tree

Why? See the illustration above, where solid lines represent
edges of the spanning tree, and the joins the
vertex Hu to the vertex Hv = Hux¢, where uw and v lie in the
Schreier transversal T'. This green edge completes a circuit
corresponding to the

uwtua:t_l = ua:'tv_l € H.



Application: Reidemeister-Schreier process
Given a finitely-presented group G = (X | R), and a subgroup
H of finite index in GG, we wish to find a presentation for H
(in terms of generators and relations)

1) Construct the coset graph — using the coset table

2) Take a spanning tree in the coset graph — this gives a
Schreier transversal

3) Label the unused edges with Schreier generators

4) Apply each of the relators from R to each of the vertices
in turn, to obtain the defining relations for H.



Example

Let G = (z,y|x2,4y3), and let H be the stabilizer of 1 in the
permutation representation z — (2,3), y+— (1,2,3):

Schreier generators
Hy
=
H =y> (=1)
— Yyry
Hy~* =y tay!

Relation z2 1 gives new relations A2=1 and CD =1
Relation y3 1 gives new relation B=1

Thus H has presentation (A,C|A?) via A =z and C = yzxy.



Another application: Ree-Singerman theorem

Let G be any group generated by permutations z1,xo,...,x4
on a set Q2 of size n, such that z1z>...24 = 1 (identity), and
let ¢; be the number of orbits of (x;) on 2. Then for G to be
transitive on 2, one requires c1+co+---+cg < (d—2)n—+ 2.

Proof. Embed the associated coset graph in an orientable
surface such that the edges at each vertex are ordered thus:

—1
Hgz, Then |V|=n and |E|=dn
? Hgxo d
Hyzy while |F| = Z c;+n
Hg 1=1
Hgxq and therefore ]
—1
o Hgx, 2> |V|—|B|+|F| =Y ¢+ (2—d)n.

ngd i=1



Coset diagrams — simplified coset graphs

To make a Schreier coset graph easier to work with, we can
simplify it by

e deleting loops (that occur for fixed points of generators)
e USing single edges for 2-cycles of involutory generators

e ignoring the effect of redundant generators.

Coset graphs for actions of (2,k, m) triangle groups

(z,y,z | 2 =yF =2" =ayz=1)

can be simplified even further, by using heavy dots only for
fixed points of y, and polygons for non-trivial cycles of y.

The resulting figures are called (Schreier) coset diagrams,
rather than coset graphs.



Example

Below is a coset diagram for an action of the (2,3, 7) triangle
group (z,y,z | t2 =y3 =27 = 2zyz = 1) on 7 points:

2 1
y+—(1,2,3)(4,5,6)
4 Z = (1747776757372)
5 6 7



Composition of coset diagrams

Often two coset diagrams for the same group G on (say)
m and n points can be composed to produce a transitive
permutation representation of larger degree m + n,

e.g.

L
X



What effect does this have?

Strange things can happen! For example, consider coset
diagrams for transitive actions of the (2,3,7) triangle group.
One can join together three such diagrams D1, D2, D3:

D1 on 14 points, where the permutations
generate a group isomorphic to PSL(2,13) ><

D2 on 64 points, where the permutations
generate a group isomorphic to Aga

D3 on 22 points, where the permutations ><
generate a group isomorphic to Aso

to get a diagram on 14464422 = 100 points, where the per-
mutations generate the Hall-Janko group of order 604800.



Abelian covers

In some cases, where a coset diagram for a group H may
be joined together to another copy of itself in two different
places, it is possible to string together n copies of the dia-
gram into a circular chain (like a necklace) and get a new
diagram in which the permutations generate a larger group
G with an abelian normal subgroup K of exponent n such
that G/K = H.

B e P T P

C D)




Proving groups are infinite

When that is possible, string together an infinite number of
copies of the diagram:

> P BB PP

and get an infinite group!

This method can be used to prove that certain finitely-

presented groups are infinite. It is equivalent to showing

that some subgroup of finite index has infinite abelianization
. also achievable by the Reidemeister-Schreier process.



Alternating and symmetric quotients

e If Diagrams P and () each have two ‘handles’ (for at-
taching to other diagrams), and have m points and n points
respectively, then we can string together p copies of P and
q copies of () and get a large diagram on m = ap + bg points

e In particular, if gcd(p,q) = 1, then m = ap + bg can be
any sufficiently large positive integer

e \We can sometimes adjoin a single copy of an extra dia-
gram R (with r points) to ‘break symmetry’, and make the
permutations induced on the large diagram generate the al-
ternating group A, 4, or the symmetric group S, 4.

e In this way, we can sometimes obtain all but finitely many
A, or S, as quotients of a given finitely-presented group.



Chiral quotients
e Consider coset diagrams for a given triangle group

e If a (large) diagram P has mirror symmetry and another
(small) diagram @ has no mirror symmetry, then composing
a copy of P and a copy of Q can produce a larger diagram
that has no mirror symmetry — this is another form of
‘'symmetry breaking’

e In this way, we can sometimes construct infinitely many
chiral maps of a given hyperbolic type.



Some applications

e Every (2,3,m) triangle group has all but finitely many
alternating groups A,, among its homomorphic images

e There are infinitely many chiral maps of type {3,k}, for
each k> 7

e Every Fuchsian group has all but finitely many alternating
groups A, among its homomorphic images [Brent Everitt]

e T here are infinitely many 5-arc-transitive connected finite
3-valent graphs, and infinitely many 7-arc-transitive con-
nected finite 4-valent graphs

e [ here are infinitely many 5-arc-transitive Cayley graphs of
valency 3, and infinitely many 7-arc-transitive Cayley graphs
of valency 3! 4+ 1 for each t > 1.



Summary

Schreier coset graphs

e depict transitive actions of groups

e illustrate/assist the Reidemeister-Schreier process

e help prove the Ree-Singerman theorem

e may help build large quotients of a group from small ones

e cCan be used to prove certain groups are inifinite

Next:
How do we find good examples in the first place?



Coset enumeration

Let G = (X |R) be any finitely-presented group, and let H
be the subgroup generated by a given finite set Y of words
on the alphabet X = {x1,...,zm}.

Methods exist for systematically enumerating the cosets Hg
for ¢ € G, by using the generators and relations to help
construct the coset table:

—1 —1

2 3 4

P WN
[




Each relation from the defining presentation (X |R) for G
forces pairs of cosets to be equal: Hgr = Hg for all g € G.

The same thing happens on application of each generator
y €Y to the trivial coset H: Hy = H.

New cosets are defined (if needed), and all such coincidences
are processed, until the coset table either ‘closes’ or has too
many rows.

If the coset table closes with n cosets, then |G : H| = n.
Moreover, the coset table gives us the natural permutation
representation of G on the right coset space (G:H).

If it does not close, then the index |G: H| could be infinite,
or just too large to be found (or it might even be small but
the computation was not given enough resources).



Low index subgroup methods

On the previous slide, we had a finitely-presented group
G = (X |R), and looked at enumerating cosets of a given
subgroup H (of finite index in G). The basic method was
established by Todd and Coxeter (1936), and further devel-
oped by other such as Leech and Havas.

But: how do we find candidates for H?
Answer: For prescribed positive integer n, we can find all
subgroups of index up to n in G (up to conjugacy) by a

systematic enumeration of coset tables with at most n rows.

The basic method is due to Charles Sims (1970s).



Forcing coincidences

The key to the standard ‘Low index subgroups algorithm’ is
to define more than n cosets, and then force coincidences
between them, using the fact that Ha = Hb < ab~ 1 € H.

The algorithm starts with the identity subgroup and at-
tempts to enumerate its right cosets, constructing a partial
transversal {uqi,uo,u3,... }. Then (or at any stage) if more
than n cosets are defined, all possible concidences between
two cosets Hu,; and Huj are considered, for1 <:1<j3<n-41.

Often such a coincidence will be found to lead to a subgroup
H that is conjugate to one found previously, in which case
that coincidence is rejected and the next one is looked at.
If not rejected, then uz-uj_l is added to a (partial) set of
generators for H, and the search continues.



Branching/backtrack process

Systematic enumeration of coincidences between cosets (and
adding new generators for H) sets up a branching process:

0 Level O
1=2 1=3 2=3 Level 1
1=2 1=3 2=3 Level 2

A backtrack search will terminate (given sufficient time and
memory), by Schreier's theorem: every subgroup of finite
index in a finitely-generated group is itself finitely-generated.



Example:

Let G = (z,y|z2 = y3 = 1), which is the modular group,
and look for subgroups of index up to 4.

# | Coincidences Index | Generators

1 |1=2, 1=2 1 x, Y

2 11=2, 2=4, 3=4 3 T, ya:y_l, y_la:y
311=2,2=4, 4=5 4 z, yry~ 1, y ey oy
4]11=2 3=4 3 |z, ytoy!
511=3, 2=3 2 y_l, :cy_lx

61 1=3, 4=5 4 y_l, :cy_lxy_la:




Low index normal subgroups

Small homomorphic images of a finitely-presented group G
can be found as the groups of permutations induced by G on
cosets of subgroups of small index. This gives G/K where K
is the core of H, but produces only images that have small
degree faithful permutation representations.

Alternatively, the (standard) low index subgroups method
can be adapted to produce only normal subgroups.

A new method was developed recently by Derek Holt and
his student David Firth, which systematically enumerates all
possibilities for a composition series of a factor group G/ K,
where K is a normal subgroup of small index in G.

This method has produced lots of symmetric structures.



Summary

e (Coset enumeration

e Standard ‘Low Index Subgroups’ algorithm

e New variant for finding normal subgroups only

e [ hese two methods can help find all small degree transi-

tive permutation representations and all small quotients of
a given finitely-presented group.



(Sabidussi) Double-coset graphs

Let G be a group, H a subgroup of G, and a an element of
G such that a2 € H. Now define a graph ' = I(G, H,a) by

V(') ={Hg:ge€G}
E(N ={{Hz,Hy} :z,y € G | zy~! € HaH}.
Then G induces a group of automorphisms of ' by right

multiplication, since (z¢)(yg)~1 = 299~ 1y~ = zy~1 € HaH
whenever {Hz, Hy} € E(IN)).

This action is vertex-transitive (since (Hz)z~ 1y = Hy), with
vertex-stabilizer Gy = {g € G : Hg = H} = H itself, which
acts transitively on the neighbours Hah (for h € H) of H.

Thus T =T (G, H,a) is arc-transitive!



Example: a double-coset graph for Ag

Let G = Ag (the alternating group on 5 points), and take
H=((1,2,3),(1,2)(4,5)) 2 53 and a = (1,4)(2,5).

Then the coset graph I'(G, H,a) is a connected arc-transitive
3-valent graph of order 10 which turns out to be the Pe-
tersen graph.

This can also be constructed as a double-coset graph for
G = Sy, using H = ((1,2,3),(1,2),(4,5)) = S3 x C» and
element a = (1,4)(2,5).

In fact Sg is the full automorphism group.



Special case: 3-valent symmetric graphs

e It is known that if I is a finite connected 3-valent sym-
metric graph, then G = Autl is a quotient of one of the
seven finitely-presented groups G1, G3, G3, G3, G, G2, Gs
described earlier

e Conversely, if G is any non-degenerate quotient of one
of those groups, then we can use the double-coset graph
construction to obtain a finite connected 3-valent symmetric
graph I on which G acts as a group of automorphisms

e For example, G = Ag is a quotient of the group
G3 = (h,a,p|h?> =a® =p* =1, apa =p, php =h"1)

via h— (1,2,3), a— (1,4)(2,5), p— (1,2)(4,5), and from
this we get the Petersen graph.



Small 3-valent symmetric graphs
e Take each one of Gy, G3, G3, G3, G}, G7, Gs in turn

e Use the ‘Low Index Normal Subgroups’ algorithm (due to
Firth & Holt) to find all normal subgroups of index up to n

e For each normal subgroup K, let G be the quotient of the
given group by K, and use the double-coset graph construc-
tion to obtain a finite connected 3-valent symmetric graph
[ on which G acts as a group of automorphisms

e Check whether G is the full automorphism group of I
(using GAP or Magma); discard the graph if it's not

e [ his approach has provided a census of all such graphs
on up to 10,000 vertices [MC, 2011].



