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Constraint Satisfaction Problems (CSPs)

Definition (CSP)

A CSP (denoted CSPq(F)), specified by

finite domain [q] = {0, 1, . . . , q − 1}
constraint language F : a collection of relations over [q], i.e.,
functions f : [q]a(f ) → {0, 1} (a(f ) = arity of f )

Definition (CSP instance)

Variable set V .
A collection C of constraints {(f ,S)} where f ∈ F ; S = a(f )-tuple from V
Question: Is there an assignment σ : V → [q] that satisfies all constraints?

i.e., f (σ|S) = 1 for each (f ,S) ∈ C.

Boolean CSP, q = 2, most basic and of special interest.
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CSP examples

CSPs capture many well studied problems in NP.

F = CNF formulae: SAT

F = not all equal: Graph or hypergraph q-colorability

F = affine constraints: Solving linear equations

Rich set of problems based on structure of constraints in underlying F .

Yet, just two possibilities complexity theoretically ...
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Schaefer’s dichotomy theorem for Boolean CSPs

Theorem

Every Boolean CSP is either in P or NP-complete.

More specifically, CSP2(F) is polynomial time solvable if every f ∈ F is

0-valid

1-valid

a conjunction of Horn clauses (i.e., (x1 ∧ · · · ∧ xk → 0) or
(x1 ∧ x2 ∧ · · · ∧ xk → xk+1))

a conjunction of dual Horn clauses

a 2CNF formula, or

a conjunction of affine equations

and is NP-complete otherwise.

Dichotomy conjectured for every q [Feder-Vardi], proved for q = 3
[Bulatov]
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Optimization

Max CSPq(F): Find assignment maximizing fraction of satisfied
constraints.

Can also have weighted constraints, and ask for maximum fractional
weight of satisfied constraints

Minimization version: minimize fraction of unsatisfied constraints.

Can capture problems with hard constraints such as independent set
or vertex cover as Max ONES(F), Min ONES(F):

satisfy all constraints with maximum (minimum) fraction of 1’s.

Let’s focus on unweighted Max CSP

Example Max CUT. F = {cut} where cut(x , y) = 1(x 6= y).
Note CSP(cut) is in P. Optimization version Max CUT is NP-hard.
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Boolean Max CSP

Schaefer’s theorem can be strengthened for the following “PCP-like”
statement:

Theorem (Khanna,Sudan,Willamson)

For every Boolean constraint language F , either CSP(F) is polytime
decidable, or there exists δF < 1 such that it is NP-hard to distinguish
satisfiable instances of CSP(F) from instances of Max CSP(F) where at
most δF fraction of constraints are satisfiable.

However, even for Schaefer’s tractable F (other than 0-valid and 1-valid
cases), Max CSP(F) is NP-hard.

Question

Which tractable F lead to easy optimization versions?
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Dichotomy theorem for Boolean Max CSP

Theorem (Creignou;KSW)

For every Boolean constraint language F , Max CSP(F) is polynomial time
solvable or APX-complete.

Max CSP(F) is polytime solvable iff F is 0-valid, 1-valid, or 2-monotone.

(f (x1, . . . , xk) is 2-monotone if it is expressible as a 2 term DNF:
(xi1 ∧ xi2 ∧ · · · ∧ xip ) ∨ (¬xj1 ∧ · · · ∧ ¬xjq ).

F is 2-monotone if every f ∈ F is 2-monotone.)

The 2-monotone case reduces to s-t Min Cut.
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Approximating CSPs

Essentially all Max CSP problems are NP-hard, and in fact APX-hard, i.e.,
hard to approximate within some absolute constant < 1.

Main goal in theory of CSP approximability

Identify approximation threshold τF of Max CSP(F) for all (or at least
interesting?) F !

Factor τF approximation algorithm (algorithm that finds assignment
satisfying a fraction > τF · Opt of constraints)

Hardness of obtaining ratio τF + ε approximation for every ε > 0.

Above quest has been very successful

probably beyond even original expectations

we now “almost know” the tight answer for every CSP.

Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 8 / 1



Approximating CSPs

Essentially all Max CSP problems are NP-hard, and in fact APX-hard, i.e.,
hard to approximate within some absolute constant < 1.

Main goal in theory of CSP approximability

Identify approximation threshold τF of Max CSP(F) for all (or at least
interesting?) F !

Factor τF approximation algorithm (algorithm that finds assignment
satisfying a fraction > τF · Opt of constraints)

Hardness of obtaining ratio τF + ε approximation for every ε > 0.

Above quest has been very successful

probably beyond even original expectations

we now “almost know” the tight answer for every CSP.

Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 8 / 1



Two sides

1 Positive results: Efficient algorithms with provable approximation
ratios.

2 Negative results: Achieving certain approx. ratio is NP-hard (or hard
under some other complexity assumption)

Let’s discuss some algorithmic results first.
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A mindless approximation algorithm

Random assignment

For each variable independently, assign a value uniformly at random from
the domain [q].

Algorithm completely ignores structure of constraints!
In expectation, algorithm satisfies fraction > rF = minf ∈F rf of
constraints. (rf = prob. that f (a) = 1 for random a ∈ [q]a(f ).)
Can be derandomized via conditional expectations.

Examples of random assignment threshold

F = E 3SAT: 7/8

F = 2SAT: 1/2

F = affine constraints over Fp: 1/p

F = k-CUT: 1− 1/k

F = 3MAJ: 1/2
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Approximation Algorithms

Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 11 / 1



Wasn’t much improvement over random assignment algo till early 90s

In fact, now we know this is sometimes not possible!

Most pervasive (essentially only) technique:
1 Solve a convex relaxation of the Max CSP
2 “Round” the solution to an assignment

We will discuss the simplest case, when the convex relaxation is a linear
program (LP), first.
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Linear Programming

Integer Linear Program formulation of Max SAT (with variables x1, . . . , xn

and clauses C1, . . . ,Cm):

Maximize 1
m ·
∑m

j=1 zj subject to∑
xi∈Cpos

j

yi +
∑

xi∈Cneg
j

(1− yi ) > zj ∀j = 1, 2, . . . ,m

yi ∈ {0, 1} ∀i = 1, 2, . . . , n

0 6 zj 6 1 ∀j = 1, 2, . . . ,m

Linear program: Relax yi ∈ {0, 1} to 0 6 yi 6 1.
Can solve resulting LP in polynomial time.

Easy exercise

Above LP can decide Horn Satisfiability.
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Rounding fractional solution

Need to convert fractional solution yi to an assignment to xi .
Can interpret yi ∈ [0, 1] as extent to which xi = 1.

Randomized rounding

For each i independently, set xi ← 1 with prob. yi .

Prob. that Cj with k literals is satisfied

= 1−
∏

xi∈Cpos
j

(1− yi )
∏

xi∈Cneg
j

yi

> 1−
(k −

∑
xi∈Cpos

j
yi −

∑
xi∈Cneg

j
(1− yi )

k

)k

> 1−
(

1−
zj

k

)k
>
(

1− (1− 1/k)k
)

zj .
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Max SAT algorithm

Expected fraction of clauses satisfied

> mink

(
1− (1− 1/k)k

)
· 1

m

∑
j zj .

For optimal LP solution, 1
m

∑
j zj > Opt.

Implies 3/4 approximation algorithm for Max 2SAT. (Random
assignment gives 1/2)

1− 1/e approximation for Max SAT.

Output better of two randomized algorithms: LP randomized
rounding and random assignment

⇒ 3/4 approximation for Max SAT.

Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 15 / 1



Max SAT algorithm

Expected fraction of clauses satisfied

> mink

(
1− (1− 1/k)k

)
· 1

m

∑
j zj .

For optimal LP solution, 1
m

∑
j zj > Opt.

Implies 3/4 approximation algorithm for Max 2SAT. (Random
assignment gives 1/2)

1− 1/e approximation for Max SAT.

Output better of two randomized algorithms: LP randomized
rounding and random assignment

⇒ 3/4 approximation for Max SAT.

Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 15 / 1



Max SAT algorithm

Expected fraction of clauses satisfied

> mink

(
1− (1− 1/k)k

)
· 1

m

∑
j zj .

For optimal LP solution, 1
m

∑
j zj > Opt.

Implies 3/4 approximation algorithm for Max 2SAT. (Random
assignment gives 1/2)

1− 1/e approximation for Max SAT.

Output better of two randomized algorithms: LP randomized
rounding and random assignment

⇒ 3/4 approximation for Max SAT.

Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 15 / 1



Integrality gap

Can we do better than 3/4 by this method (at least for Max 2SAT)?
No, since we get 3/4 times the optimum of the LP.

Definition (Integrality gap)

Smallest ratio of integer optimum (Max CSP’s true optimum value) to LP
optimum.

For Max 2SAT instance with 4 clauses

(x1 ∨ x2) (x1 ∨ ¬x2) (¬x1 ∨ x2) (¬x1¬x2)

Every assignment satisfies 3 clauses. Integral Opt = 3/4

Assigning y1 = y2 = 1/2 gives LP solution of value 1.

Thus 3/4 is the best possible approximation factor using this LP.

Note: Closer the integrality gap is to 1, the better the relaxation.
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Stronger LPs

Question

Could a smarter, more powerful LP yield a better approximation ratio?

Answer: No.

For Max CUT, integrality gap is close to 1/2 for basic as well as more
powerful LPs. [de la Vega-Mathieu], [Charikar,Makarychev,Makarychev]

Implies 3/4 gap for Max 2SAT

Beating random cut is not possible via LPs!

Let’s now digress slightly:

How does one write a canonical “basic” LP relaxation for every CSP?

What are these more powerful strengthenings of the basic LP?
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A general LP relaxation

CSP asks for a global integral assignment to all variables V .
To make it convex, can allow probability distributions over assignments.

Same value as integral optimum + Too many variables.

Compromise: Insist on distributions on local assignments, say up to s
variables (s > k , the arity)

For each S ⊂ V , |S | 6 s, a local distribution µS over [q]|S |.

Nonnegative variables yi ,a for each i ∈ V and a ∈ [q], with∑
a yi ,a = 1.

Maximize
∑

(f ,S)∈C Ex∼µS
[ f (x) ] subject to:

yi ,a =
∑

x∈[q]S ,xi =a

µS(x) for all S 3 i .

That is, consistency of marginals of local distributions on each variable.

Stronger relaxation: Insist on consistency on all subsets of size r , for some
1 6 r 6 s.
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Semidefinite Programming
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Max Cut

Input: Graph G = ({1, 2, . . . , n},E )
Find xi ∈ {−1, 1} for i = 1, 2, . . . , n that maximizes

1

|E |
∑

(i ,j)∈E

1− xixj

2
.

Objective function linear in yij = xixj . Matrix Y = {yij}, Y = xxT .

Semidefinite Relaxation: Maximize 1
|E |
∑

(i ,j)∈E
1−yij

2 subject to

Y is positive semidefinite

yii = 1

Can solve above to any desired accuracy in polynomial time [Alizadeh].
Set of PSD matrices is convex, and it is possible to find optimum of linear
function over it.
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Set of PSD matrices is convex, and it is possible to find optimum of linear
function over it.
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A vector view

Since a positive semidefinite matrix Y admits Cholesky decomposition
Y = V T V , the semidefinite program (SDP) finds vectors vi , 1 6 i 6 n,
with ‖vi‖ = 1 maximizing

1

|E |
∑

(i ,j)∈E

1− 〈vi , vj〉
2

.

SDP allows more general set of solutions: unit vectors in n
dimensions instead of one-dimensional ±1 values.

In general gives higher objective value (than true Max Cut value)

Key question

How to “round” vector solution to a Boolean cut?
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Random hyperplane rounding

Goemans-Williamson

Pick random hyperplane through the origin. Two hemispheres correspond
to two sides of cut.
Pick random vector r and set

xi = sign(〈vi , r〉) .

Intuition: If (i , j) has large contribution (1− 〈vi , vj〉)/2 to objective
function, then angle between vi , vj is large, and there is a good chance
that vi , vj are separated by a random hyperplane.
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Rounding analysis

Local analysis for each edge (i , j).
θ = angle between vi and vj .
Contribution to SDP objective function

1− 〈vi , vj〉
2

=
1− cos θ

2

Probability that we cut edge (i , j)

Prr [sign(〈vi , r〉) 6= sign(〈vj , r〉)] =
θ

π
.

Minimum quotient gives approximation factor

αGW = min
θ

2θ

π(1− cos θ)
≈ 0.8785 .
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Other Boolean 2CSPs

SDP based algorithms beat the mindless (random assignment) algorithm
for all Boolean 2CSPs.

Max 2SAT: αGW = 0.8785...
Many subsequent improvements: [Feige-Goemans] 0.931;
[Lewin-Livnat-Zwick] 0.94016.

Max 2CSP: [GW] 0.796.
[LLZ] improved this to 0.87401.

Natural SDP relaxations; more complicated rounding.
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Relaxation for 2SAT

Unit vectors vi for variables xi , and a global unit vector b0 (representing
False).

For clause (xi ∨ xj): contribution to objective function

3− 〈b0, vi 〉 − 〈b0, vj〉 − 〈vi , vj〉
4

SDP maximizes sum of above over all clauses.

Can also add “triangle inequalities”

〈(b0 ± vi ), (b0 ± vj)〉 > 0 .
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SDP for general CSP

Variables V = {x1, . . . , xn}, Domain [q]. Constraints C.

SDP variables and vectors:

Vectors vi ,a for 1 6 i 6 n and a ∈ [q].

For each constraint (f ,S) ∈ C, a local distribution µ(f ,S) over [q]S

(assignments to variables in S).

Maximize
∑

(f ,S)∈C Ex∼µ(f ,S)
[f (x)] subject to:

1
∑

a∈[q]〈vi ,a, vi ,a〉 = 1 ∀i
2 µ(f ,S)(x) > 0 and

∑
x µ(f ,S)(x) = 1 ∀(f ,S) ∈ C.

3 〈vi ,a, vj ,b〉 = Prx∼µ(f ,S)

[
xi = a and xj = b

]
∀(f ,S) ∈ C; xi , xj ∈ S ; a, b ∈ [q].

In words..

Consistency of local integral distributions on pairs + positive
semidefiniteness of pairwise joint probabilities.
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Hardness of approximation results
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PCP theorem

Starting point for inapproximability results is the famous PCP theorem.

Theorem (PCP theorem)

For some absolute constant ρ < 1, there is a polynomial time reduction
from NP-complete problem 3SAT to Max 3SAT mapping φ 7→ ψ such
that:

(Perfect) completeness: If φ is satisfiable, then so is ψ.

Soundness: If φ is not satisfiable, then every assignment satisfies at
most ρ fraction of ψ’s clauses.

Original proof [Arora-Safra], [Arora-Lund-Motwani-Sudan-Szegedy]:
Algebraic techniques: arithmetization, low-degree testing; query
parallelization, proof composition, etc.
New proof [Dinur]: expander graphs, iterative amplification of gap.
These give poor inapproximability constants ρ.
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An optimal result

Subsequent improvements to the constants culminated in the following
striking optimal result:

Theorem (Håstad)

For every integer q > 2 and all ε, δ > 0, it is NP-hard to approximate Max
E3-LIN-mod-q within 1

q + ε.

Hard to tell if linear system is (1− ε)-satisfiable or at most
( 1
q + δ)-satisfiable.

Mindless random assignment algorithm achieves approximation ratio 1/q.
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A powerful result

Gives many other tight (or best known) results by gadgets.

Reduce Max E3-Lin-mod-2 to Max E3SAT

Replace x ⊕ y ⊕ z = 0 by 4 clauses (¬x ∨ ¬y ∨ ¬z), (¬x ∨ y ∨ z),
(x ∨ ¬y ∨ z), (x ∨ y ∨ ¬z).

Gives 7/8 + ε inapproximability factor for Max E3SAT.

Gives 2/3 + ε inapprox. factor for Max 3MAJ. Also tight.

21/22 + ε for Max 2SAT, 16/17 + ε for Max CUT, 15/16 + ε for Max
NAE3SAT, etc.

(Probably) not tight, but remain best known NP-hardness bounds.
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Perfect completeness

Reducing 3LIN to 3SAT shows that it is hard to satisfy more than 7/8
of clauses in a (1− ε)-satisfiable formula.

Inherent for 3LIN

What about satisfiable 3SAT formulae?

Theorem (Håstad)

For every δ > 0, given an E3SAT formula φ, it is NP-hard to distinguish
between the cases when φ is satisfiable and when φ is at most
( 7

8 + δ)-satisfiable.
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Next:

1 Some details about such tight hardness results.

2 Approximation resistance

Followed by reductions from Unique Games.

Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 32 / 1



Label Cover

Starting point for strong inapproximability results is almost always the
Label Cover problem.

Parameterized by integer R. Denote by LabelCover(R).

2CSP over large domain (of size R)

“Projection” constraints

Instance consists of:

1 Bipartite graph G = (V ,W ,E ).

2 For each e ∈ E , a function πe : [R]→ [R].

The value of an assignment (labeling) ` : V ∪W → [R] is the fraction of
edges e = (v ,w) for which πe(`(w)) = `(v).

Optimization goal: Find labeling with maximum value.
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Hardness of Label Cover

Theorem (PCP theorem + Raz’s parallel repetition)

There exists an absolute constant γ0 > 0 such that for all R it is NP-hard
to tell if an instance of LabelCover(R) has value 1 or value at most 1/Rγ0 .

By picking R large enough, get arbitrarily large gap for a rather nice 2CSP
(over a large alphabet).
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Reducing from Label Cover

Gadget: “Encode” the projection constraint π(`(w)) = `(v) on labels
`(v), `(w) belonging to large alphabet [R] as (a collection of) simple tests
on few bits.

Test should correspond to target CSP

For example, for Max E3-LIN-Mod-2, check parity of 3 bits
(x ⊕ y ⊕ z = 0/1)

Must necessarily have larger soundness error, but amazingly can get the
optimal bound for many CSPs (3LIN, 3SAT, 4-set-splitting, etc.)
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Gadget structure

To reduce projection constraint to some Boolean CSP:

Expect Boolean tables f and g encoding `(v) and `(w) respectively
(as per some code C ).

Check binary constraints on few locations of f and g (example
f (x)⊕ g(y)⊕ g(z) = 0)

Property we would like to guarantee:

1 Completeness: For a, b satisfying π(b) = a, legal encoding f , g of a, b
satisfies all (or most of) the binary constraints.

2 Soundness: If f , g satisfy more than s + δ fraction of constraints,
then can “decode” f , g into “consistent” labels.
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Long code

Which “code” to use (for binary encoding of labels)?

Great suggestion by [Bellare-Goldreich-Sudan]: Long code

Long code encoding LC maps [R] to {0, 1}2R

Long encoding of a ∈ [R], denoted LC(a), is a Boolean function
{0, 1}R → {0, 1}
LC(a)(x) = xa. “Dictator” function — projection on the a’th
coordinate.

Long code is the most redundant of all codes!! (When R is a constant, we
can afford it.)

Redundancy enables (approximate) checking of global property (namely,
the projection constraint on [R]) by very local constraints.
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Long code testing

Given tables/functions f : {0, 1}R → {0, 1} and g : {0, 1}R → {0, 1},
and a projection constraint π : [R]→ [R].

Goal: Check if f and g are long codes of “consistent” values a and b
that satisfy π(b) = a.

Only allowed to query very few (randomly picked) locations of f , g ,
and check they obey a local constraint.

A 3-query test (aimed at showing hardness for Max E3LIN-Mod-2):

Pick x , y ∈ {0, 1}R independently and u.a.r.

Define z ∈ {0, 1}R by zj = yj ⊕ xπ(j).

With prob. 1/2 check f (x)⊕ g(y)⊕ g(z) = 0,
and with prob. 1/2 check f (x)⊕ g(y)⊕ g(z̄) = 1
(here z̄ denotes the coordinate-wise complement of the bit vector z).
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Is this a good test?

Completeness: Suppose f (x) = xa and g(y) = yb and π(b) = a. Then

g(z) = zb = yb ⊕ xπ(b) = yb ⊕ xa .

So f (x)⊕ g(y)⊕ g(z) = xa ⊕ yb ⊕ (yb ⊕ xa) = 0.
Similarly f (x)⊕ g(y)⊕ g(z̄) = 1

Thus all 3LIN constraints are satisfied.

Soundness?

Question

If most 3LIN constraints are satisfied, does it mean that f , g are “like”
long codes (in some reasonable sense)?

Answer: NO.
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Linear functions

Polymorphisms: For linear equations mod 2, xor of an odd number of
satisfying assignments gives another satisfying assignment.

The functions g(y) = y1 ⊕ y2 ⊕ · · · ⊕ y2k+1 and
f (x) = xπ(1) ⊕ xπ(2) ⊕ · · · ⊕ xπ(2k+1) also satisfy all constraints.

For k large, g is “not like” any long code.

Håstad’s insight: add noise to attenuate linear functions of many variables
( “dampen high frequencies”)

Must lose perfect completeness as satisfiability of linear equations is
in P.
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3LIN test with noise

Sample x , y ∈ {0, 1}R independently and u.a.r.

Sample µ ∈ {0, 1}R as follows: for each j ∈ [R] independently

µj =

{
0 with prob. 1− ε
1 with prob. ε

Define z ∈ {0, 1}R by zj = xπ(j) ⊕ yj ⊕ µj .

With prob. 1/2 check f (x)⊕ g(y)⊕ g(z) = 0,
and with prob. 1/2 check f (x)⊕ g(y)⊕ g(z̄) = 1

Completeness: If g(y) = yb and f (x) = xπ(b), (1− ε) of the 3LIN
constraints are satisfied (whenever µb = 0).

Easy calculation

For odd k , probability that xor of k long codes (i.e., linear function of k

variables) satisfies the tested 3LIN constraint equals 1
2 + (1−2ε)k

2 .

Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 41 / 1



3LIN test with noise

Sample x , y ∈ {0, 1}R independently and u.a.r.

Sample µ ∈ {0, 1}R as follows: for each j ∈ [R] independently

µj =

{
0 with prob. 1− ε
1 with prob. ε

Define z ∈ {0, 1}R by zj = xπ(j) ⊕ yj ⊕ µj .

With prob. 1/2 check f (x)⊕ g(y)⊕ g(z) = 0,
and with prob. 1/2 check f (x)⊕ g(y)⊕ g(z̄) = 1

Completeness: If g(y) = yb and f (x) = xπ(b), (1− ε) of the 3LIN
constraints are satisfied (whenever µb = 0).

Easy calculation

For odd k , probability that xor of k long codes (i.e., linear function of k

variables) satisfies the tested 3LIN constraint equals 1
2 + (1−2ε)k

2 .

Venkatesan Guruswami (CMU) Approximability of CSPs Oct 2009 41 / 1



Soundness for general functions

By expressing f , g (or rather (−1)f , (−1)g ) as a linear combination of
linear functions (“Fourier-Walsh” expansion), can prove that if (1/2 + δ)
of the 3LIN checks are satisfied, then there must exist

S ,T ⊂ [R], |S |, |T | 6 c(δ, ε), S ∩ π(T ) 6= ∅

for which f (resp. g) has non-trivial agreement with the linear function⊕
i∈S xi (resp.

⊕
j∈T yj).

In fact, ∃ distributions Df and Dg on 2[R] for which above happens with

good probability (for (S ,T ) ∈R Df × Dg ).

∃ a randomized “decoding” procedure Dec mapping a Boolean function on
{0, 1}R to [R] such that, when f , g satisfy above condition,

Pr
[
Dec(f ) = π(Dec(g))

]
> α(δ, ε) .
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Overall reduction from Label Cover

Plug in long code test on functions fu, gv for every edge e = (u, v) with
projection constraint πe .

Completeness (1− ε): Just use long codes of a satisfying assignment to
Label Cover instance.

Soundness (1/2 + 2δ): Contrapositive: Extract good labeling, satisfying
more than 1/Rγ0 constraints of Label Cover, if more than (1/2 + 2δ) of
3LIN constraints are satisfied.

Run Dec independently for each fu and each gv .

Averaging: > δ fraction of edges (u, v) are good, i.e., > (1/2 + δ) of
3LIN constraints on the long code test for (fu, gv ) are satisfied.

For each good edge, decoded labels are consistent with prob. α(δ, ε).

Labeling output by Dec satisfies expected δ · α(δ, ε) fraction of Label
Cover constraints.

Pick R large enough so that δ · α(δ, ε) > R−γ0 .
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Approximation resistance
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Beating random assignment

Max E3LIN-Mod-2, Max E3SAT, Max 4-set splitting, etc. are
approximation resistant, in the sense that beating the mindless
random assignment algorithm is NP-hard.

Max 2SAT, Max CUT, Max 2CSP admit non-trivial approximations
(via semidefinite programming).

Question

Which predicates lead to approximation resistant Max CSPs?
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Some results

Every 2CSP (over any domain [q]) is not approximation resistant.
[Goemans-Williamson], [Engebretsen-G], [Håstad]

Bounded occurrence CSPs approximable beyond random assignment
threshold [Håstad]

Complete answer for Boolean 3CSPs

Approximation resistant iff implied by parity or its complement,
otherwise admits non-trivial approximation. [Håstad] + [Zwick]

[Hast] classified 354 of the 400 essentially different arity 4 Boolean CSPs
(79 approximation resistant).
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Approximation resistance results

Large k :

Boolean kCSP with 2O(
√

k) satisfying assignments that is
approximation resistant. [Samorodnitsky-Trevisan], [Håstad-Khot]

No predicate with 6 c · k satisfying assignments is approximation
resistant [Hast; Charikar-Makarychev-Makarychev]

Random predicate is approx. resistant w.h.p. [Håstad]∗

If there is a pairwise independent distribution supported within the
satisfying assignments of the predicate, then it is approximation resistant∗

[Austrin-Mossel]

Implies earlier result of [Samorodnitsky-Trevisan] that Max kCSP is
hard to approximate with a factor Θ(k/2k)∗

For more details, go to Per Austrin’s talk.

∗
assuming the Unique Games conjecture
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Approximability of 2CSPs

Label Cover + Long Code (LC2) framework =⇒ many powerful hardness
results for CSPs of arity 3 and above.

What about 2CSPs where SDPs give non-trivial (and sometimes bizarre
irrational) approximation ratios?

Good 2-query tests for testing consistency (as per projection π) of a pair
of purported long codes f , g?

Here’s a natural test (that “saves” one query in Håstad’s test):

Pick x ∈ {0, 1}R u.a.r, and noise vector µ ∈ {0, 1}R s.t. µl = 0 with
prob. 1− ε for each l ∈ [R].

For each j ∈ [R], set yj = xπ(j) ⊕ µj .

With prob. 1/2, check f (x)⊕ g(y) = 0,
with prob. 1/2, check f (x)⊕ g(ȳ) = 1.
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Pick x ∈ {0, 1}R u.a.r, and noise vector µ ∈ {0, 1}R s.t. µl = 0 with
prob. 1− ε for each l ∈ [R].

For each j ∈ [R], set yj = xπ(j) ⊕ µj .

With prob. 1/2, check f (x)⊕ g(y) = 0,
with prob. 1/2, check f (x)⊕ g(ȳ) = 1.
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Good test?

Query y ∈ {0, 1}R to table g is highly non-uniform.

y ≈ x ◦ π reveals lot of information about π: yk = yl

wheneverπ(k) = π(l) and independent otherwise.

Thus can “piece together” many inconsistent g , say a different long
code for each part of the hypercube corresponding to the different
projection constraints πe in which w participates.

No hope of decoding a single global label `(w) for w .

What would/could fix this?
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Unique Games CSP

Khot’s insight: This problem goes away if π is a bijection.

In this case, y is uniformly distributed (since x is); gives no clue
about π!

Reduce from special case of LabelCover(R) called UniqueGames(R).

Same as Label Cover, except for each e ∈ E , the projection constraint πe

is a bijection. Formally, instance consists of

1 Bipartite graph G = (V ,W ,E ).

2 For each (v ,w) ∈ E , a bijection πw→v : [R]→ [R].

Goal: Find labeling ` : V ∪W with maximum “value”, where value =
fraction of edges (v ,w) ∈ E , πw→v (`(w)) = `(v).

Example of UniqueGames(R): E2-Lin-mod-R.

Equations of form xi − xj ≡ cij (mod R).
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Complexity of Unique Games

Theorem (Easy)

Given a UniqueGames(R) instance, telling if it is satisfiable (i.e., admits
labeling with value 1) is in P.

Unique Games conjecture — UGC [Khot]

For every ε, δ > 0, there is a large enough R such that given an instance I
of UniqueGames(R), it is hard to distinguish between the following two
cases:

1 I admits a labeling with value > 1− ε.

2 All labelings to I have value 6 δ.

Small amount of noise renders problem inapproximable...
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Why UGC?

UGC has some powerful implications:

Many optimal inapproximability results: Vertex Cover on graphs and
hypergraphs, every CSP, every ordering CSP.

Led to new integrality gap constructions (and important consequences
for metric embeddings)

Notorious conjecture; no consensus either way ...

Seemingly no plausible avenue to prove it currently?
Suffices to prove conjecture for δ = 0.99, or even δ = 1− ε0.51.

Attempts to disprove (based on natural SDP) have failed, but
potential of strengthened SDPs not fully ruled out.

Not approximation resistant (it is a 2CSP).
≈ 1/Rε/2 approximation known. Any improvement would refute UGC.
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Back to Boolean 2CSPs

Testing bijection constraint π(b) = a given purported long codes f , g of
a, b:

Pick x ∈ {0, 1}R u.a.r, and ε-biased noise vector µ ∈ {0, 1}R .

Set y = x ◦ π ⊕ µ, i.e., for each j ∈ [R], yj = xπ(j) ⊕ µj .

With prob. 1/2, check f (x)⊕ g(y) = 0,
with prob. 1/2, check f (x)⊕ g(ȳ) = 1.

Now that π is a bijection, turns out it is enough to just test one function
(essentially assume π = Id).
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Dictatorship testing

Given access to f : {0, 1}R → {0, 1}.
Make few queries to f , according to some clever distribution, and check
constraint Γ on queried bits.

Γ corresponds to target CSP of interest. Eg. for Max CUT, check
f (x) 6= f (y).

Aim: Test must distinguish dictator functions from functions far from
every dictator.

Completeness For every i ∈ [R], if f is the dictator function f (x) = xi ,
test accepts with probability > c .

Soundness If Influencei (f ) is “small” for every i ∈ [R], then test accepts
with probability 6 s.

Influencei (f ) = Prx [f (x) 6= f (x ⊕ ei )]

Why dictatorship tests?
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Dictatorship test for Max Cut

Parameter ρ > 1/2.
Testing a function f : {0, 1}R → {0, 1}

Pick x ∈ {0, 1}R u.a.r.

For each j ∈ [R],

yj =

{
xj with prob. 1− ρ
xj with prob. ρ

Check the CUT constraint f (x) 6= f (y), accept if so.

Completeness

When f a dictator, say f (x) = xi ,
Probability test accepts = ρ.
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Dictatorship test for Max Cut

Soundness

What’s the best f that has no influential coordinates?

Answer: Majority function.
Also, Prx ,y [Maj(x) 6= Maj(y)]→ arc cos(1−2ρ)

π for large R.

Theorem (Majority is Stablest (Mossel-O’Donnell-Oleszkiewicz))

For all ρ > 1/2 and ε > 0, there is a small enough τ = τ(ρ, ε) > 0 s.t. if

Prx ,y [f (x) 6= f (y)] > arc cos(1−2ρ)
π + ε,

then for some i ∈ [R], Influencei (f ) > τ .

Therefore, get ρ− ε vs. arc cos(1−2ρ)
π + ε gap (for any 1/2 < ρ < 1).

or 1−cos θ
2 − ε vs. θ

π + ε where θ = arc cos(1− 2ρ) ∈ (π/2, π).

Same as SDP optimum vs. cut found by random hyperplane rounding!

Optimizing over θ, gives 0.8785.. hardness factor for Max CUT
[Khot-Kindler-Mossel-O’Donnell]
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Approximate polymorphism perspective

Polymorphism combines many satisfying assignments to produce a new
satisfying assignment.

Dictator/projection functions ⇔ trivial polymorphism

“Approximate polymorphism” combines assignments satisfying Opt
fraction of constraints to a new assignment.

Dictator function: preserves fraction Opt of satisfied constraints.

What’s the best non-influential polymorphism?
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Approximate polymorphisms for Max CUT

Majority is a (non-trivial) polymorphism for CSP(cut).

In the context of Max CUT:

Majority is the best “low-influence” approximate polymorphism.

Given R distributions over assignments that satisfy a specific cut
constraint with probability ρ

coordinate-wise majority satisfies that constraint with probability

≈ arc cos(1−2ρ)
π

And this is largest possible for combining functions with no influential
variable.

More about this in Prasad Raghavendra’s talk after lunch.
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Constructing dictatorship tests

For Max Cut, we “cooked” up a natural test.

In general, how to get a good dictatorship test for a CSP?

Very general answer [Raghavendra]

Can convert any integrality gap instance for the “canonical” semidefinite
program into dictatorship test with matching parameters!

Instance with SDP opt c and integral optimum s =⇒ Dictatorship
test with completeness c − ε and soundness s + ε.

Proof proceeds via a rounding algorithm for the SDP.

Corollary

Assuming UGC, the canonical SDP delivers the best possible
approximation ratio, for every CSP.
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Recall the SDP

Local integral distributions that are consistent on pairs + positive
semidefiniteness of pairwise joint probabilities.

Maximize
∑

(h,S)∈C Ex∼µ(h,S)
[h(x)] subject to:

1
∑

a∈[q]〈vi ,a, vi ,a〉 = 1 ∀i

2 µ(h,S)(x) > 0 and
∑

x µ(h,S)(x) = 1 ∀(h, S) ∈ C.

3 〈vi ,a, vj ,b〉 = Prx∼µ(h,S)

[
xi = a ∧ xj = b

]
∀(h,S) ∈ C; xi , xj ∈ S ; a, b ∈ [q].

Dictatorship test for function f : [q]R → {0, 1}:
Pick a random constraint (h,S) ∈ C. Let k = |S | be its arity.

Pick k vectors y (1), y (2), · · · , y (k) ∈ [q]R where for each i ∈ [R]

independently, the i ’th coordinates (y
(1)
i , y

(2)
i , · · · , y (k)

i ) ∈R µ(h,S) are
chosen as per the local integral distribution.∗

Check the constraint h
(
f (y (1)), f (y (2)), . . . , f (y (k))

)
∗

Actually, one samples from a slightly noisy version of µ(h,S)
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Canonical SDP for Boolean case

Unit vectors vi for variables xi , and a global unit vector b0 (representing
False).

Value of any constraint on xi , xj can be expressed as linear function of
〈b0, vi 〉, 〈b0, vj〉, and 〈vi , vj〉.
SDP maximizes sum of this linear function over all constraints, subject to

〈b0, b0〉 = 1; 〈vi , vi 〉 = 1 ∀i

And the “triangle inequalities”

〈(b0 ± vi ), (b0 ± vj)〉 > 0

for all i , j for which xi , xj participate in a constraint.
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A permutation problem

Topological sorting: Given a directed acyclic graph, can order its vertices
so that all edges go forward.

What if digraph is only “nearly” acyclic, say 1% of the edges need to
be removed to make it acyclic?

Can one find an ordering such that most of the edges go forward?

Equivalently, find acyclic subgraph with maximum fraction of edges.

Picking a random ordering (or better of any ordering and its reverse) finds
acyclic subgraph with at least 1/2 the edges.

Theorem [G.-Manokaran-Raghavendra]

Assuming UGC, this is best possible.
∀ε, δ > 0, given a (1− ε)-acyclic graph, it is UG-hard to find an acyclic
subgraph with (1/2 + δ) edges.
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Max Acyclic Subgraph as a CSP

Max Acyclic Subgraph can be expressed “like” a 2CSP:

Variables = vertices of graph

Edge x → y = constraint x < y

Large domain [n] where n = number of vertices.

Even though it is not a usual 2CSP due to growing domain size,
UniqueGames hardness shown by relating it to a “proxy” CSP over a
bounded domain.
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Ordering CSP

Ordering constraint of arity k = subset Π of k! possible permutations

MAS: xi < xj Π = {12}
Betweenness: xj between xi and x`.

Π = {123, 321} applied to triple (xi , xj , x`).

Instance of ordering kCSP Π:

Input: n variables and collection of k-tuples of variables.

Goal: Find global ordering for which max. fraction of input k-tuples
are locally ordered according to a permutation in Π.

Theorem (Charikar, G., Håstad, Manokaran)

Every ordering CSP is approximation resistant.

UG-hard to distinguish (1− ε)-satisfiable instances from at most
|Π|
k! + δ-satisfiable instances, for any ε, δ > 0.
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Summary

Lot of progress on approximability of CSPs, both from algorithms and
hardness side.

Natural semidefinite programming relaxation + suitable rounding ⇒
best known approximation algorithms for all CSPs.

In fact, achieves the optimal approximation ratio, under the Unique
Games conjecture.

Many unconditional tight hardness results also known

Show approximation resistance of several CSPs
A 2CSP called Label Cover is the canonical starting point, of which
Unique Games is a particularly nice special case
Reduction method: Long code + dictatorship testing.

“Approximate polymorphisms” (with low influences) give an
explanation for the source of a CSP’s approximation threshold.
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Some Challenges

1 Prove or disprove the Unique Games conjecture.

2 Approximability of satisfiable CSPs?

3 Classification of approximation resistant CSPs?
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