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Clones of operations

(Finitary) operation on A: any total function

f : A× · · · × A︸ ︷︷ ︸
n

→ A, n ≥ 1.

Definition

A clone on the set A is any set C of operations on A which

Is closed under composition, and

Contains all the projections prAn,i : An → A (where prAn,i (x) = x[i ]).

Notation: C[n] denotes the set of n-ary members of C.

Closure under composition means the following: ∀n, k ≥ 1, ∀f ∈ C[k],
∀g1, . . . , gk ∈ C[n], the n-ary operation f ◦ (g1, . . . , gk) defined by

(f ◦ (g1, . . . , gk))(a) := f (g1(a), . . . , gk(a))

is in C[n].
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Easy fact
If C is a clone and f ∈ C[n], then other members of C include:

1 The 2n-ary operation g : A2n → A given by

(x1, x2, . . . , x2n) 7−→ f (x1, x3, . . . , x2n−1)

Proof: factor g as

A2n proj′s−→ An f−→ A

(x1, x2 . . . , x2n) 7−→ (x1, x3, . . . , x2n−1) 7−→ f (x1, x3, . . . , x2n−1).

Thus g = f ◦ (prA2n,1, pr
A
2n,3, . . . ,pr

A
2n,2n−1).

2 The 2-ary operation h(x , y) := f (x , . . . , x , y).

Proof: h = f ◦ (prA2,1, . . . ,pr
A
2,1, pr

A
2,2).

3 Any function obtained by permuting the variables of f .
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Examples of clones

1 The set of all operations on A.

2 C =
⋃

n{prAn,i : 1 ≤ i ≤ n}.

3 A = {0, 1}, C = {all monotone boolean functions}.

4 Let (A,+) be a (real) vector space. For n ≥ 1 put

C[n] = {r1x1 + · · ·+ rnxn : ri ∈ R, ri ≥ 0, and
n∑

i=1

ri = 1},

and C =
⋃

nC[n], the clone of convex linear combination functions on A.

5 Given any set F of operations on A, there is a clone generated by F.
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Algebras

Definition

A (universal) algebra is any structure of the form A = (A;C) where A 6= ∅
and C is a clone of operations on A.

A is the domain (or universe, underlying set) of A.

C is the clone of A.

Caveats:

1 This defines an unsigned (or non-indexed) algebra.

2 For a signed (or indexed) algebra, must add a signature:

1 Roughly speaking, a scheme for “naming” the operations in C.

2 Permits us to coordinate operations of a signed algebra with those of
any other algebra having the same signature.
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(More caveats)

2 Historically (and in practice), we consider (A;F) to be an algebra
whenever F is a set (not necessarily a clone) of operations.

3 When doing so, the proper algebra we have in mind is (A;Clo(F)),
where Clo(F) is the clone of operations generated by F.

Example: Let A = {0, 1} and F = {min(x , y), max(x , y), 0(x), 1(x)}.
Clo(F) = {all monotone boolean functions}.
(A;F) is a “presentation” of (A;Clo(F)).

If A = (A;F) and/or B = (B;G) are improper, we say that A and B are
clone-equivalent (or term-equivalent) if they present the same algebra: i.e.,
A = B and Clo(F) = Clo(G).
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Subalgebras
Let A = (A;C) be an algebra and B ⊆ A.

Definition
1 B is compatible with (or closed under) C if ∀n ≥ 1, ∀f ∈ C[n],

b1, . . . , bn ∈ B ⇒ f (b1, . . . , bn) ∈ B.

2 If also B 6= ∅, then B := (B; {f �B : f ∈ C}) is a subalgebra of A.

Given ∅ 6= X ⊆ A, we can speak of the subalgebra of A generated by X .

“Generation X” Lemma

Let A = (A;C) be an algebra and X = {b1, . . . , bn} ⊆ A. The domain of
the subalgebra of A generated by X is

{f (b1, . . . , bn) : f ∈ C[n]}.
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Powers and subpowers

Let A = (A;C) be an algebra.

Power A2 is the algebra with domain A× A = {(a, b) : a, b ∈ A}
and, corresponding to each f ∈ C[n], the operation

f [2]((a1, b1), . . . , (an, bn)) := (f (a), f (b)).

Define Am (m ≥ 3), AX (X 6= ∅) similarly.

Product . . . of two or more signed algebras with common signature is
defined in a similar way:

f A×B((a1, b1), . . . , (an, bn)) := (f A(a), f B(b)).

Subpower = any subalgebra of a power.
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Congruences and quotient algebras

Suppose A = (A;C) is an algebra and E ⊆ A× A.

Definition

E is compatible with (or invariant under) C if ∀n ≥ 1, ∀f ∈ C[n],

(a1, b1), . . . , (an, bn) ∈ E implies (f (a), f (b)) ∈ E .

Definition

A congruence of A is any equivalence relation on A which is compatible
with C.

Every congruence E supports the construction of a quotient algebra A/E
on the set A/E := {[a]E : a ∈ A} of E -blocks:

f A/E ([a1]E , . . . , [an]E ) := [f (a)]E .
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Homomorphic images

If A,B are signed algebras with common signature, we can discuss
isomorphisms and homomorphisms between them. (The obvious thing.)

Suppose α : A→ B is a function. The kernel of α is the relation on A
given by

ker(α) := {(a, a′) ∈ A2 : α(a) = α(a′)}.

Lemma

If α : A→ B is a homomorphism, then:

1 ker(α) is a congruence of A.

2 If α is surjective, then B ∼= A/ ker(α).

Hence the homomorphic images of A are, up to isomorphism, exactly the
quotient algebras A/E (E a congruence of A).
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Varieties

Definition

A variety is any class V of signed algebras with common signature which is
closed under forming subalgebras, products, and homomorphic images.

Examples

1 Any class of signed algebras axiomatized by identities, e.g.,

x ∗ (y ∗ z) ≈ (x ∗ y) ∗ z , g(x , x , y) ≈ y , etc

2 For any fixed A, the variety generated by A is

HSP(A) = {all homomorphic images of subpowers of A}.
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Free algebras

Let V be a variety.

Fact: For every n there exists F ∈ V and c1, . . . , cn ∈ F such that

1 {c1, . . . , cn} generates F.

2 (Universal Mapping Property): for any B ∈ V, every map
α : {c1, . . . , cn} → B extends to a homomorphism F→ B.

3 An identity LHS(x) ≈ RHS(x) in n variables holds universally in V iff
it is true in F at x1 = c1, . . . , xn = cn.

F and (c1, . . . , cn) are determined up to isomorphism by V and n.
Any such F is denoted FV(n).

Example: If A = (A;C) and V = HSP(A), then:

FV(n) may be taken to be the subalgebra of AAn
with universe C[n].

The free generators are prAn,1, . . . ,pr
A
n,n.
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Relational structures

(Finitary) relation on A: any subset R ⊆ An, n ≥ 1.

I always assume R 6= ∅.

Definition

A relational structure is any G = (G ;R) where G 6= ∅ and R is a set of
relations on G .

G is the domain (or universe, or vertex set).

Relational structures are also called templates, databases, etc.

Of particular interest to CSP: the case when both G and R are finite.

Examples:

(Simple) graphs G = (G ; {E}).
Here G = V (G) and E is a symmetric, irreflexive binary relation on G .

Digraphs, edge-colored graphs, etc.
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Compatible relations of an algebra
Let A = (A;C) be an algebra. Recall that:

1 A subset B ⊆ A is compatible with C iff ∀n ≥ 1, ∀f ∈ C[n],

a1, . . . , an ∈ B implies f (a) ∈ B.

2 A subset E ⊆ A2 is compatible with C iff ∀n ≥ 1, ∀f ∈ C[n],

(a1, b1), . . . , (an, bn) ∈ E implies (f (a), f (b)) ∈ E .

In preparation for a generalization,

Definition

Suppose f is an n-ary operation and R is a k-ary relation on the same set.
We say that f preserves R if

(a1, . . . , z1︸ ︷︷ ︸
k

), . . . , (an, . . . , zn︸ ︷︷ ︸
k

)

︸ ︷︷ ︸
n

∈ R implies (f (a), . . . , f (z)) ∈ R.
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Let A = (A;C) be an algebra.

Definition

A relation R ⊆ Ak is compatible with A if it is preserved by every
operation of A.

[Equivalently, iff R is (the domain of) a subalgebra of Ak .]

Dually:

Let G = (A;R) be a relational structure.

Definition

An operation f : An → A is a polymorphism of G if it preserves every
relation of G.

[Equivalently, iff f is a homomorphism from Gn to G.]
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Compatible structures

Definition

Let A = (A,C) be an algebra and let G = (A,R) be a relational structure
having the same domain as A.

We say that G is compatible with A if either of the following equivalent
conditions hold:

Every relation R ∈ R is compatible with A.

Every operation f ∈ C is a polymorphism of G.
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Example: let A be the 2-element lattice (A; max,min) where A = {0, 1}.

A is improper; I really mean (A;Clo({max,min})).

Let G = (A; E ) be the digraph pictured below:

0 1

[Note that E = {(0, 0), (0, 1), (1, 1)} is the usual order relation on {0, 1}.]

Both max and min preserve E .

[Thus every operation in the clone of A preserves E .]

Hence G is a compatible digraph of the algebra A.
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Algebraic dichotomies – a preview

Definition

A digraph (V ; E ) is reflexive if (a, a) ∈ E for all a ∈ V .

Theorem (Maltsev 1954)

Suppose A = (A;C) is an algebra. Exactly one of the following conditions
holds:

1 There exists a reflexive not-symmetric digraph G which is compatible
with some member of HSP(A); or

2 There exists f ∈ C[3] which satisfies f (x , x , y) ≈ y and f (x , y , y) ≈ x.

Equivalently: the clone of A contains an operation satisfying (2) iff every
compatible reflexive digraph of a member of HSP(A) is symmetric.

(An operation satisfying the identities in (2) is called a Maltsev operation.)
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(Proof, ⇒):

Assume ∃f ∈ C[3] satisfying the identities

f (x , x , y) ≈ y and f (x , y , y) ≈ x . (2)

Let G = (B; E ) be a reflexive digraph. Assume G is compatible with some
B ∈ HSP(A). (Must show E is symmetric.)

Assume (a, b) ∈ E .

Also know (a, a), (b, b) ∈ E .

As identities are preserved by subpowers and homomorphic images, the
operation f B of B corresponding to f also satisfies the identities (2).

E is compatible with B by assumption. In particular, E is preserved by f B.

As (a, a), (a, b), (b, b) ∈ E , this implies (f B(a, a, b), f B(a, b, b)) ∈ E .

I.e., (b, a) ∈ E .
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(Proof, ⇐):

Assume that every reflexive digraph compatible with some member of
HSP(A) is symmetric.

Let V = HSP(A) and F = FV(2) with free generators c , d .

Let E be the subalgebra of F2 generated by {(c , c), (c, d), (d , d)}.

Claim: E is reflexive (as a binary relation on F )

Proof: Let u ∈ F . (Must show (u, u) ∈ E .)

By the “Gen X” Lemma, there exists g ∈ C[2] with gF(c , d) = u.

As E is (the domain of) a subalgebra of F2, E is compatible with F.

Hence E is preserved by gF.

As (c , c), (d , d) ∈ E we get (gF(c , d), gF(c , d)) ∈ E , i.e., (u, u) ∈ E .

Conclusion: (F ; E ) is a reflexive digraph.
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(Proof, ⇐, continued)

So far: V = HSP(A) and F = FV(2) with free generators c , d .

E is the subalgebra of F2 generated by {(c , c), (c , d), (d , d)}.

(F ; E ) is a reflexive digraph compatible with F ∈ HSP(A).

Using the assumption, we deduce E is symmetric.

As (c , d) ∈ E , this implies (d , c) ∈ E .

By the “Gen X” Lemma, there exists f ∈ C[3] with

f F2
((c , c), (c , d), (d , d)) = (d , c),

i.e., (f F(c , c, d), f F(c , d , d)) = (d , c),

i.e., f F(c , c , d) = d and f F(c , d , d) = c .

By a property of free algebras, f (x , x , y) ≈ y and f (x , y , y) ≈ x .
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