Universal algebra for CSP Lecture 1

Ross Willard

University of Waterloo

Fields Institute Summer School June 26–30, 2011 Toronto, Canada

Outline

- Lecture 1 Basic universal algebra
- Lecture 2 Basic CSP reductions and algorithms
- Lecture 3 Omitting types and the Classification conjectures
- Lecture 4 Looking under the hood: examples of algebra in action

Clones of operations

(Finitary) operation on A: any total function

$$f: \underbrace{A \times \cdots \times A}_{n} \rightarrow A, \quad n \geq 1.$$

Definition

A *clone* on the set A is any set C of operations on A which

- Is closed under composition, and
- Contains all the *projections* $\operatorname{pr}_{n,i}^A: A^n \to A$ (where $\operatorname{pr}_{n,i}^A(\mathbf{x}) = \mathbf{x}[i]$).

Notation: $\mathcal{C}_{[n]}$ denotes the set of *n*-ary members of \mathcal{C} .

Closure under composition means the following: $\forall n, k \geq 1$, $\forall f \in \mathcal{C}_{\lceil k \rceil}$, $\forall g_1, \dots, g_k \in \mathcal{C}_{[n]}$, the *n*-ary operation $f \circ (g_1, \dots, g_k)$ defined by

$$(f\circ(g_1,\ldots,g_k))(\mathbf{a}) := f(g_1(\mathbf{a}),\ldots,g_k(\mathbf{a}))$$

is in $\mathbb{C}_{[n]}$.

3 / 22

Easy fact

If \mathcal{C} is a clone and $f \in \mathcal{C}_{[n]}$, then other members of \mathcal{C} include:

1 The 2*n*-ary operation $g: A^{2n} \to A$ given by

$$(x_1,x_2,\ldots,x_{2n})\longmapsto f(x_1,x_3,\ldots,x_{2n-1})$$

Proof: factor g as

$$A^{2n} \xrightarrow{\operatorname{proj's}} A^{n} \xrightarrow{f} A$$

$$(x_{1}, x_{2} \dots, x_{2n}) \longmapsto (x_{1}, x_{3}, \dots, x_{2n-1}) \longmapsto f(x_{1}, x_{3}, \dots, x_{2n-1}).$$

Thus $g = f \circ (\operatorname{pr}_{2n,1}^A, \operatorname{pr}_{2n,3}^A, \dots, \operatorname{pr}_{2n,2n-1}^A).$

2 The 2-ary operation h(x, y) := f(x, ..., x, y).

Proof:
$$h = f \circ (pr_{21}^A, \dots, pr_{21}^A, pr_{22}^A)$$
.

3 Any function obtained by permuting the variables of f.

Examples of clones

- The set of all operations on A.
- **3** $A = \{0, 1\}, \ \mathcal{C} = \{\text{all monotone boolean functions}\}.$
- Let (A, +) be a (real) vector space. For $n \ge 1$ put

$$\mathcal{C}_{[n]} = \{r_1x_1 + \dots + r_nx_n : r_i \in \mathbb{R}, r_i \geq 0, \text{ and } \sum_{i=1}^n r_i = 1\},$$

and $\mathcal{C} = \bigcup_n \mathcal{C}_{[n]}$, the clone of *convex linear combination functions* on A.

5 Given any set $\mathcal F$ of operations on A, there is a clone *generated* by $\mathcal F$.

Algebras

Definition

A (*universal*) algebra is any structure of the form $\mathbf{A} = (A; \mathcal{C})$ where $A \neq \emptyset$ and \mathcal{C} is a clone of operations on A.

- A is the domain (or universe, underlying set) of **A**.
- C is the clone of A.

Caveats:

- This defines an *unsigned* (or *non-indexed*) algebra.
- For a signed (or indexed) algebra, must add a signature:
 - lacktriangledown Roughly speaking, a scheme for "naming" the operations in \mathfrak{C} .
 - Permits us to coordinate operations of a signed algebra with those of any other algebra having the same signature.

(More caveats)

- ② Historically (and in practice), we consider $(A; \mathcal{F})$ to be an algebra whenever \mathcal{F} is a set (not necessarily a clone) of operations.
- **3** When doing so, the *proper* algebra we have in mind is $(A; Clo(\mathcal{F}))$, where $Clo(\mathcal{F})$ is the clone of operations generated by \mathcal{F} .

Example: Let $A = \{0, 1\}$ and $\mathfrak{F} = \{\min(x, y), \max(x, y), \underline{0}(x), \underline{1}(x)\}.$

- $Clo(\mathcal{F}) = \{all \text{ monotone boolean functions}\}.$
- $(A; \mathcal{F})$ is a "presentation" of $(A; Clo(\mathcal{F}))$.

If $\mathbf{A} = (A; \mathcal{F})$ and/or $\mathbf{B} = (B; \mathcal{G})$ are improper, we say that \mathbf{A} and \mathbf{B} are clone-equivalent (or term-equivalent) if they present the same algebra: i.e., A = B and $\mathrm{Clo}(\mathcal{F}) = \mathrm{Clo}(\mathcal{G})$.

Subalgebras

Let $\mathbf{A} = (A; \mathcal{C})$ be an algebra and $B \subseteq A$.

Definition

9 B is compatible with (or closed under) C if $\forall n \geq 1$, $\forall f \in C_{[n]}$,

$$b_1,\ldots,b_n\in B \Rightarrow f(b_1,\ldots,b_n)\in B.$$

② If also $B \neq \emptyset$, then $\mathbf{B} := (B; \{f \upharpoonright_B : f \in \mathcal{C}\})$ is a *subalgebra* of \mathbf{A} .

Given $\emptyset \neq X \subseteq A$, we can speak of the subalgebra of **A** generated by X.

"Generation X" Lemma

Let $\mathbf{A} = (A; \mathcal{C})$ be an algebra and $X = \{b_1, \dots, b_n\} \subseteq A$. The domain of the subalgebra of \mathbf{A} generated by X is

$$\{f(b_1,\ldots,b_n): f\in \mathcal{C}_{[n]}\}.$$

Powers and subpowers

Let $\mathbf{A} = (A; \mathcal{C})$ be an algebra.

Power A^2 is the algebra with domain $A \times A = \{(a, b) : a, b \in A\}$ and, corresponding to each $f \in \mathcal{C}_{[n]}$, the operation

$$f^{[2]}((a_1,b_1),\ldots,(a_n,b_n)) := (f(\mathbf{a}),f(\mathbf{b})).$$

Define $\mathbf{A}^m \ (m \ge 3)$, $\mathbf{A}^X \ (X \ne \varnothing)$ similarly.

Product ... of two or more signed algebras with common signature is defined in a similar way:

$$f^{\mathbf{A}\times\mathbf{B}}((a_1,b_1),\ldots,(a_n,b_n)) := (f^{\mathbf{A}}(\mathbf{a}),f^{\mathbf{B}}(\mathbf{b})).$$

Subpower = any subalgebra of a power.

Congruences and quotient algebras

Suppose $\mathbf{A} = (A; \mathcal{C})$ is an algebra and $E \subseteq A \times A$.

Definition

E is compatible with (or invariant under) \mathbb{C} if $\forall n \geq 1$, $\forall f \in \mathbb{C}_{[n]}$,

$$(a_1, b_1), \ldots, (a_n, b_n) \in E$$
 implies $(f(\mathbf{a}), f(\mathbf{b})) \in E$.

Definition

A *congruence* of **A** is any equivalence relation on A which is compatible with C.

Every congruence E supports the construction of a *quotient algebra* \mathbf{A}/E on the set $A/E := \{[a]_E : a \in A\}$ of E-blocks:

$$f^{\mathbf{A}/E}([a_1]_E,\ldots,[a_n]_E) := [f(\mathbf{a})]_E.$$

Homomorphic images

If ${\bf A}, {\bf B}$ are signed algebras with common signature, we can discuss isomorphisms and homomorphisms between them. (The obvious thing.)

Suppose $\alpha:A\to B$ is a function. The kernel of α is the relation on A given by

$$\ker(\alpha) := \{(a, a') \in A^2 : \alpha(a) = \alpha(a')\}.$$

Lemma

If $\alpha: \mathbf{A} \to \mathbf{B}$ is a homomorphism, then:

- $\ker(\alpha)$ is a congruence of **A**.
- **2** If α is surjective, then $\mathbf{B} \cong \mathbf{A} / \ker(\alpha)$.

Hence the homomorphic images of $\bf A$ are, up to isomorphism, exactly the quotient algebras $\bf A/E$ (E a congruence of $\bf A$).

Varieties

Definition

A variety is any class $\mathcal V$ of signed algebras with common signature which is closed under forming subalgebras, products, and homomorphic images.

Examples

Any class of signed algebras axiomatized by identities, e.g.,

$$x*(y*z) \approx (x*y)*z$$
, $g(x,x,y) \approx y$, etc

For any fixed A, the variety generated by A is

 $HSP(\mathbf{A}) = \{all\ homomorphic\ images\ of\ subpowers\ of\ \mathbf{A}\}.$

Free algebras

Let \mathcal{V} be a variety.

Fact: For every n there exists $\mathbf{F} \in \mathcal{V}$ and $c_1, \ldots, c_n \in F$ such that

- \bullet $\{c_1,\ldots,c_n\}$ generates **F**.
- ② (Universal Mapping Property): for any $\mathbf{B} \in \mathcal{V}$, every map $\alpha : \{c_1, \dots, c_n\} \to B$ extends to a homomorphism $\mathbf{F} \to \mathbf{B}$.
- **3** An identity $LHS(\mathbf{x}) \approx RHS(\mathbf{x})$ in n variables holds universally in \mathcal{V} iff it is true in \mathbf{F} at $x_1 = c_1, \dots, x_n = c_n$.

F and (c_1, \ldots, c_n) are determined up to isomorphism by \mathcal{V} and n. Any such **F** is denoted $\mathbf{F}_{\mathcal{V}}(n)$.

Example: If $\mathbf{A} = (A; \mathcal{C})$ and $\mathcal{V} = \mathrm{HSP}(\mathbf{A})$, then:

- $\mathbf{F}_{\mathcal{V}}(n)$ may be taken to be the subalgebra of \mathbf{A}^{A^n} with universe $\mathcal{C}_{[n]}$.
- The free generators are $\operatorname{pr}_{n,1}^A, \dots, \operatorname{pr}_{n,n}^A$.

Relational structures

(Finitary) relation on A: any subset $R \subseteq A^n$, $n \ge 1$.

• I always assume $R \neq \emptyset$.

Definition

A relational structure is any $\mathbb{G} = (G; \mathbb{R})$ where $G \neq \emptyset$ and \mathbb{R} is a set of relations on G.

- G is the domain (or universe, or vertex set).
- Relational structures are also called templates, databases, etc.

Of particular interest to CSP: the case when both G and \Re are *finite*.

Examples:

- (Simple) graphs $\mathbb{G} = (G; \{E\})$. Here $G = V(\mathbb{G})$ and E is a symmetric, irreflexive binary relation on G.
- Digraphs, edge-colored graphs, etc.

Compatible relations of an algebra

Let $\mathbf{A} = (A; \mathcal{C})$ be an algebra. Recall that:

- **1** A subset $B \subseteq A$ is compatible with $\mathbb C$ iff $\forall n \ge 1$, $\forall f \in \mathbb C_{[n]}$, $a_1, \dots, a_n \in B$ implies $f(\mathbf a) \in B$.
- ② A subset $E \subseteq A^2$ is compatible with $\mathbb C$ iff $\forall n \geq 1, \ \forall f \in \mathbb C_{[n]}$, $(a_1,b_1),\ldots,(a_n,b_n) \in E$ implies $(f(\mathbf a),f(\mathbf b)) \in E$.

In preparation for a generalization,

Definition

Suppose f is an n-ary operation and R is a k-ary relation on the same set. We say that f preserves R if

$$\underbrace{\left(\underbrace{a_1,\ldots,z_1}_k\right),\ldots,\left(\underbrace{a_n,\ldots,z_n}_k\right)}_{n}\in R \ \text{implies} \ \left(f(\mathbf{a}),\ldots,f(\mathbf{z})\right)\in R.$$

Let $\mathbf{A} = (A; \mathcal{C})$ be an algebra.

Definition

A relation $R \subseteq A^k$ is *compatible with* **A** if it is preserved by every operation of **A**.

• [Equivalently, iff R is (the domain of) a subalgebra of \mathbf{A}^k .]

Dually:

Let $\mathbb{G} = (A; \mathbb{R})$ be a relational structure.

Definition

An operation $f: A^n \to A$ is a *polymorphism* of \mathbb{G} if it preserves every relation of \mathbb{G} .

• [Equivalently, iff f is a homomorphism from \mathbb{G}^n to \mathbb{G} .]

Compatible structures

Definition

Let $\mathbf{A} = (A, \mathbb{C})$ be an algebra and let $\mathbb{G} = (A, \mathbb{R})$ be a relational structure having the same domain as \mathbf{A} .

We say that \mathbb{G} is *compatible with* **A** if either of the following equivalent conditions hold:

- Every relation $R \in \mathcal{R}$ is compatible with **A**.
- Every operation $f \in \mathcal{C}$ is a polymorphism of \mathbb{G} .

Example: let **A** be the 2-element lattice (A; max, min) where $A = \{0, 1\}$.

• **A** is improper; I really mean $(A; Clo(\{max, min\}))$.

Let $\mathbb{G} = (A; E)$ be the digraph pictured below:

[Note that $E=\{(0,0),\,(0,1),\,(1,1)\}$ is the usual order relation on $\{0,1\}.$]

- Both max and min preserve E.
- [Thus every operation in the clone of **A** preserves *E*.]

Hence \mathbb{G} is a compatible digraph of the algebra \mathbf{A} .

18 / 22

Algebraic dichotomies – a preview

Definition

A digraph (V; E) is reflexive if $(a, a) \in E$ for all $a \in V$.

Theorem (Maltsev 1954)

Suppose $\mathbf{A} = (A; \mathcal{C})$ is an algebra. Exactly one of the following conditions holds:

- There exists a reflexive not-symmetric digraph \mathbb{G} which is compatible with some member of $\mathrm{HSP}(\mathbf{A})$; or
- ② There exists $f \in \mathcal{C}_{[3]}$ which satisfies $f(x, x, y) \approx y$ and $f(x, y, y) \approx x$.

Equivalently: the clone of $\bf A$ contains an operation satisfying (2) iff *every* compatible reflexive digraph of a member of ${\rm HSP}(\bf A)$ is symmetric.

(An operation satisfying the identities in (2) is called a *Maltsev operation*.)

(Proof, \Rightarrow):

Assume $\exists f \in \mathcal{C}_{[3]}$ satisfying the identities

$$f(x, x, y) \approx y$$
 and $f(x, y, y) \approx x$. (2)

Let $\mathbb{G} = (B; E)$ be a reflexive digraph. Assume \mathbb{G} is compatible with some $\mathbf{B} \in \mathrm{HSP}(\mathbf{A})$. (Must show E is symmetric.)

Assume $(a, b) \in E$.

Also know $(a, a), (b, b) \in E$.

As identities are preserved by subpowers and homomorphic images, the operation $f^{\mathbf{B}}$ of \mathbf{B} corresponding to f also satisfies the identities (2).

E is compatible with **B** by assumption. In particular, E is preserved by $f^{\mathbf{B}}$.

As
$$(a, a), (a, b), (b, b) \in E$$
, this implies $(f^{B}(a, a, b), f^{B}(a, b, b)) \in E$.

I.e.,
$$(b, a) \in E$$
.

 $(\mathsf{Proof}, \Leftarrow)$:

Assume that every reflexive digraph compatible with some member of $\mathrm{HSP}(\mathbf{A})$ is symmetric.

Let $\mathcal{V} = \mathrm{HSP}(\mathbf{A})$ and $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(2)$ with free generators c, d.

Let **E** be the subalgebra of \mathbf{F}^2 generated by $\{(c,c),(c,d),(d,d)\}$.

Claim: E is reflexive (as a binary relation on F)

Proof: Let $u \in F$. (Must show $(u, u) \in E$.)

By the "Gen X" Lemma, there exists $g \in \mathcal{C}_{[2]}$ with $g^{\mathbf{F}}(c,d) = u$.

As E is (the domain of) a subalgebra of \mathbf{F}^2 , E is compatible with \mathbf{F} .

Hence E is preserved by g^{F} .

As
$$(c,c), (d,d) \in E$$
 we get $(g^{F}(c,d), g^{F}(c,d)) \in E$, i.e., $(u,u) \in E$.

Conclusion: (F; E) is a reflexive digraph.

 $(Proof, \Leftarrow, continued)$

So far: $\mathcal{V} = \mathrm{HSP}(\mathbf{A})$ and $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(2)$ with free generators c, d.

E is the subalgebra of \mathbf{F}^2 generated by $\{(c,c),(c,d),(d,d)\}.$

(F; E) is a reflexive digraph compatible with $\mathbf{F} \in \mathrm{HSP}(\mathbf{A})$.

Using the assumption, we deduce E is symmetric.

As $(c,d) \in E$, this implies $(d,c) \in E$.

By the "Gen X" Lemma, there exists $f \in \mathcal{C}_{[3]}$ with

$$f^{\mathbf{F}^2}((c,c),(c,d),(d,d)) = (d,c),$$

i.e., $(f^{\mathbf{F}}(c,c,d),f^{\mathbf{F}}(c,d,d)) = (d,c),$
i.e., $f^{\mathbf{F}}(c,c,d) = d$ and $f^{\mathbf{F}}(c,d,d) = c.$

By a property of free algebras, $f(x, x, y) \approx y$ and $f(x, y, y) \approx x$.

R. Willard (Waterloo) Universal algebra Fields Institute 2011

22 / 22