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Maps

A map M is an embedding of a connected graph or multi-
graph X into a surface S, having the property that all of the
components of S\ X (obtained by removing X from S) are
homeomorphic to unit disks — called the faces of the map.




Orientability and genus

A map is called orientable or non-orientable depending on
whether it lies on an orientable surface (such as the sphere,
the torus or the double torus) or a non-orientable surface
(such as the real projective plane or the Klein bottle).

Any such map on the sphere (or equivalently, the Euclidean
plane) is called a planar map, or a map of genus 0.

The Four-Colour Theorem is all about planar maps.

Generally, the genus of a map is the genus of the supporting
surface. For an orientable surface S, this is the number of
‘handles’ that need to be attached to a sphere in order to
obtain S. For example, maps on the torus have genus 1.



Regular maps

The five Platonic solids B can be viewed
as embeddings of symmetrlc graphs on the sphere

. e.g. the cube ‘ |

In each case, the automorphism group of the map has a
single orbit on incident vertex-edge-face triples (or ‘flags’).

Any such graph embedding is called a regular map.
The face-size m and the vertex-degree k give its type {m, k}.

The types of the five Platonic maps are {3, 3}, {4,3}, {3,4},
{5,3} and {3,5}. Note that they are all reflexible.



Symmetric maps on the torus

The one on the right is a symmetric embedding of the com-
plete graph K7. It has type {3,6}, and is dual to the one on
the left, which has type {6,3}. Both maps are chiral.



Automorphisms of maps

An automorphism of a map M is an incidence-preserving
permutation of each of the (three) sets of vertices, edges
and faces of M.

Any automorphism 6 of a map is completely determined by
its effect on a given flag (incident vertex-edge-face triple):

> ° <
f
Neighbours of the vertex v are taken by 6 to neighbours of
v?, in order, and vertices of the face f are taken by 6 to

vertices of f9, and so on. By connectedness, 0 is uniquely
determined by the image (v?,¢e?, f9) of the flag (v,e, f).




Regular maps and rotary maps

Let M be a map, with edge-set E = E(M). Because every
automorphism of M is determined by its effect on a given
flag, and each edge lies in at most 4 flags, it follows that

Aut M| < 4|E].

If this bound is attained, Aut M is regular (sharply-transitive)
on the flags of M, and M is called a fully regular map.

Similarly, if the carrier surface is orientable, and Aut®M is
the group of all orientation-preserving automorphisms of M,
then |Aut®M| < 2|E|. When this bound is attained, Aut°M
acts regularly on the arcs of M, and the map M is called
orientably-regular (or rotary, or sometimes regular!).



‘Regular maps’: some history

The theory of regular maps has been developed by Brahana
(1920s), Coxeter, Wilson, Jones & Singerman, et al.

Deep connections to algebraic geometry & Galois theory
— Belyi (1979), Grothendieck (1997), Jones et al (2007).

Possible applications to structural chemistry (fullerenes and
nanotubes) are being investigated.

Regular maps are viewed from 3 main perspectives:

e C(lassification by underlying graph
e C(lassification by surface
e Classification by automorphism group.



The type of a regular/rotary map

transitive and face-

so every vertex of M has the same valency/degree

(say k) and every face of M has the same size (say m).

We call {m,k} the type of M.

!

If M is regular or rotary, then M is arc-

transitive

Type {3,6}

Type {4,4}



Genus calculation

If M is an orientably-regular map, with |V| vertices, |E| edges
and |F'| faces, then by arc-transitivity, we have

k|V| = 2|E| = m|F| = |Aut®° M|

so by the Euler-Poincaré formula, the characteristic xy and
genus g of the carrier surface (and the map) are given by

o 1 1 1
2-29g=x=|V|—-|E|+ |F|=|Aut"M|(~ — =+ —).
k2 m

This relates the group order to the genus, via the type.



Classification of regular maps on the sphere

For the sphere, the genus formula gives

1 1 1
2=|V|—|E|+|F| = |Aut°M| (- — =+ —),
k2 m

and since the LHS is positive, we find that %—I— % >% and
so the only possibilities with k£, m > 2 are as follows:

Type {m,2} — the cycle graph C}, drawn on the equator
Type {2,k} — with k£ edges between 2 antipodal vertices
Type {3,3} — the tetrahedral map

Types {3,4} and {4,3} — the octahedral and cube maps
Types {3,5} and {5, 3} —icosahedral and dodecahedral maps



Automorphism groups of the Platonic maps

Object Rotation group Automorphism group
Tetrahedron Ag Sa

Cube Sy Sq X Co
Octahedron Sa Sgq X Ch
Icosahedron Asg Ag x Co

Dodecahedron Asg Ag x Co




Classification of regular maps on the torus

For the torus (which is orientable, with genus 1), we have
1 1 1
0=|V|—|E|+ |F| = |Aut®M| (- — = + —),
k2 m

and hence ; + = = %, which has only three solutions, namely

(m,k) = (3,6), (4,4) and (6,3), giving these possibilities:

Type {3,6} — regular triangulations
Type {6,3} — honeycomb maps
Type {4,4} — regular quadrangulations.



Classification of regular maps on the torus (cont.)

Type {3,6}

Type {4,4}

What about regular maps of larger genera?

Now ...



Regular maps of higher genera

For an orientably-regular map M of genus g, we have

1 1 1
29 —2=|E| - V|- |F| = |[Aut°M| (= — = = ).
2 k m
- 1 1 1 1 1
Now since 5— % — . IS bounded above by 5 and below by a5

(when (m,k) = (3,7) or (7,3)), we have
4(g—1) < |Aut°M| < 84(g—1)

and since there are only finitely many given groups of a
given order, we can expect only finitely many orientably-
regular maps of given genus g, when g > 1.

Similar formulae and inequalities hold for flag-transitive maps.

But: How do we find them?



EXxercise

We have just considered the special cases of the sphere and
the torus (orientable surfaces of genus 0 and 1).

What about non-orientable surfaces of small genus?

e For the projective plane (non-orientable, genus 1) we have
1 1 1
l=AutM|(———4+ —).
| | (Qk 4 T Qm)
What possibilities does this give for k and m and |Aut M|?

e And for the Klein bottle (non-orientable, genus 2)7

And what are the possibilities for £k and m and |Aut M| for
an orientable surface of genus 27



Some group-theoretic analysis

If M is a rotary map of type {m, k}, then for any flag (v,e, f)
there exist automorphisms R and S such that

— R cyclically permutes consecutive edges of the face f
— S cyclically permutes consecutive edges incident to v
— RS reverses the edge e (and moves both v and f)

e ﬂs
4\¥<

These satisfy R™ = 5% = (RS)? = 1, and also they generate
an arc-transitive group, which must be Aut®°M or Aut M.




Some group-theoretic analysis (cont.)

Hence either Aut®M or Aut M is generated by two ‘rotary’
automorphisms R and S, about the face f and the incident
vertex v from some flag (v, e, f), respectively. Note that

e R preserves f, but moves v and e,

e S preserves v, but moves e and f,
e RS preserves e, but moves v and f.

Moreover, if M is orientable, then (R,S) = Aut°M and has
order 2|E| (since (R, S) acts transitively on arcs and preserves
orientation). On the other hand, if M is non-orientable then
(R,S) = Aut M and is transitive on flags, so has order 4|E].



What about reflections?

If M is orientable, then it might also admit reflections, which
are orientation-reversing automorphisms of order 2. If so,
then M is called reflexible: if not, then M is chiral.

Hence there are three kinds of rotary/regular maps:
e orientable and reflexible
(with |[Aut®°M| = [(R, S)| = 2|E| and |Aut M| = 4|E|)
e orientable but chiral
(with |[Aut M| = |Aut°M| = |(R, S)| = 2|E|)
e non-orientable
(with [Aut M| = |(R, S)| = 4|E|).



Recall: examples of chiral maps on the torus

The one on the right is an embedding of the complete graph
K7. It has type {3,6}, and is dual to the one on the left,
which has type {6, 3}.



More analysis in the flag-transitive case

Let M be a flag-transitive map of type {m,k}. Then for any
flag (v,e, f), there exist reflections a,b and ¢ such that

— a preserves e and f, but moves v (... vertical axis)
— b preserves v and f, but moves e ( ... oblique axis)
— ¢ preserves v and e, but moves f ( ... horizontal axis)
(& U
f

These satisfy a2 = b2 = ¢? = (ab)™ = (be)* = (ac)?2 = 1 and
generate the flag-transitive group Aut M. Also ab = R and
bc = S (where R and S are as defined previously).



Connection with Triangle Groups

Our automorphisms R and S satisfy R™ = Sk = (RS)2 =1,

so (R, S) is a quotient of the ordinary (m, k,2) triangle group
A°(m,k,2) = (z,y,z | 2" =yF =22 =ayz = 1)

via a smooth epimorphism taking (z,y,z) to (R, S, RS).

Similarly, in the flag-transitive case, Aut M is a quotient of

the full (m, k,2) triangle group

A(m,k,2) = (a,b,c | a2=62=02=(ab)mZ(bc)kz(ac)zz1>.

As we will soon see, this also works in reversel



Labelling by cosets

In each case, Aut M acts transitively on vertices, edges and
faces, so for any given flag (v,e, f), we can label vertices,
edges and faces of M respectively by (right) cosets of

e the stabilizer in Aut M of v (either (S) or (b,c))
e the stabilizer in Aut M of e (either (RS) or {(a,c))
e the stabilizer in Aut M of f (either (R) or {(a,b)).

The action of Aut M on M is given by right multiplication.

Incidence (between vertices and edges, or between vertices
and faces, or between edges and faces) is given by non-
empty intersection of cosets. For example, the neighbour of
v along the edge e is labelled with the coset (SYRS or (b, c)a,
which has non-empty intersection with (RS) or (a,c).



Construction for orientably-regular maps

Let G be any finite group that is generated by elements R
and S (of order at least 2) such that RS has order 2.

Now define a map M = M (G, R,S) by taking

vertices = right cosets in G of (S)
edges = right cosets in G of (RS)
faces = right cosets in G of (R)

with incidence given by non-empty intersection of cosets.

This makes M an orientably-regular map, with G acting by
right multiplication as Aut® M, and multiplication by S giving
the ordering of edges around each vertex. The type of M is
{m, k} where m = o(R) and k = o(S5).



Similar construction for (fully) regular maps

Let G be any finite group that is generated by three involu-
tions a,b and ¢ such that ac has order 2, and ab and bc have
order at least 2.

Now define a map M = M(G,a,b,c) by taking

vertices = right cosets in G of (b,c)
edges = right cosets in G of {(a,c)
faces = right cosets in G of {a,b)

with incidence given by non-empty intersection of cosets.

This makes M a regular map, with G acting by right multi-
plication as Aut M, and multiplication by S = ca giving the
ordering of edges around each vertex.

The type of M is {m, k} where m = o(ab) and k = o(bc).



Reflexibility of orientably-regular maps

Let M be an orientably-regular map of type {m,k}, with
Aut®M generated by R and S s.t. R = Sk = (RS)2=1.

Then M is reflexible if and only if Aut M is generated by three
involutions a,b,c with ab = R and bc = S. Whenever that
happens we have a = Rb and ¢ = bS, with conjugation by b
giving R = (ab)? =ba =R~ and S* = (be)? = b = S~ 1.

Thus: M is reflexible if and only if G = Aut®M has an invo-
lutory automorphism 8 such that R® = R~! and S = s 1.

If no such automorphism (G exists, then M is chiral, and
the orientably-regular map M’ = M(G,R~1,571) is a mirror
image of M. In that case (M, M’) is a chiral pair.



Orientability of flag-transitive maps

Let M be a flag-transitive map of type {m, k}, with Aut M
generated by elements a,b and ¢ such that a2 = b2 = 2 =
(ab)™ = (be)k = (ac)? = 1.

Then M is orientable if and only if the subgroup generated
by R = ab and S = bc has index 2 in Aut M.

When this happens, the orientation-preserving group Aut®°M
is (R,S) = (ab,bc), which consists of all the elements of
Aut M that are expressible as words of even length in the
generators a,b,c. [Those of odd length reverse orientation.]

On the other hand, the map M is non-orientable if and only
T Aut M = (a,b,c) = (ab,bc) = (R,S), which happens if and
only if there exists a relator of odd length in a,b and c.



Duality of rotary/regular maps

The geometric/topological dual M* of a map M is obtained
by taking faces of M as vertices of M™*, and vice versa:




Duality of rotary/regular maps (cont.)

Under duality, the stabilizer of a vertex of M is interchanged
with the stabilizer of a face of M*, and vice versa.

Algebraically, this is achieved by the correspondence R « S,
or in the flag-transitive case, by (a,b,c¢) « (<, b,a?), which
interchanges (a,b) with (b, c).

[Note: the more natural correspondence (a,b,c) < (c,b,a),
which is used in the definition of polytope duals, takes M
to the mirror image of M™*: hence the polytope dual of M is
not isomorphic to M* when M is chiral.]

The map M is called self-dual if M* is isomorphic to M,
or equivalently, if the correspondence R « S or (a,b,c) <
(cb, b, ab) induces an automorphism of Aut M.



Examples (on the sphere)

e The dual of the equatorial map (of type {m,2}) is the
antipodal map (of type {2,m}), and vice versa

e The tetrahedral map (of type {3,3}) is self-dual

e The dual of the cube map (of type {4,3}) is the
octahedral map (of type {3,4}), and vice versa

e The dual of the dodecahedral map (of type {5,3}) is
the icosahedral map (of type {3,5}), and vice versa.



Finding regular maps of higher genera

Recall that if M is a rotary/regular map of type {m,k} on
a surface of Euler characteristic y, then G = AutM is a
quotient of the corresponding (2, m, k) triangle group, and

X — |E|_|V|_|F| — |G| (%_%_%) or |G| (%_ Qlk_grlm):

depending on whether M is flag-transitive (fully regular).

Hence finding all regular maps of given Euler characteristic y
reduces to finding all (smooth) quotients of relevant triangle
groups of particular orders. This can be done using algebra
and computation, to build up a census of examples ...



Summary of approach

e Take the ordinary or full (2, m,k) triangle group

e Decide on the maximum desired order of Aut M
(using the genus formula)

e Use computational methods to find all quotients of
the triangle group of up to that order

e For each one, confirm the type, and then check for
reflexibility, orientability, duality, and so on.

We now have lists of all reqular maps of genus 2 to 300,
and even have beautiful pictures of many of these, thanks
to Jarke van Wijk (a computer scientist at Eindhoven) ...



