Universal algebra for CSP Lecture 2

Ross Willard

University of Waterloo

Fields Institute Summer School June 26–30, 2011 Toronto, Canada Exactly one of the following conditions holds:

- ① There exists a reflexive not-symmetric digraph $\mathbb G$ which is compatible with some member of $\mathrm{HSP}(\mathbf A)$; or
- ② There exists $f \in \mathcal{C}_{[3]}$ which satisfies $f(x, x, y) \approx y$ and $f(x, y, y) \approx x$.

In case (1), the proof found such \mathbb{G} compatible with $\mathbf{F} \leq \mathbf{A}^{|A|^2}$.

Question raised: do we really need to look that 'deeply" into $HSP(\mathbf{A})$?

Example. For any finite set A, the *Słupecki clone* S_A on A is the union of:

- {all operations that depend on at most one variable},
- {all operations that are not surjective}.

Let $\mathbf{A} = (A; \mathcal{S}_A)$. Clearly \mathbf{A} is not in case (2).

Exercise: if |A| > 2n, show that no member of $HS(\mathbf{A}^n)$ has a reflexive not-symmetric compatible digraph.

Fixed-Template Constraint Satisfaction Problems

Fix a relational structure $\mathbb{G} = (A; \mathbb{R})$ with A and \mathbb{R} finite.

Definition

 $\mathrm{CSP}(\mathbb{G})$ is either of the following equivalent decision problems:

Constraints version

Input: Set V of variables, "constraints" on tuples of variables (requiring them to belong to prescribed relations in \mathcal{R}).

Query: Is there an assignment V o A which satisfies all the

constraints?

Homomorphism version

Input: a finite relational structure $\mathbb{H}=(B,\mathbb{S})$ of the same

"signature" as \mathbb{G} .

Query: Does there exist a homomorphism $\mathbb{H} \to \mathbb{G}$?

Archetypal examples

$$\mathbb{G}_1=ig(\{0,1\};\{R_{abc}:a,b,c\in\{0,1\}\}ig)$$
 where
$$R_{abc}=\{0,1\}^3\setminus\{(a,b,c)\}.$$

E.g., the constraint " $(x, y, z) \in R_{101}$ " says " $\neg x$ or y or $\neg z$."

 $CSP(\mathbb{G}_1)$ is equivalent to 3-SAT, which is *NP*-complete.

$$\mathbb{G}_2 = (\{0,1\}; \{S_0,S_1\}) \text{ where}$$

$$S_0 = \{(x,y,z) : x \oplus y \oplus z = 0\}$$

$$S_1 = \{(x,y,z) : x \oplus y \oplus z = 1\}.$$

Instances of $\mathrm{CSP}(\mathbb{G}_2)$ are systems of linear equations (each in 3 variables) over \mathbb{Z}_2 .

Such systems can be checked for consistency by Gaussian elimination; thus $\mathrm{CSP}(\mathbb{G}_2)$ is in P.

$$\mathbb{G}_{4} = (\{0,1\}; \; \{\textit{LE}, \textit{C}_{0}, \textit{C}_{1}\}) \; \text{where} \;$$

$$LE = \{(0,0), (0,1), (1,1)\}$$

$$C_0 = \{0\}$$

$$C_1 = \{1\}.$$

Instances of $CSP(\mathbb{G}_4)$ can only "say" $x \leq y$, x = 0, or x = 1.

There is only one way to get a contradiction: by saying

$$x_1=1$$
 and $x_n=0$ and $x_1\leq x_2$ and $x_2\leq x_3$ and ... and $x_{n-1}\leq x_n$.

 $CSP(\mathbb{G}_4)$ is equivalent to REACHABILITY, which is in P (in fact, in NL).

$$\mathbb{G}_3 = (\{0,1\}; \{=, C_0, C_1\}).$$

Similar to \mathbb{G}_4 , but "undirected."

 $\mathrm{CSP}(\mathbb{G}_3)$ encodes Undirected REACHABILITY, which is in L (Reingold, 2005).

$$\mathbb{G}_5 = (\{0,1\}; \{R_{110}, C_0, C_1\}).$$

" $(x, y, z) \in R_{110}$ " is equivalent to "(x and y) implies z."

Similar to \mathbb{G}_4 , but with directed paths replaced by directed binary trees.

 $\mathrm{CSP}(\mathbb{G}_5)$ is equivalent to Horn 3-SAT, which is P-complete.

$$\mathbb{K}_n = (A; \{ \neq_A \})$$
 where $A = \{0, 1, \dots, n-1\}$.

 $CSP(\mathbb{K}_n)$ is equivalent to *n*-COLOURABILITY, which is

- *NP*-complete for $n \ge 3$, and
- In P (in fact, in L) if n = 2.

Summary:

Comparing CSPs

We will use the following tools:

- Simulations, pp-definitions
- Polymorphisms
- Reduction to the "idempotent case"
- Algebraic substructures, Pp-constructions

Simulation

Consider again $\mathbb{G}_5 = (\{0,1\}; R_{110}, C_0, C_1).$

Suppose we modify \mathbb{G}_5 by adding $R_{1110} = \{0,1\}^4 \setminus \{(1,1,1,0)\}$:

$$\mathbb{G}_5' = (\{0,1\}; R_{110}, C_0, C_1, R_{1110}).$$

Is $\mathrm{CSP}(\mathbb{G}_5')$ harder than $\mathrm{CSP}(\mathbb{G}_5)$?

NO! R_{110} can simulate R_{1110} as follows:

- " $(x, y, z, w) \in R_{1110}$ " means " $(x \& y \& z) \Rightarrow w$."
- Given any constraint $(x \& y \& z) \Rightarrow w$, introduce a new variable t and replace the constraint with two new constraints

$$(x \& y) \Rightarrow t$$
 and $(t \& z) \Rightarrow w$.

Key: $R_{1110}(x, y, z, w)$ is defined in $\mathbb{G}_{\underline{5}}$ by $\exists t [R_{110}(x, y, t) \& R_{110}(t, z, w)]$.

Pp-definability

In general:

Definition

• A primitive positive (pp) formula is any first-order formula of the form

$$\exists \cdots [\bigwedge_{i} atomic_{i}]$$

where each atomic; is a basic relation or equality (x = y).

② Given a relational structure $\mathbb{G} = (A; \mathcal{R})$ and a relation S on A, we say that S is *pp-definable in* \mathbb{G} if there exist a pp-formula using relations from \mathcal{R} whose set of solutions in \mathbb{G} is S.

Theorem (Folklore; Larose & Tesson 2007)

Suppose \mathbb{G} , \mathbb{H} are finite relational structures with the same domain. If every relation of \mathbb{H} is pp-definable in \mathbb{G} , then $\mathrm{CSP}(\mathbb{H}) \leq_L \mathrm{CSP}(\mathbb{G})$.

Testing pp-definability

How can we test whether a relation is pp-definable in a structure?

Theorem (Bodnarčuk et al; Geiger 1968)

Let $\mathbb{G} = (A; \mathbb{R})$ with A <u>finite</u>, and let E be an n-ary relation on A. TFAE:

- **1** E is pp-definable in \mathbb{G} .
- **2** E is compatible with every polymorphism of \mathbb{G} .

Proof sketch $(2) \Rightarrow (1) \dots$

Corollary

If \mathbb{G}, \mathbb{H} are finite relational structures with the same domain and the same polymorphisms, then $\mathrm{CSP}(\mathbb{G})$ and $\mathrm{CSP}(\mathbb{H})$ have the same complexity.

Proof ...

Polymorphism algebra of a structure

Definition

Given a finite relational structure $\mathbb{G}=(A;\mathcal{R})$, the *polymorphism algebra* of \mathbb{G} is the algebra

$$\operatorname{PolAlg}(\mathbb{G}) = (A; \operatorname{Pol}(\mathbb{G}))$$

where $Pol(\mathbb{G}) = \{all polymorphisms of \mathbb{G}\}.$

By previous slide, $\operatorname{PolAlg}(\mathbb{G})$ determines the complexity of $\operatorname{CSP}(\mathbb{G})$.

This is the first insight of the "Algebraic approach" to CSP.

Examples revisited

$$\mathbb{G}_1=ig(\{0,1\};\{R_{abc}:a,b,c\in\{0,1\}\}ig)$$
 where
$$R_{abc}=\{0,1\}^3\setminus\{(a,b,c)\}.$$

$$Pol(\mathbb{G}_1) = \{projections\}.$$
 (Exercise: prove it!)

$$\operatorname{PolAlg}(\mathbb{G}_1) = (\{0,1\}; \{\mathsf{proj's}\}) \text{ "=" } (\{0,1\};\varnothing) = \mathsf{the 2-element set!}$$

$$\mathbb{G}_2 = (\{0,1\}; \{ \text{``} x \oplus y \oplus z = 0, \text{'` '`} x \oplus y \oplus z = 1 \text{''} \}).$$

 $\operatorname{Pol}(\mathbb{G}_2) = \{ \text{all boolean sums of an odd number of variables} \} =: \mathfrak{C}_2.$

$$\operatorname{PolAlg}(\mathbb{G}_2) = (\{0,1\}; \mathcal{C}_2) \ \text{``=''} \ (\{0,1\}; x \oplus y \oplus z) = \mathsf{like} \ \mathsf{a} \ \mathsf{vector} \ \mathsf{space!}$$

$$\mathbb{G}_4 = (\{0,1\}; \{LE, C_0, C_1\}) \text{ where } LE = \{(0,0), (0,1), (1,1)\}.$$

 $\operatorname{Pol}(\mathbb{G}_4) = \{f : f \text{ is monotone and "idempotent"}\} =: \mathcal{C}_4.$

("Idempotent" means $f(0,0,\ldots,0)=0$ and $f(1,1,\ldots,1)=1$.)

 $\operatorname{PolAlg}(\mathbb{G}_4) = (\{0,1\};\mathbb{C}_4) \text{ "=" } (\{0,1\};\mathsf{max},\mathsf{min}) = \mathsf{the} \ \mathsf{2\text{-element lattice!}}$

$$\mathbb{G}_3 = (\{0,1\}; \{=, C_0, C_1\}).$$

 $\operatorname{Pol}(\mathbb{G}_3) = \{ \text{all idempotent boolean functions} \} =: \mathcal{C}_3.$

 $\operatorname{PolAlg}(\mathbb{G}_3) = (\{0,1\}; \mathcal{C}_3) = \operatorname{almost} a \operatorname{boolean} \operatorname{algebra!}$

 $\mathbb{G}_5 = (\{0,1\}; \{R_{110}, C_0, C_1\}).$

(Recall that $CSP(\mathbb{G}_5)$ encodes Horn 3-SAT, which is in P.)

Exercise:

- **1** Every $f \in \operatorname{Pol}(\mathbb{G}_5)$ is monotone and idempotent.

 $\operatorname{PolAlg}(\mathbb{G}_5) \text{ "=" } (\{0,1\};\mathsf{min}) = \mathsf{the} \text{ 2-element semi-lattice!}$

\mathbb{K}_n . For $n \geq 3$,

- $\operatorname{Pol}(\mathbb{K}_n) = \{\text{permutations (in a single variable)}\}.$
- I.e., $\operatorname{PolAlg}(\mathbb{K}_n)$ is a set with permutations.

$\operatorname{Pol}(\mathbb{K}_2)$ is much richer:

• Consists of all "self-dual" functions, i.e., functions f which satisfy

$$f(\neg x_1, \neg x_2, \ldots, \neg x_n) \approx \neg f(x_1, \ldots, x_n).$$

② Includes $x \oplus y \oplus z$ (which is a "Maltsev" operation), maj(x, y, z), etc. Almost a boolean algebra!

Polymorphism algebras as measure of CSP:

Core and idempotent structures

Let $\mathbb{G} = (A, \mathbb{R})$ be a finite structure.

Definition

- **①** \mathbb{G} is *core* if every endomorphism $f:\mathbb{G}\to\mathbb{G}$ is a bijection.
- ② \mathbb{G} is *idempotent* if \mathbb{R} contains the relation $C_a = \{a\}$ for every $a \in A$.

Remarks:

- lacksquare lacksquare is core iff all its 1-ary polymorphisms are permutations.
- ② \mathbb{G} is idempotent $\Rightarrow \operatorname{PolAlg}(\mathbb{G})$ is an idempotent algebra \Leftrightarrow every C_a is pp-definable in $\mathbb{G} \Leftrightarrow$ the identity map is the only 1-ary polymorphism of \mathbb{G} .
- **③** For every finite \mathbb{G} there exists an induced substructure \mathbb{G}' which is core and for which there exists a *retract* mapping \mathbb{G} onto \mathbb{G}' .
 - ▶ This \mathbb{G}' is unique up to isomorphism, and is called *the core of* \mathbb{G} .

Lemma

If \mathbb{G} is finite and $\operatorname{core}(\mathbb{G})$ is its core, then $\operatorname{CSP}(\mathbb{G}) \equiv \operatorname{CSP}(\operatorname{core}(\mathbb{G}))$.

Proof: An input maps homomorphically to $\mathbb G$ iff it maps homomorphically to $\mathrm{core}(\mathbb G).$

Lemma (???, Larose & Tesson 2007)

Suppose \mathbb{G} is core. Then $CSP(\mathbb{G}) \equiv_{L} CSP(\mathbb{G}^{c})$.

Proof: it suffices to reduce $CSP(\mathbb{G}^c)$ to $CSP(\mathbb{G})$. There is a trick to do this.

Conclusion: For CSP, we always assume the template $\mathbb G$ is idempotent.

Algebraic substructures

Definition

Let $\mathbb{G} = (A; \mathcal{R})$ be a finite structure and $\mathbb{H} = (B; \mathcal{R} \upharpoonright_B)$ an induced substructure. We say that \mathbb{H} is an *algebraic substructure* of \mathbb{G} if B is (the domain of) a subalgebra of $\operatorname{PolAlg}(\mathbb{G})$.

Example:

 \mathbb{H} is **not** an algebraic substructure of \mathbb{K}_3 .

Observe: if $\mathbb{H} = (B; ...)$ is an algebraic substructure of \mathbb{G} , then

- ullet B is preserved by all polymorphisms of ${\mathbb G}$...
- ... so B is pp-definable in \mathbb{G} .

More generally, given \mathbb{G} we will permit "substructures" whose:

- Domains are pp-definable subsets of G^2 (or G^3 , etc.) ...
- ... modulo pp-definable equivalence relations ...
- ...and whose relations need not be induced, merely pp-definable.

Pp-constructible structures

Example: \mathbb{K}_3 .

Let Δ be the 3-ary relation defined by the formula

$$\delta(x, y, z)$$
: $(x \rightarrow y) \& (y \rightarrow z) \& (z \rightarrow x)$.

So

$$\Delta = \{(0,1,2), (1,2,0), (2,0,1), (2,1,0), (0,2,1), (1,0,2)\}.$$

Let E be the 6-ary relation defined by the formula $\varepsilon(x, y, z, x', y', z')$:

$$\exists x'', y'', z'' \quad [\quad \delta(x, y, z) \& \delta(x', y', z') \& \delta(x'', y'', z'') \& \\ (x \to x'') \& (x'' \to x') \& (y \to y'') \& (y'' \to y') \\ \& (z \to z'') \& (z'' \to z') \quad]$$

 $E = \{(0,1,2), (1,2,0), (2,0,1)\}^2 \cup \{(2,1,0), (0,2,1), (1,0,2)\}^2$, which is an equivalence relation on Δ (with two blocks).

Let R be the 6-ary relation defined by the formula

$$\exists x'', y'', z'' \quad [\quad \delta(x, y, z) \& \delta(x', y', z') \& \delta(x'', y'', z'') \& \\ \varepsilon(x, y, z, x'', y'', z'') \& \\ (x' = x'') \& (y' = z'') \& (z' = y'') \].$$

$$R = \{(0,1,2), (1,2,0), (2,0,1)\} \times \{(2,1,0), (0,2,1), (1,0,2)\} \cup \{(2,1,0), (0,2,1), (1,0,2)\} \times \{(0,1,2), (1,2,0), (2,0,1)\}.$$

So $(\Delta/E; R/E) \cong \mathbb{K}_2$.

We say that \mathbb{K}_2 is *pp-constructible* from \mathbb{K}_3 via the above pp-formulas.

(Note from the audience: a simpler formula can define R.)

Let \mathbb{G}, \mathbb{H} be finite relational structures.

Write
$$\mathbb{G} = (A; \{\ldots\})$$
 and $\mathbb{H} = (B; \{R_1, R_2, \ldots\})$ with arity $(R_i) = n_i$.

General Definition

 $\mathbb H$ is **pp-constructible from** $\mathbb G$ iff there exist:

- $k \ge 1$
- Pp-definable relations of \mathbb{G} :
 - $U \subset A^k$
 - $\Theta \subseteq U^2 \quad (\subseteq (A^k)^2 = A^{2k})$
 - $S_i \subseteq U^{n_i} \quad (\subseteq (A^k)^{n_i} = A^{n_i k}) \text{ for } i = 1, 2, \dots$

such that

- Θ is an equivalence relation on U.
- $\mathbb{H} \cong (U; S_1, S_2, \ldots)/\Theta$.

Notation: $\mathbb{H} \leq_{ppc} \mathbb{G}$.

Theorem (Bulatov, Jeavons, Krokhin 2005; Larose, Tesson (2007))

Suppose \mathbb{G} , \mathbb{H} are finite structures. If \mathbb{H} is pp-constructible from \mathbb{G} , then $\mathrm{CSP}(\mathbb{H}) \leq_L \mathrm{CSP}(\mathbb{G})$.

Proof: similar to the proof that pp-definable relations can be simulated.

Corollary

If \mathbb{K}_3 (or $\mathbb{G}_1 = (\{0,1\}; \{R_{abc} : abc \in \{0,1\}^3\})$ is pp-constructible from \mathbb{G} , then $\mathrm{CSP}(\mathbb{G})$ is NP-complete.

Theorem

Let \mathbb{G} , \mathbb{H} be finite relational structures. TFAE:

- **1** \mathbb{H} is pp-constructible from \mathbb{G} .
- ② \mathbb{H} is compatible with some member of $HSP(\operatorname{PolAlg}(\mathbb{G}))$.

Proof sketch (2) \Rightarrow (1). Write $\mathbb{G} = (A; ...), \mathbb{H} = (B; \{R_1, R_2, ..., \}).$

Let $\mathbf{A} = \operatorname{PolAlg}(\mathbb{G})$. Assume \mathbb{H} is compatible with $\mathbf{B} \in \operatorname{HSP}(\mathbf{A})$.

WLOG, $\mathbf{B} = \mathbf{U}/E$ for some $\mathbf{U} \in \mathrm{SP}(\mathbf{A})$ and some congruence E of \mathbf{U} .

Say $\mathbf{U} \leq \mathbf{A}^k$. We can view $E \subseteq A^{2k}$.

Similarly, we can "pull back" each n-ary relation R_i to a kn-ary relation R_i^* on A.

All of $U, E, R_1^*, R_2^*, \ldots$ are compatible with **A**.

Hence they are all pp-definable in $\mathbb{G}_{\cdot} \ldots$

 \dots and give a pp-construction of $\mathbb H$ from $\mathbb G.$

Corollary

For a finite relational structure \mathbb{G} , TFAE:

- **②** $HSP(\operatorname{PolAlg}(\mathbb{G}))$ contains the 2-element set $(\{0,1\};\varnothing)$.

If either holds, $CSP(\mathbb{G})$ is NP-complete.

The **Algebraic Dichotomy Conjecture**, due to Bulatov, Jeavons and Krokhin, states:

Conjecture: If \mathbb{G} is *idempotent* and neither condition above holds, then $CSP(\mathbb{G})$ is in P.