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Exactly one of the following conditions holds:

© There exists a reflexive not-symmetric digraph G which is compatible
with some member of HSP(A); or

@ There exists f € C[3) which satisfies f(x,x,y) ~ y and f(x,y,y) ~ x.

In case (1), the proof found such G compatible with F < AlA”,

Question raised: do we really need to look that ‘deeply” into HSP(A)?

Example. For any finite set A, the Stupecki clone S5 on A is the union of:
o {all operations that depend on at most one variable},

o {all operations that are not surjective}.

Let A = (A;84). Clearly A is not in case (2).

Exercise: if |A| > 2n, show that no member of HS(A") has a reflexive
not-symmetric compatible digraph.
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Fixed-Template Constraint Satisfaction Problems
Fix a relational structure G = (A; R) with A and R finite.

Definition

CSP(G) is either of the following equivalent decision problems:

Constraints version

Input: Set V of variables, “constraints” on tuples of variables

(requiring them to belong to prescribed relations in R).

Query: Is there an assignment V — A which satisfies all the
constraints?

Homomorphism version

Input: a finite relational structure H = (B, 8) of the same
“signature” as G.

Query: Does there exist a homomorphism H — G?7
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Archetypal examples
G1=({0,1};{Rapc : a,b,c € {0,1}}) where

R = {0,1}*\{(a,b,c)}.

E.g., the constraint “(x,y,z) € Ryo1” says “—x or y or —=z."

CSP(Gy) is equivalent to 3-SAT, which is NP-complete.

G2 = ({0,1};{So, S1}) where

So = {(xy.2) xey®z=0}
S1o= {xy,2) i xoyoz=1}

Instances of CSP(G>) are systems of linear equations (each in 3 variables)

over Zo.

Such systems can be checked for consistency by Gaussian elimination; thus

CSP(Gy) is in P.
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G4 = ({0, 1}; {LE, Co, Cl}) where

LE = {(0,0),(0,1),(1,1)}

G = {0}

G = {1}
Instances of CSP(Gg4) can only “say” x <y, x=0,0r x=1.
There is only one way to get a contradiction: by saying

x1=1and x, =0 and x;1 < x» and x» < x3 and ...and x,_1 < Xxp.

CSP(Ga) is equivalent to REACHABILITY, which is in P (in fact, in NL).

Gz = ({0,1}; {=, Go, C1}).
Similar to G4, but “undirected.”

CSP(G3) encodes Undirected REACHABILITY, which is in L (Reingold,
2005).
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Gs = ({0,1}; {Ri10, Co, C1 }).

“(x,y,2) € Ri10" is equivalent to “(x and y) implies z.”

Similar to Gg4, but with directed paths replaced by directed binary trees.
CSP(Gs) is equivalent to Horn 3-SAT, which is P-complete.

K, = (A {#a}) where A={0,1,...,n—1}.

SalVA

K>
K3

CSP(K,) is equivalent to n-COLOURABILITY, which is
@ NP-complete for n > 3, and
@ In P (in fact, in L) if n=2.
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Summary:

harder

Gi1 Kz Ky
('Y Y ® -

NP-complete
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Comparing CSPs

We will use the following tools:

© Simulations, pp-definitions
@ Polymorphisms
© Reduction to the “idempotent case”

@ Algebraic substructures, Pp-constructions
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Simulation
Consider again Gs = ({0,1}; R110, Co, G1).
Suppose we modify Gs by adding Ry110 = {0,1}*\ {(1,1,1,0)}:

Gs = ({0,1}; Ri10, Co, C1, R1110)-

Is CSP(G%) harder than CSP(Gs)?

NO! Rjig can simulate Ry11g as follows:

° “(x,y,z,w) € Ri110" means “(x & y & z) = w."

e Given any constraint (x & y & z) = w, introduce a new variable t
and replace the constraint with two new constraints

(x&y)=1t and (t&z)=w.
Key: Ri110(x,y,z, w) is defined in Gs by Jt[Ri10(x,y, t) & Ri10(t, z, w)].
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Pp-definability

In general:

Definition

@ A primitive positive (pp) formula is any first-order formula of the form

3. [/\ atomic;]

where each atomic; is a basic relation or equality (x = y).

@ Given a relational structure G = (A; R) and a relation S on A, we say
that S is pp-definable in G if there exist a pp-formula using relations
from R whose set of solutions in G is S.

Theorem (Folklore; Larose & Tesson 2007)

Suppose G, H are finite relational structures with the same domain. If
every relation of H is pp-definable in G, then CSP(H) <, CSP(G).
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Testing pp-definability

How can we test whether a relation is pp-definable in a structure?

Theorem (Bodnar¢uk et al; Geiger 1968)

Let G = (A; R) with A finite, and let E be an n-ary relation on A. TFAE:
© E is pp-definable in G.
@ E is compatible with every polymorphism of G.

Proof sketch (2) = (1) ...

Corollary

If G, H are finite relational structures with the same domain and the same
polymorphisms, then CSP(G) and CSP(H) have the same complexity.

Proof ...
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Polymorphism algebra of a structure

Definition

Given a finite relational structure G = (A; R), the polymorphism algebra of

G is the algebra
PolAlg(G) = (A;Pol(G))

where Pol(G) = {all polymorphisms of G}.

By previous slide, PolAlg(G) determines the complexity of CSP(G).

This is the first insight of the “Algebraic approach” to CSP.
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Examples revisited

G1=({0,1};{Rapbc : a,b,c € {0,1}}) where

Rabe = {071}3\{(37 b, C)}

Pol(G1) = {projections}. (Exercise: prove it!)
PolAlg(G1) = ({0,1}; {proj's}) "=" ({0,1}; @) = the 2-element set!

Gy =({0,1};{"x@y®z=0" x@ydz=1"}).

Pol(G>) = {all boolean sums of an odd number of variables} =: Cs.

PolAlg(G2) = ({0,1}; C2) “=" ({0,1};x @ y & z) = like a vector space!
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Ga = ({0,1}; {LE, Co, C1}) where LE = {(0,0), (0,1), (1,1)}.

Pol(G4) = {f : f is monotone and “idempotent” } =: C4.
(“ldempotent” means f(0,0,...,0) =0 and f(1,1,...,1)=1.)
PolAlg(Gs) = ({0,1};C4) “=" ({0, 1}; max, min) = the 2-element lattice!

Gs = ({0,1}:{=, Co, G1}).
Pol(G3) = {all idempotent boolean functions} =: Cs.
PolAlg(Gs) = ({0, 1}; C3) = almost a boolean algebral
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Gs = ({0,1}; {R110, Co, C1 }).
(Recall that CSP(Gs) encodes Horn 3-SAT, which is in P.)

Exercise:
@ Every f € Pol(Gs) is monotone and idempotent.
@ min € Pol(Gs) but max ¢ Pol(Gs). (Exercise: prove it.)

PolAlg(Gs) “=" ({0,1}; min) = the 2-element semi-lattice!

K,. For n> 3,
e Pol(K,) = {permutations (in a single variable)}.
o le, PolAlg(K,) is a set with permutations.

Pol(KK3) is much richer:
@ Consists of all “self-dual” functions, i.e., functions f which satisfy

f(—|X1, X2, ..., —\X,,) ~ —|f(X1, RN ,Xn).

@ Includes x @ y @ z (which is a “Maltsev” operation), maj(x, y, z), etc.
Almost a boolean algebra!
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Polymorphism algebras as measure of CSP:

Boolean
[ ] [ ]
w

NL

Lattice
[ ]

Vector space-like
[ ]

Semi-lattice
[ ]

Set-like
. . . cee

NP-complete
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Core and idempotent structures
Let G = (A, R) be a finite structure.
Definition
© G is core if every endomorphism f : G — G is a bijection.
@ G is idempotent if R contains the relation C; = {a} for every a € A.

Remarks:
@ G is core iff all its 1-ary polymorphisms are permutations.

@ G is idempotent = PolAlg(G) is an idempotent algebra < every C,
is pp-definable in G <> the identity map is the only 1-ary
polymorphism of G.

© For every finite G there exists an induced substructure G’ which is
core and for which there exists a retract mapping G onto G/'.

» This G’ is unique up to isomorphism, and is called the core of G.

QO G :=(ARU{GC, : a€ A}); it is idempotent.
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Lemma
If G is finite and core(G) is its core, then CSP(G) = CSP(core(G)). J

Proof: An input maps homomorphically to G iff it maps homomorphically
to core(G).

Lemma (777, Larose & Tesson 2007)
Suppose G is core. Then CSP(G) =, CSP(G°). J

Proof: it suffices to reduce CSP(G¢) to CSP(G). There is a trick to do
this.

Conclusion: For CSP, we always assume the template G is idempotent.
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Algebraic substructures

Definition
Let G = (A; R) be a finite structure and H = (B; R[g) an induced
substructure. We say that H is an algebraic substructure of G if B is (the

domain of) a subalgebra of PolAlg(G).

N =

H=K,

Example:

K3

H is not an algebraic substructure of Ks.
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Observe: if H = (B;...) is an algebraic substructure of G, then
@ B is preserved by all polymorphisms of G ...
@ ...so B is pp-definable in G.

More generally, given G we will permit “substructures” whose:

e Domains are pp-definable subsets of G2 (or G3, etc.) ...
@ ... modulo pp-definable equivalence relations ...

@ ...and whose relations need not be induced, merely pp-definable.
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Pp-constructible structures
Example: Kj.

Let A be the 3-ary relation defined by the formula

o(x,y,z) + (x—=y)&((y—2z)&(z—x).
So
A = {(07 17 2)’ (1’ 2’ 0)7 (27 0’ 1)7 (27 17 0)7 (0’ 27 1)’ (]‘7 07 2)}
Let E be the 6-ary relation defined by the formula e(x,y, z,x', y’, Z’):
Wy [ Ak y,2) & (X, 2) & 6(X", Y1, 2") &
(x=x")& ("= X)&(y=y") & =)
&(z—=72")V& (2" = 7) ]

E =1{(0,1,2),(1,2,0),(2,0,1)}> U {(2,1,0),(0,2,1),(1,0,2)}?, which is
an equivalence relation on A (with two blocks).
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Let R be the 6-ary relation defined by the formula

Iy d(x,y,2) & O(X Ly ) & (X", y",2") &
E:(X?.yu z, X”7.y”7 Z”) &
(X/ :XI/) & (y/ — Z//) & (ZI — y/l) ]

R = {(0,1,2),(1,2,0),(2,0,1)} x {(2,1,0),(0,2,1),(1,0,2)} U
{(2,1,0),(0,2,1),(1,0,2)} x {(0,1,2),(1,2,0),(2,0,1)}.

So (A/E;R/E) = K.

We say that Ky is pp-constructible from K3 via the above pp-formulas.

(Note from the audience: a simpler formula can define R.)

R. Willard (Waterloo) Universal algebra Fields Institute 2011

22 /26



Let G, H be finite relational structures.
Write G = (A;{...}) and H = (B; {Ry1, Rz, .. .}) with arity(R;) = n;.

General Definition
H is pp-constructible from G iff there exist:
e k>1
@ Pp-definable relations of G:
U C Ak
e C U2 ( C (Ak)2 :A2k)
SiC UM (C (A = AMK) for i =1,2,...
such that
@ O is an equivalence relation on U.

o H=(U;51,5,...)/0.

Notation: H <,,. G.
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Theorem (Bulatov, Jeavons, Krokhin 2005; Larose, Tesson (2007))

Suppose G, H are finite structures. If H is pp-constructible from G, then
CSP(H) <, CSP(G).

Proof: similar to the proof that pp-definable relations can be simulated.

Corollary

If Ks (or G1 = ({0,1}; {Rapc : abc € {0,1}3}) is pp-constructible from
G, then CSP(G) is NP-complete.
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Theorem
Let G,H be finite relational structures. TFAE:
@ H is pp-constructible from G.
@ H is compatible with some member of HSP(PolAlg(G)).

Proof sketch (2) = (1). Write G = (A;...), H= (B;{R1,Rz,..., }).
Let A = PolAlg(G). Assume H is compatible with B € HSP(A).
WLOG, B = U/E for some U € SP(A) and some congruence E of U.
Say U < Ak, We can view E C A%k,

Similarly, we can “pull back” each n-ary relation R; to a kn-ary relation R}
on A.

All of U, E,R{,R3,... are compatible with A.
Hence they are all pp-definable in G. ..

...and give a pp-construction of H from G. O
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Corollary
For a finite relational structure G, TFAE:

Q@ G1 = ({0,1}; {Rapc : abc € {0,1}3}) is pp-constructible from G.

@ HSP(PolAlg(G)) contains the 2-element set ({0,1}; @).
If either holds, CSP(G) is NP-complete.

The Algebraic Dichotomy Conjecture, due to Bulatov, Jeavons and
Krokhin, states:

Conjecture: If G is idempotent and neither condition above holds, then

CSP(G) is in P.
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