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Outline of topics for next six lectures:

Symmetries of discrete structures, with lots of examples
Regular maps — properties, constructions, classifications
Computational and group-theoretic methods

Recent developments in the study of regular maps

Abstract polytopes - especially regular & chiral examples
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Recent developments and open questions in the study of
regular and chiral abstract polytopes

PDF copies of the slides and summaries of the main points
(with examples/exercises) will be available after each lecture



What is symmetry?

Symmetry can mean many different things, such as balance,
uniform proportion, harmony, or congruence

Generally, an object has symmetry if it can be transformed
in way that leaves it looking the same as it did originally.



Symmetry can be reflective:




... Or rotational:




. or translational:

. Or a combination of these types



Examples of these kinds of symmetry abound
iNn nature

but have also been manufactured by human fascination
and enterprise

e.g. the Platonic solids (c. 360BC)
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Tetrahedron Icosahedron Dodecahedron Octahedron Cube




or earlier ... the ‘Neolithic Scots’ (c. 2000BC)

as publicised by Atiyah and Sutcliffe (2003)



but unfortunately a hoax!
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The claim that the Scots knew about these five regular solids
over 1000 years before Plato was based on the above five
‘Scottish stones’ at the Ashmolean Museum in Oxford —
but one has 14 faces, and none of them is an icosahedron

[See John Baez's website for the full story]






Tilings at the Alhambra Palace — on its walls, floors, ceilings,
and even some of the furniture — amazingly exhibit all of the
17 “wallpaper symmetries” (in two dimensions)

[Rafael Pérez Gomez and José Mara Montesinos, 1980s]



Symmetry can induce strength and stability:




. or its more contemporary version, the Cgg
molecule Buckminsterfullerene (“buckyball’):




Symmetry can also arise unexpectedly ...

Consider a network in which
e each node is directly connected to (at most) 3 others
e any two nodes are connected by a path of length < 2

This is a graph of degree 3 and diameter 2

Question: What's the largest possible number of nodes?
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This is the Petersen graph:
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The largest 7-valent graph of diameter 2
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is also highly symmetric: the Hoffman-Singleton graph



Question/Exercise

Suppose X is a d-regular simple graph of diameter D.

Counting the largest possible number of vertices at distance
k from a given vertex, for 1 < k < D, gives the Moore bound

V(X)) <14+d+dd—1)+dd—1)24---+d(d—1)P-1
Are there well-known families of graphs that give infinitely

many examples of graphs for which this bound is attained?

[Hint: What happens when d or D is small?]



Symmetries of discrete structures

Suppose V is a finite or countable set endowed with some
structure that can defined by subsets or ordered sequences
of elements, e.q.

e a graph (V,E) with vertex-set V and edge-set E

e a map (V,E,F) with edge-set E and face-set F

e a design (V, B) with block-set B (a subset of 2V = P(V))
o

a polytope (Fp, F1,...,Fn) with F;, = set of all i-faces
(and V = set of all flags of the polytope).

The symmetry of any such discrete structure can be mea-
sured by its automorphisms: incidence-preserving bijections.

Under composition, these form a group, called the automor-
phism group (or symmetry group) of the structure.



Symmetric graphs

Let X be a simple graph — with no loops or multiple edges.

When the automorphism group has a single orbit on vertices,
i.e. when the graph looks the same from every vertex/node,
the graph is called vertex-transitive

When the automorphism group has a single orbit on edges,
i.e. when the graph looks the same from every edge,
the graph is called edge-transitive

When the automorphism group has a single orbit on arcs,
i.e. when the graph looks the same along every ordered
edge, the graph is called arc-transitive, or symmetric.



Example:

This is edge-transitive but not vertex-transitive



Example:

This is vertex-transitive but not edge-transitive



Higher levels of arc-transitivity

e An s-arc in a graph X is a sequence (vg,v1,v2,...,vs) Of
s+ 1 vertices of X such that {v;,_1,v;} is an edge of X for
O<i<sandwv,_1 Fuv4g for0<i<s

— or in other words, such that any two consecutive v; are
adjacent and any three consecutive v; are distinct.

e [he graph X is called s-arc-transitive if its automorphism
group Aut X is transitive on the set of all s-arcs of X

e.g. O-arc-transitive means the same as vertex-transitive,
while 1-arc-transitive means arc-transitive (or symmetric).



The Petersen graph is symmetric
(in fact 3-arc-transitive)
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Every 3-arc has form

ab — c¢d — ae — bc
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Construction of symmetric graphs

The automorphism group of a symmetric graph has particu-
lar properties that can be modelled. All examples of a given
type can then often be constructed from a ‘universal model’.

Various people including Tutte, Conway, Biggs, Weiss, Holt,
DjokoviC, Lorimer and Praeger contributed greatly to the
theoretical analysis and construction of symmetric graphs.

Subsequent use of group theory and discrete computation
has led to the construction of many new examples, and
infinite families of examples, and complete lists of small ex-
amples of various kinds. One of the graphs that arose in
this way is the largest known 3-valent graph of diameter 10.



Recent work by Auckland student Eyal Loz

Tables of the largest known graphs of given degree d and
diameter k& have been built up and occasionally adjusted
over the last 50 years (by computer scientists, engineers
and mathematicians). Finding the largest possible is known
as the degree-diameter problem.

In his PhD thesis project (2005-2008), Eyal used group-
pased voltage graph methods to construct new examples as
‘covers’ of old ones. Roughly speaking, this involves linking
together a chain of copies of a suitably-chosen small graph,
with a ‘voltage group’ determining the linkages.

The result?



Degree-Diameter Table (as at August 2011)
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Chirality

An object is called chiral if it differs from its mirror images.



History/terminology

The term 'chiral’ means handedness, derived from the Greek
word xerp (or ‘kheir’) for ‘hand’. It is usually attributed
to the scientist William Thomson (Lord Kelvin) in 1884,
although the philosopher Kant had earlier observed that left
and right hands are inequivalent except under mirror image.



Chirality in mathematics

The right and left trefoil knots are inequivalent ... with
Jones polynomials t+t3 —t* and t—14+¢t=3 -t respectively

Many of the other invariants of these knots (including their
Alexander polynomials) are exactly the same for both, some
because they are mirror images of each other, and in purely
mathematical terms they have equal importance, but ...



Chirality in biology/chemistry/medicine

B Cathon
B Hitrogen

The two enantiomorphs of thalidomide have vastly different
effects ... one is a sedative, but its mirror image causes
birth defects ... making the context important



Other examples (in food science)

e DNA, proteins, amino acids and sugars are all chiral

e Aspartame is a sweetening agent (sweeter than sucrose)
but its mirror image molecule is bitter

e (S)-carvone smells a lot like while its mirror image
(R)-carvone is like

e Mirror image amino acids are called L- and D-aminoacids;
human proteins are exclusively built from L-aminoacids

. again in all these cases, the context is important.



Question: How prevalent is chirality?

If an object is equivalent to its mirror image (with respect
to some axis/hyperplane) then it has reflectional symmetry.

In biological/chemical/medical/physical contexts, objects tend
to be chiral — but the following is a remarkable phenomenon:

When a discrete object has a large degree of rotational sym-
metry, it often happens that it has also reflectional sym-
metry, so that chirality is not necessarily the norm!

e.g. the Platonic solids are all reflexible

Octahedron Cube




