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ABSTRACT. One way of studying a relational structure is to investigate func-
tions which are related to that structure and which leave certain aspects of
the structure invariant. Examples are the automorphism group, the self-
embedding monoid, the endomorphism monoid, or the polymorphism clone
of a structure. Such functions can be particularly well understood when the
relational structure is countably infinite and has a first-order definition in an-
other relational structure which has a finite language, is totally ordered and
homogeneous, and has the Ramsey property. This is because in this situation,
Ramsey theory provides the combinatorial tool for analyzing these functions —
in a certain sense, it allows to represent such functions by functions on finite
sets.

This is a survey of results in model theory and theoretical computer sci-
ence obtained recently by the authors in this context. In model theory, we
approach the problem of classifying the reducts of countably infinite ordered
homogeneous Ramsey structures in a finite language, and certain decidability
questions connected with such reducts. In theoretical computer science, we use
the same combinatorial methods in order to classify the computational com-
plexity for various classes of infinite-domain constraint satisfaction problems.
While the first set of applications is obviously of an infinitary character, the
second set concerns genuinely finitary problems — their unifying feature is that
the same tools from Ramsey theory are used in their solution.
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1. Introduction

“I prefer finite mathematics much more than infinite mathematics. I think that it
18 much more natural, much more appealing and the theory is much more
beautiful. It is very concrete. It is something that you can touch and something
you can feel and something to relate to. Infinity mathematics, to me, is something
that is meaningless, because it is abstract nonsense.”

(Doron Zeilberger, February 2010)

“To the person who does deny infinity and says that it doesn’t exist, I feel sorry
for them, I don’t see how such view enriches the world. Infinity may be does not
exist, but it is a beautiful subject. I can say that the stars do not exist and always
look down, but then I don’t see the beauty of the stars. Until one has a real reason
to doubt the existence of mathematical infinity, I just don’t see the point.”

(Hugh Woodin, February 2010)

Sometimes, infinite mathematics is not just beautiful, but also useful, even when
one is ultimately interested in finite mathematics. A fascinating example of this
type of mathematics is the recent theorem by Kechris, Pestov, and Todorcevic [32],
which links Ramsey classes and topological dynamics. A class of finite structures C
closed under isomorphisms, induced substructures, and with the joint embedding
property (see [28]) is called a Ramsey class [38,39] (or has the Ramsey property)
if for all P,H € C and every k > 2 there is a S € C such that for every coloring
of the copies of P in S with k colors there is a copy H' of H in C such that all
copies of P in H’ have the same color. This is a very strong requirement — and
certainly from the finite world. Proving that a class has the Ramsey property can
be difficult [38], and Ramsey theory rather provides a tool box than a theory to
answer this question.

Kechris, Pestov, and Todorcevic [32] provide a characterization of such classes
in topological dynamics, connecting Ramsey classes with extreme amenability in
(infinite) group theory, a concept from the 1960s [27]. The result can be used
in two directions. One can use it to translate deep existing Ramsey results into
proofs of extreme amenability of topological groups (and this is the main focus of
the already cited article [32]). One can also use it in the other direction to ob-
tain a more systematic understanding of Ramsey classes. A key insight for this
direction is the result of Nesetfil (see [39]) which says that Ramsey classes C have
the amalgamation property. Hence, by Fraissé’s theorem, there exists a countably
infinite homogeneous and w-categorical structure I' such that a finite structure is
from C if and only if it embeds into I'. The structure I' is unique up to isomor-
phism, and is called the Fraissé limit of C. Now let D be any amalgamation class
whose Fralssé limit A is bi-interpretable with I'. By the theorem of Ahlbrandt
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and Ziegler [3], two w-categorical structures are first-order bi-interpretable if and
only if their automorphism groups are isomorphic as (abstract) topological groups.
In addition, the above-mentioned result from [32] shows that whether or not D is
a Ramsey class only depends on the automorphism group Aut(A) of A; in fact,
and much more interestingly, it only depends on Aut(A) viewed as a topological
group (which has cardinality 2¢). From this we immediately get our first example
where [32] is used in the second direction, with massive consequences for finite
structures: the Ramsey property is preserved under first-order bi-interpretations.
We will see another statement of this type (Proposition 24) and more concrete
applications of such statements later (in Section 5, Section 7, and Section 8).

Constraint Satisfaction. Our next example where infinite mathematics is
a powerful tool comes from (finite) computer science. A constraint satisfaction
problem is a computational problem where we are given a set of variables and a set
of constraints on those variables, and where the task is to decide whether there is an
assignment of values to the variables that satisfies all constraints. Computational
problems of this type appear in many areas of computer science, for example in
artificial intelligence, computer algebra, scheduling, computational linguistics, and
computational biology.

As an example, consider the BETWEENNESS problem. The input to this problem
consists of a finite set of variables V| and a finite set of triples of the form (x,y, 2)
where z,y,z € V. The task is to find an ordering < on V such that for each of the
given triples (z,y, z) we have either x < y < z or z < y < z. It is well-known that
this problem is NP-complete [24,43], and that we therefore cannot expect to find
a polynomial-time algorithm that solves it. In contrast, when we want to find an
ordering < on V such that for each of the given triples (z,y, z) we have z < y or
x < z, then the corresponding problem can be solved in polynomial time.

Many constraint satisfaction problems can be modeled formally as follows. Let
I" be a structure with a finite relational signature. Then the constraint satisfaction
problem for T, denoted by CSP(I'), is the problem of deciding whether a given
primitive positive sentence ¢ is true in I'. By choosing I'" appropriately, many
problems in the above mentioned application areas can be expressed as CSP(T).
The BETWEENNESS problem, for instance, can be modeled as CSP((Q; Betw)) where
Q are the rational numbers and Betw = {(z,y,2) € Q® |z <y <zVz<y <z}

Note that even though the structure I' might be infinite, the problem CSP(T")
is always a well-defined and discrete problem. Since the signature of T is finite, the
complexity of CSP(T") is independent of the representation of the relation symbols
of T in input instances of CSP(I"). The task is to decide whether there exists an
assignment to the variables of a given instance, and we do not have to exhibit such
a solution. Therefore, the computational problems under consideration are finitistic
and concrete even when the domain of T is, say, the real numbers.

There are many reasons to formulate a discrete problem as CSP(I") for an
infinite structure I'. The advantages of such a formulation are most striking when
I" can be chosen to be w-categorical. In this case, the computational complexity of
CSP(T) is fully captured by the polymorphism clone of T'; the polymorphism clone
can be seen as a higher-dimensional generalization of the automorphism group of
I'. When studying polymorphism clones, we can apply techniques from universal



4 MANUEL BODIRSKY AND MICHAEL PINSKER

algebra, and, as we will see here, from Ramsey theory to obtain results about the
computational complexity of CSP(T).

Contributions and Outline. In this article we give a survey presentation
of a technique how to apply Ramsey theory when studying automorphism groups,
endomorphism monoids, and polymorphism clones of countably infinite structures
with a first-order definition in an ordered homogeneous Ramsey structure in a finite
language — such structures are always w-categorical. We present applications of this
technique in two fields. Let A be a countable structure with a first-order definition
in an ordered homogeneous Ramsey structure in a finite language. In model theory,
our technique can be used to classify the set of all structures I" that are first-order
definable in A. In constraint satisfaction, it can be used to obtain a complete
complexity classification for the class of all problems CSP(I") where T is first-order
definable in A. We demonstrate this for A = (Q;<), and for A = (V; E), the
countably infinite random graph.

2. Reducts

One way to classify relational structures on a fixed domain is by identifying
two structures when they define one another. The term “define” will classically
stand for “first-order define”, i.e., a structure I'y has a first-order definition in a
structure I's on the same domain iff all relations of I'; can be defined by a first-order
formula over I'y. When I'y has a first-order definition in I's and vice-versa, then
two structures are considered equivalent up to first-order interdefinability.

Depending on the application, other notions of definability might be suitable;
such notions include syntactic restrictions of first-order definability. In this paper,
besides first-order definability, we will consider the notions of existential positive
definability and primitive positive definability; in particular, we will explain the
importance of the latter notion in theoretical computer science in Section 8.

The structures which we consider in this article will all be countably infinite,
and we will henceforth assume this property without further mentioning it. A
structure is called w-categorical if all countable models of its first-order theory are
isomorphic. We are interested in the situation where all structures to be classified
are reducts of a single countable w-categorical structure in the following sense (which
differs from the standard definition of a reduct and morally follows e.g. [46]).

DEFINITION 1. Let A be a structure. A reduct of A is a structure with the
same domain as A all of whose relations can be defined by a first-order formula in

A.

When all structures under consideration are reducts of a countably infinite base
structure A which is w-categorical, then there are natural ways of obtaining classi-
fications up to first-order, existential positive, or primitive positive interdefinability
by means of certain sets of functions. In this section, we explain these ways, and
give some examples of classifications that have been obtained in the past. In the
following sections, we then observe that these results have actually been obtained
in a more specific context than w-categoricity, namely, where the structures are
reducts of an ordered Ramsey structure A which has a finite relational signature
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and which is homogeneous in the sense that every isomorphism between finite in-
duced substructures of A can be extended to an automorphism of A. We further
develop a general framework for proving such results in this context.

We start with first-order definability. Consider the assignment that sends every
structure I' with domain D to its automorphism group Aut(I'). Automorphism
groups are closed sets in the convergence topology of all permutations on D, and
conversely, every closed permutation group on D is the automorphism group of a
relational structure with domain D. The closed permutation groups on D form a
complete lattice, where the meet of a set of groups is given by their intersection.
Similarly, the set of those relational structures on D which are first-order closed, i.e.,
which contain all relations which they define by a first-order formula, forms a lattice,
where the meet of a set S of such structures is the structure which has those relations
that are contained in all structures in S. Now when I is a countable w-categorical
structure, then it follows from the proof of the theorem of Ryll-Nardzewki (see [28])
that its automorphism group Aut(T") still has the first-order theory of I' encoded
in it. And indeed we can, up to first-order interdefinability, recover I' from its
automorphism group as follows: For a set F of finitary functions on D, let Inv(F)
be the structure on D which has those relations R which are invariant under F,
i.e., those relations that contain f(r1,...,r,) (calculated componentwise) whenever
feFandry,...,r, € R.

THEOREM 2. Let A be w-categorical. Then the mapping I' — Aut(I') is an
antiisomorphism between the lattice of first-order closed reducts of A and the lattice
of closed permutation groups containing Aut(A). The inverse mapping is given by

G — Inv(G).

This connection between closed permutation groups and first-order definability
has been exploited several times in the past in order to obtain complete classifi-
cations of reducts of w-categorical structures. For example, let A be the order of
the rational numbers — we write A = (Q; <). Then it has been shown in [20] that
there are exactly five reducts of A, up to first-order interdefinability, which we will
define in the following.

On the permutation side, let «» be the function that sends every x € Q to —z.
For our purposes, we can equivalently choose < to be any permutation that inverts
the order < on Q. For any fixed irrational real number «, let O be any permutation
on Q with the property that z < y < o < u < v implies O(u) < O(v) < O(x) <
O(y), for all z,y,u,v € Q. We will consider closed groups generated by these
permutations: For a set of permutations F and a closed permutation group G, we
say that F generates G iff G is the smallest closed group containing F.

On the relational side, for z1,...,z, € Q write Z; ...z, when z; < ... < .
Then we define a ternary relation Betw on Q by Betw := {(z,y,2) € Q* | zyzVzyz}.
Define another ternary relation Cycl by Cycl:= {(x,y,z) € Q3 | zyz V yzz V zzy}.
Finally, define a 4-ary relation Sep by

{(z1,y1,22,y2) € Q" | T1T2y1 5 V T1Y2y1Ts V 12221y V Y1Y22173
VZoZT1Y2y1 V T2y Ya®i V YaZ1Z2Y1 V Y2y1T2T1 ) -
THEOREM 3 (Cameron [20]). Let I’ be a reduct of (Q;<). Then exactly one of
the following holds:

o T is first-order interdefinable with (Q; <); equivalently,
Aut(T) = Aut((Q; <)).
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T is first-order interdefinable with (Q; Betw); equivalently, Aut(T") equals
the closed group generated by Aut((Q; <)) and <.

T is first-order interdefinable with (Q; Cycl); equivalently, Aut(T') equals
the closed group generated by Aut((Q; <)) and O.

T is first-order interdefinable with (Q; Sep); equivalently, Aut(T') equals
the closed group generated by Aut((Q; <)) and {—,O}.

o T is first-order interdefinable with (Q;=); equivalently, Aut(I") equals the
group of all permutations on Q.

Another instance of the application of Theorem 2 in the classification of reducts
up to first-order interdefinability has been provided by Thomas [46]. Let G =
(V; E) be the random graph, i.e., the up to isomorphism unique countably infinite
graph which is homogeneous and which contains all finite graphs as induced sub-
graphs. It turns out that up to first-order interdefinability, G has precisely five
reducts, too.

On the permutation side, observe that the graph G obtained by making two
distinct vertices x,y € V adjacent iff they are not adjacent in G is isomorphic to
G; let — be any permutation on V witnessing this isomorphism. Moreover, for any
fixed vertex 0 € V, the graph obtained by making all vertices which are adjacent
with 0 non-adjacent with 0, and all vertices different from 0 and non-adjacent with
0 adjacent with 0, is isomorphic to G. Let sw be any permutation on V witnessing
this fact.

On the relational side, define for all k > 2 a k-ary relation R®*) on V by

R® .= {(21,...,23) | all z; are distinct,

and the number of edges on {x1,...,zx} is odd}.

THEOREM 4 (Thomas [46]). LetI' be a reduct of the random graph G = (V; E).
Then exactly one of the following holds:

T is first-order interdefinable with G; equivalently, Aut(I') = Aut(G).

T is first-order interdefinable with (V; R®)); equivalently, Aut(I') equals
the closed group generated by Aut(G) and sw.

T is first-order interdefinable with (V; R™); equivalently, Aut(I') equals
the closed group generated by Aut(G) and —.

T is first-order interdefinable with (V; R®)); equivalently, Aut(T") equals
the closed group generated by Aut(G) and {sw,—}.

o T is first-order interdefinable with (V;=); equivalently, Aut(T") equals the
group of all permuations on V.

In a similar fashion, the reducts of several prominent w-categorical structures
A have been classified up to first-order interdefinability by finding all closed super-
groups of Aut(A). Examples are:

e The countable homogeneous K, -free graph, i.e., the unique countable
homogeneous graph which contains precisely those finite graphs which do
not contain a clique of size n as induced subgraphs, has 2 reducts up to
first-order interdefinability (Thomas [46]), for all n > 3.

e The countable homogeneous k-hypergraph has 2% + 1 reducts up to first-
order interdefinability (Thomas [47]), for all £ > 2.
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e The structure (Q; <,0), i.e., the order of the rationals which in addition
“knows” one of its points, has 116 reducts up to first-order interdefinability
(Junker and Ziegler [31]).

All these examples have in common that the structures have a high degree of
symmetry in the sense that they are homogeneous in a finite language — intuitively,
one would expect the automorphism group of such a structure to be rather large.
And indeed, Thomas conjectured in [46]:

CONJECTURE 5 (Thomas [46]). Let A be a countable relational structure which
is homogeneous in a finite language. Then A has finitely many reducts up to first-
order interdefinability.

It turns out that all the examples above are not only homogeneous in a finite
language; in fact, they all have a first-order definition in (in other words: are
themselves reducts of ) an ordered Ramsey structure which is homogeneous in a finite
language. Functions on such structures, in particular automorphisms of reducts,
can be analyzed by the means of Ramsey theory, and we will outline a general
method for classifying the reducts of such structures in Sections 3 to 6.

We now turn to analogs of Theorem 2 for syntactic restrictions of first-order
logic. A first-order formula is called existential iff it is of the form 3z ...3z,. ¢,
where ¢ is quantifier-free. It is called existential positive iff it is existential and
does not contain any negations. Now observe that similarly to permutation groups,
the endomorphism monoid End(A) of a relational structure A with domain D is
always closed in the pointwise convergence topology on the space of all functions
from D to D, and that every closed transformation monoid M acting on D is the
endomorphism monoid of the structure Inv(M), i.e., the structure with domain
D which contains those relations which are invariant under all functions in M.
Note also that the set of closed transformation monoids on D, ordered by inclusion,
forms a complete lattice, and that likewise the set of all existential positive closed
structures forms a complete lattice. The analog to Theorem 2 for existential positive
definability is an easy consequence of the homomorphism preservation theorem
(see [28]) and goes like this:

THEOREM 6. Let A be w-categorical. Then the mapping T' — End(T") is an an-
titsomorphism between the lattice of existential positive closed reducts of A and the

lattice of closed transformation monoids containing Aut(A). The inverse mapping
is given by M — Inv(M).

All the closed monoids containing the group of all permutations on a countably
infinite set D (which equals the automorphism group of the empty structure (D;=))
have been determined in [8], and their number is countably infinite. Therefore, ev-
ery structure has infinitely many reducts up to existential positive interdefinability.
In general, it will be impossible to determine all of them, but sometimes it is al-
ready useful to determine certain closed monoids, as in the following theorem about
endomorphism monoids of reducts of the random graph from [14]. We need the
following definitions. Since the random graph G = (V; E) contains all countable
graphs, it contains an infinite clique. Let eg be any injective function from V to V'
whose image induces such a clique in G. Similarly, let ey be any injection from V'
to V whose image induces an independent set in G.

THEOREM 7 (Bodirsky and Pinsker [14]). Let T’ be a reduct of the random
graph G = (V; E). Then at least one of the following holds.
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End(T") contains a constant operation.

End(T") contains eg.

End(T") contains ey .

Aut(T) is a dense subset of End(T") (equipped with the topology of pointwise
convergence).

Theorem 7 states that for reducts I' of the random graph, either End(T") con-
tains a function that destroys all structure of the random graph, or it contains ba-
sically no functions except the automorphisms. This has the following non-trivial
consequence. A theory T is called model-complete iff every embedding between
models of T' is elementary, i.e., preserves all first-order formulas. A structure is
said to be model-complete iff its first-order theory is model-complete.

COROLLARY 8 (Bodirsky and Pinsker [14]). All reducts of the random graph
are model-complete.

PROOF. It is not hard to see (cf. [14]) that an w-categorical structure I' is
model-complete if and only if Aut(I") is dense in the monoid of self-embeddings of
I'. Now let I be a reduct of G, and let M be the closed monoid of self-embeddings of
I'; we will show that Aut(T") is dense in M. We apply Theorem 7 to M (which, as a
closed monoid containing Aut(G), is also an endomorphism monoid of a reduct I of
G). Clearly, I'" and I have the same automorphisms, namely those permutations in
M whose inverse is also in M. Therefore we are done if the last case of the theorem
holds. Note that M cannot contain a constant operation as all its operations are
injective. So suppose that M contains ey — the argument for ep is analogous. Let
R be any relation of I', and ¢ be its defining quantifier-free formula; ¢ i exists since
G has quantifier-elimination, i.e., every first-order formula over G is equivalent to a
quantifier-free formula. Let 1r be the formula obtained by replacing all occurrences
of E by false; so ¢g is a formula over the empty language. Then a tuple a satisfies
¢r in G iff ex(a) satisfies ¢ in G (because ey is an embedding) iff ey (a) satisfies
Yr in G (as there are no edges on ey(a)) iff en(a) satisfies g in the substructure
induced by enx[V] (since ¥ g does not contain any quantifiers). Thus, I is isomorphic
to the structure on e [V] which has the relations defined by the formulas ¢ ; hence,
I' is isomorphic to a structure with a first-order definition over the empty language.
This structure has, of course, all injections as self-embeddings, and all permutations
as automorphisms, and hence is model-complete; thus, the same is true for I'. [

It follows from [11, Proposition 19] that all reducts of the linear order of the
rationals (Q; <) are model-complete as well. This is remarkable, since similar struc-
tures do not have this property — for example, (Q; <, 0) is first-order interdefinable
with the structure (Q; <, [0, 00)) which is not model-complete.

We now turn to an even finer way of distinguishing reducts of an w-categorical
structure, namely up to primitive positive interdefinability. This is of importance
in connection with the constraint satisfaction problem from the introduction, as we
will describe in more detail in Section 8. We call a formula primitive positive iff it
is existential positive and does not contain disjunctions. A clone on domain D is
a set of finitary operations on D which contains all projections (i.e., functions of
the form (z1,...,2,) — ;) and which is closed under composition. A clone C is
closed (also called locally closed or local in the literature) iff for each n > 1, the set
of n-ary functions in C is a closed subset of the space DP", where D is taken to be
discrete. The closed clones on D form a complete lattice with respect to inclusion
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— the structure of this lattice has been studied in the universal algebra literature
(see [26], [44]). Similarly, the set of relational structures with domain D which
are primitive positive closed, i.e., which contain all relations which they define by
primitive positive formulas, forms a complete lattice. For a structure I', we define
Pol(T") to consist of all finitary operations on the domain of I" which preserve all
relations of T, i.e., an n-ary function f is an element of Pol(T") iff for all relations
R of T and all tuples 71, ...,7, € R the tuple f(r1,...,r,) is an element of R. It
is easy to see that Pol(I") is always a closed clone. Observe also that Pol(T") is a
generalization of End(T") to higher (finite) arities.

THEOREM 9 (Bodirsky and Nesettil [12]). Let A be w-categorical. Then the
mapping I' — Pol(T") is an antissomorphism between the lattice of primitive positive
closed reducts of A and the lattice of closed clones containing Aut(A). The inverse
mapping is given by C — Inv(C).

It turns out that even for the empty structure (X;=), the lattice of primitive
positive closed reducts is probably too complicated to be completely described —
the lattice has been thoroughly investigated in [8].

THEOREM 10 (Bodirsky, Chen, Pinsker [8]). The structure (X;=) (where X is
countably infinite), and therefore all countably infinite structures, have 28 reducts
up to primitive positive interdefinability.

Fortunately, it is sometimes sufficient in applications to understand only parts
of this lattice. We will see examples of this in Section 8.

3. Ramsey Classes

While Theorems 2, 6 and 9 provide a theoretical method for determining reducts
of an w-categorical structure A by transforming them into sets of functions on A,
understanding these infinite objects could turn out difficult without further tools
for handling them. We will now focus on structures which have the additional
property that they are reducts of an ordered Ramsey structure that is homogeneous
in a finite relational signature; such structures are w-categorical since homogeneous
structures in a finite language are w-categorical and since reducts of w-categorical
structures are w-categorical. This is less restrictive than it might appear at first
sight: we remark that it could be the case that all homogeneous structures with a
finite relational signature are reducts of ordered homogeneous Ramsey structures
with a finite relational signature (that is, we do not know of a counterexample). It
turns out that in this context, certain infinite functions can be represented by finite
ones, making classification projects more feasible.

DEFINITION 11. A structure is called ordered iff it has a total order among its
relations.

DEFINITION 12. Let 7 a relational signature. For 7-structures S, H,P and an
integer k > 1, we write S — (M)} iff for every k-coloring x of the copies of P in
S there exists a copy H' of H in S such that all copies of P in H’' have the same
color under Y.

DEFINITION 13. A class C of finite 7-structures which is closed under isomor-
phisms, induced substructures, and with the joint embedding property (see [28]) is
called a Ramsey class iff it is closed under substructures and for all £ > 1 and all
H,P € C there exists S in C such that S — (H)7.
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DEFINITION 14. A relational structure is called Ramsey iff its age, i.e., the set
of finite structures isomorphic to a finite induced substructure, is a Ramsey class.

Examples of Ramsey structures are the dense linear order (Q; <) and the or-
dered random graph (V; E,<), i.e., the Fraissé limit of the class of finite ordered
graphs. We remark that the random graph itself is not Ramsey, but since it is a
reduct of the ordered random graph, the methods we are about to expose apply as
well.

We will now see that one can find regular patterns in the behavior of any
function acting on an ordered Ramsey structure which is w-categorical.

DEFINITION 15. Let T" be a structure. The type tp(a) of an n-tuple a € T' is
the set of first-order formulas with free variables x1,...,z, that hold for a in T'.

We recall the classical theorem of Ryll-Nardzewski about the number of types
in w-categorical structures.

THEOREM 16 (Ryll-Nardzewski). The following are equivalent for a countable
structure T' in a countable language.

o [ is w-categorical, i.e., any countable model of the theory of I is isomor-
phic to T.
o [ has for alln > 1 only finitely many different types of n-tuples.

We also mention that moreover, as a well-known consequence of the proof of
this theorem, two tuples in a countable w-categorical structure have the same type
if and only if there is an automorphism of I" which sends one tuple to the other.

DEFINITION 17. A type condition between two structures I'1, I's is a pair (¢1, t2),
where each t; is a type of an n-tuple in I';. A function f : I'y — I's satis-
fies a type condition (t1,t2) if for all n-tuples (ay,...,ay) of type t;, the n-tuple
(f(a'l)a ] f(an)) is of type ta.

A behavior is a set of type conditions between two structures. A function has
behavior B if it satisfies all the type conditions of the behavior B. A behavior B is
called complete iff for all types t; of tuples in I'; there is a type t5 of a tuple in I's
such that (¢1,t2) € B.

A function f : 'y — I’y is canonical iff it has a complete behavior. If F C I'q,
then we say that f is canonical on F' if its restriction to F' is canonical.

Observe that the function < of Theorem 3 is canonical for the structure (Q; <).
The function O is not, but it is canonical on each of the intervals (—oo,a) and
(o, 00). For the random graph, the function — of Theorem 4 is canonical, while
sw is canonical on V' \ {0}. Also, sw is canonical as a function from (V;E,0) to
(V; E), where (V; E,0) denotes the structure obtained from (V; E') by adding a new
constant symbol for the element 0 by which we defined the function sw. Moreover,
the constant function and eg, ey of Theorem 7 are canonical on (V; E). We will
now show that it is no coincidence that canonical functions are that ubiquitous.

DEFINITION 18. Let A be a structure. A property P holds for arbitrarily large
finite substructures of A iff for all finite substructures F' C A there is a copy of F’
in A for which P holds.

The following observation is just an easy application of the definition of a
Ramsey class, but crucial in understanding functions on ordered Ramsey structures.
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LEMMA 19. Let A be ordered Ramsey and w-categorical, and let f : A — A.
Then f is canonical on arbitrarily large finite substructures.

The proof goes along the following lines: Let F' be any finite substructure of A.
Then the function f induces a mapping from the tuples in A to the set of types in
A (each tuple is sent to the type of its image under f). If we restrict this mapping
to tuples of length at most the size of F, then since A is w-categorical, the range
of this restriction is finite by Theorem 16, and thus is a k-coloring of tuples for
some finite k. Now apply the Ramsey property once for every type of tuple that
occurs in F' — see [16] for details. We remark that this lemma would be false if one
dropped the order assumption, which implies that coloring induced substructures
and coloring tuples in A are one and the same thing.

The motivation for working with ordered Ramsey structures is the rough idea
that all “important” functions can be assumed to be canonical. While this is
simply false when stated boldly like this, it is still true for some functions when
the idea is further refined, as we will show in the following. Observe that if A
is w-categorical, then for each n > 1 there are only finitely many possible type
conditions for n-types over A (Theorem 16). Suppose that A has in addition a finite
language and quantifier elimination, i.e., every first-order formula in the language
of A is equivalent to a quantifier-free formula over A; this follows in particular from
homogeneity in a finite language. Then, if n(A) is the largest arity of its relations,
then a function f : A — A is canonical iff for every type ¢; of an n(A)-tuple in
A there is a type to in A such that f satisfies the type condition (¢1,t2). In other
words, the complete behavior of f is already determined by its behavior on n(A)-
types. Hence, a canonical function on A is essentially a function on the n(A)-types
of A — a finite object.

DEFINITION 20. Let f,g: A — A. We say that f generates g over A iff g is
contained in the smallest closed monoid containing f and Aut(A). Equivalently,
for every finite subset F' of A, there exists a term o foajo foago---0 foay,
where 3, a; € Aut(A), which agrees with g on F.

PROPOSITION 21. Let A be a structure in a finite language which is ordered,
Ramsey, and homogeneous. Let f : A — A. Then f generates a canonical function

g:A— A

FIRST PROOF. Let (F});c, be an increasing sequence of finite substructures of
A such that |J;c,, F; = A. By Lemma 19, for each i € w we find a copy Fj of
F; in A on which f is canonical. Since there are only finitely many possibilities
of canonical behavior, one behavior occurs an infinite number of times; thus, by
thinning out the sequence, we may assume that the behavior is the same on all F.
By the homogeneity of A, there exist automorphisms «; of A sending F; to F}, for
all i € w. Also, since the behavior on all the F is the same, we can inductively pick
automorphisms 3; of A such that 8,11 o f o a1 agrees with 8; o f o a; on Fj, for
all ¢ € w. The union over the functions §; o f o «; : F; — A is a canonical function
on A. O

SECOND PROOF. The identity function id : A — A is generated by f and is
canonical. 0

The problem with the preceding lemma is the second proof, which makes it
trivial. What we really want is that f generates a canonical function g which
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represents f in a certain sense — it should be possible to retain specific properties
of f when passing to the canonical functions. For example, we could wish that if
f violates a certain relation, then so does g; or, if f is not an automorphism of A,
we will look for a canonical function g which is not an automorphism of A either.

We are now going to refine our method, and fix constants ¢y, ..., ¢, such that
f ¢ Aut(A) is witnessed on {c1,...,c,}. We then consider f as a function from
(A)c1,y...,¢n) to A, where (A, ¢q,...,c,) denotes the expansion of A by the con-
stants c1,...,c,. It turns out that f is canonical on arbitrarily large substructures
of (A eq,...,¢,), and that it generates a canonical function g : (A, ¢q,...,¢,) = A
which agrees with f on ci,...,cp,; in particular, g is not an automorphism of A,
and the problem of triviality in Proposition 20 no longer occurs. In order to do
this, we must assure that (A, ¢y,...,¢,) still has the Ramsey property. This leads
us into topological dynamics.

4. Topological Dynamics

We have seen in the previous section that our approach crucially relies on the
fact that when an ordered homogeneous Ramsey structure is expanded by finitely
many constants, the expansion is again Ramsey (it is clear that the expansion
is again ordered and homogeneous). To prove this, we use a characterization in
topological dynamics of those ordered homogeneous structures which are Ramsey.

Recall that a topological group is an (abstract) group G together with a topology
on the elements of G such that (z,y) — xy~! is continuous from G? to G. In other
words, we require that the binary group operation and the inverse function are
continuous.

DEFINITION 22. A topological group is extremely amenable iff any continuous
action of the group on a compact Hausdorff space has a fixed point.

Kechris, Pestov and Todorcevic have characterized the Ramsey property of the
age of an ordered homogeneous structure by means of extreme amenability in the
following theorem.

THEOREM 23 (Kechris, Pestov, Todorcevic [32]). Let A be an ordered homoge-
neous relational structure. Then the age of A has the Ramsey property iff Aut(A)
is extremely amenable.

This theorem can be applied to provide a short and elegant proof of the follow-
ing.

PROPOSITION 24 (Bodirsky, Pinsker and Tsankov [16]). Let A be ordered,
Ramsey, and homogeneous, and let cy,...,c, € A. Then (A, cq,...,¢,) is Ramsey
as well.

When A is ordered, Ramsey, and homogeneous, then Aut(A) is extremely
amenable. Note that the automorphism group of (A, e¢,...,¢,) is an open sub-
group of Aut(A). The proposition thus follows directly from the following fact —
confer [16].

LEMMA 25. Let G be an extremely amenable group, and let H be an open
subgroup of G. Then H is extremely amenable.
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5. Minimal Functions

The results of the preceding section provide a tool for “climbing up” the lat-
tice of closed monoids containing the automorphism group of an ordered Ramsey
structure which is homogeneous and has a finite language.

DEFINITION 26. Let C,D be closed clones. Then D is called minimal above C
iff D D C and there are no closed clones between C and D.

Observe that transformation monoids can be identified with those clones which
have the property that all their functions depend on only one variable. Hence,
Definition 26 also provides us with a notion of a minimal closed monoid above
another closed monoid.

It follows from Theorem 9 and Zorn’s Lemma that if A is an w-categorical
structure in a finite language, then every closed clone containing Pol(A) contains
a minimal closed clone above Pol(A). Similarly, as a consequence of Theorem 6,
every closed monoid containing End(A) contains a minimal closed monoid.

For closed permutation groups, minimality can be defined analogously. Then
Theorem 2 implies that for w-categorical structures A in a finite language, every
closed permutation group containing Aut(A) contains a minimal closed permutation
group above Aut(A).

Clearly, if a closed clone D is minimal above C, then any function f € D\ C
generates D with C (i.e., D is the smallest closed clone containing f and C) — similar
statements hold for monoids and groups. In the case of clones and monoids and in
the setting of reducts of ordered Ramsey structures which are homogeneous in a
finite language, we can standardize such generating functions. This is the contents
of the coming subsections.

5.1. Minimal unary functions. Adapting the proof of Lemma 21, with the
use of the Proposition 24, one can show the following.

LEMMA 27. Let A be ordered, Ramsey, homogeneous, and of finite language.
Let f : A — A, and let c1,...,¢cn, € A. Then f together with Aut(A) generates a
function which agrees with f on {c1,...,c,} and which is canonical as a function
from (Ajcq,...,c,) to A

Let I" be a finite language reduct of a structure A which is ordered, Ramsey,
homogeneous, and of finite language, and let A” be a minimal closed monoid con-
taining End(T"). Then, setting n(T") to be the largest arity of the relations of T,
we can pick constants ¢y, ..., ¢y € I' and a function f € A\ End(I") such that
[ ¢ End(T") is witnessed on {c1, ..., cyr)}. By the preceding lemma, f and Aut(A)
generate a function g which behaves like f on {cy, ..., ¢y} and which is canonical
as a function from (A, cy,...,cyr)) to A. This function g, together with End(I"),
generates A. Since there are only finitely many choices for the type of the tuple
(c1,...,¢cpq)) and for each choice only finitely many behaviors of functions from
(A, c1,..,cpm)) to A, we get the following.

PROPOSITION 28 (Bodirsky, Pinsker, Tsankov [16]). Let T' be a finite lan-
guage reduct of a structure A which is ordered, Ramsey, homogeneous, and of
finite language. Then the number of minimal closed monoids above End(T') is
finite, and each such monoid is generated by End(T') plus a canonical function
g:(Acr,...,comy) — A, for constants ci, ..., cyry €T,
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Since for every relation R of I' we can add its negation to the language, we get
the following

COROLLARY 29. Let M be the monoid of self-embeddings of a finite-language
structure T' which is a reduct of a structure A which is ordered, Ramsey, homoge-
neous, and of finite language. Then the number of minimal closed monoids above
M is finite, and each such monoid is generated by M and a canonical function
g:(Ayer, .. cqm) = AL

The following is an example for the random graph G = (V;E). Since G
is model-complete, its monoid of self-embeddings is just the topological closure
(Aut(GQ)) of Aut(G) in the space V. Therefore, the minimal closed monoids
above the monoid of self-embeddings of G are just the minimal closed monoids
above (Aut(G)).

THEOREM 30 (Thomas [47]). Let G = (V; E) be the random graph. The min-
imal closed monoids containing (Aut(G)) are the following:

e The monoid generated by a constant operation with Aut(G).
The monoid generated by eg with Aut(Q).

The monoid generated by ey with Aut(G).

The monoid generated by — with Aut(G).

The monoid generated by sw with Aut(G).

5.2. Minimal higher arity functions. We now generalize the concepts from
unary functions and monoids to higher arity functions and clones.

DEFINITION 31. Let A be a structure. For 1 < i < m and a tuple x in the
power A™ . we write x; for the i-th coordinate of x. The type of a sequence of tuples
al,...,a™ € A™, denoted by tp(al,...,a"), is the cartesian product of the types
of (a},...,al) in A.

With this definition, the notions of type condition, behavior, complete behav-
ior, and canonical generalize in complete analogy from functions f : I'y — I's to
functions f : I'T* — I'g, for structures I'y,I's. It can be shown that for ordered
structures, the Ramsey property is not lost when going to products; an example of
a proof can be found in [16].

PRrROPOSITION 32. Let A be ordered and Ramsey, and let m > 1. Let moreover
a number k > 1, an n-tuple (a',...,a") € A™, and finite F; C A be given for
1 < i < m. Then there exist finite S; C A with the property that whenever the
n-tuples in Sy x - -+ x Sy, of type tp(al,...,a") are colored with k colors, then there
are copies F of F; in S; such that the coloring is constant on F{ x -+ x F/ .

We remark that Proposition 32 does not hold in general if A is not assumed to
be ordered — an example for the random graph can be found in [14]. Similarly to
the unary case (Proposition 28), one gets the following.

PrOPOSITION 33 (Bodirsky, Pinsker, Tsankov [16]). Let I be a finite lan-
guage reduct of a structure A which is ordered, Ramsey, homogeneous and of finite
language. Then every minimal closed clone above Pol(T") is generated by Pol(T)
and a canonical function g @ (Ajep,...,cp)™ — A, where m > 1, k > 0, and
C1,-.-,ck € A, Moreover, m only depends on the number of n(T)-types in T (and
not on the clone), and k only depends on m and n(T'), and the number of minimal
closed clones above Pol(T") is finite.
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In the case of minimal closed clones above an endomorphism monoid, the arity
of the generating canonical functions can be further reduced as follows.

PROPOSITION 34 (Bodirsky, Pinsker, Tsankov [16]). Let I be a finite language
reduct of a structure A which is ordered, Ramsey, homogeneous and of finite lan-
guage. Then every minimal closed clone above End(T") is generated by End(T") and
a canonical function g : (A, c1,...,comy) — A, or by End(T") and a canonical func-
tion g : (A,c1,...,em)™ — A, where m only depends on the number of 2-types in
T (and not on the clone). In particular, the number of minimal closed clones above
End(T) is finite.

Using this technique, the minimal closed clones containing the automorphism
group of the random graph G = (V; E) have been determined. In the following, let
f : V2 — V be a binary operation; we now define some possible behaviors for f.
We say that f is

o of type py iff for all x1,x9,y1,y2 € V with 21 # x5 and y; # y» we have
E(f(21,91), f(22,92)) if and only if E(21, z2);

o of type max iff for all x1,z9,y1,y2 € V with z1 # x5 and y; # yo we have
E(f(z1,y1), f(z2,y2)) if and only if E(x1,22) or E(y1,y2);

e balanced in the first argument iff for all z1,20,y € V with x1 # zo we
have E(f(z1,y), f(z2,y)) if and only if E(x1,z2);

e balanced in the second argument iff (z,y) — f(y,x) is balanced in the first
argument;

e FE-dominated in the first argument iff for all xq,x9,y € V with 21 # x4
we have that E(f(z1,y), f(22,1));

o E-dominated in the second argument iff (z,y) — f(y,x) is E-dominated
in the first argument.

The dual of an operation f(z1,...,z,) on V is defined by — f(—z1,...,—z,).

THEOREM 35 (Bodirsky and Pinsker [14]). Let G = (V; E) be the random
graph, and let C be a minimal closed clone above (Aut(G)). Then C is generated by
Aut(Q) together with one of the unary functions of Theorem 30, or by Aut(G) and
one of the following canonical operations from G2 to G:

e q binary injection of type p1 that is balanced in both arguments;

e q binary injection of type max that is balanced in both arguments;

e a binary injection of type max that is E-dominated in both arguments;

e a binary injection of type p1 that is E-dominated in both arguments;

e a binary injection of type p1 that is balanced in the first and E-dominated
i the second argument;

e the dual of one of the last four operations.

In [15], the technique of canonical functions was applied again to climb up
further in the lattice of closed clones above Aut(G) — we will come back to this in
Section 8.

Another example are the minimal closed clones containing all permutations of
a countably infinite base set X. Observe that the set Sx of all permutations on X
is the automorphism group of the structure (X; =) which has no relations.

THEOREM 36 (Bodirsky and Kdra [10]; cf. also [8]). The minimal closed clones
containing (Sx) on a countably infinite set X are:
e The closed clone generated by Sx and any constant operation;
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e The closed clone generated by Sx and any binary injection.

Observe that any constant operation and any binary injection on X are canon-
ical operations for the structure (X;=).

We end this section with a last example which lists the minimal closed clones
containing the self-embdeddings of the dense linear order (Q;<). As with the
random graph and the empty structure, since (Q; <) is model-complete it follows
that the monoid of self-embeddings of (Q; <) is just the closure of Aut((Q; <)) in
Q.

Let lex be a binary operation on Q such that lex(a,b) < lex(a’,b") iff either
a<a ora=ad and b <V, forall a,a’,b,b’ € Q. Observe that lex is canonical as
a function from Q? to Q. Next, let pp be an arbitrary binary operation on Q such
that for all a,a’,b,b’ € Q we have pp(a,b) < pp(a’,b’) iff one of the following cases
applies:

e a<0anda<da;

e 0<a,0<a,and b<V.
The name of the operation pp stands for “projection-projection”, since the opera-
tion behaves as a projection to the first argument for negative first argument, and
a projection to the second argument for positive first argument. Observe that pp
is canonical if we add the origin as a constant to the language. Finally, define the
dual of an operation f(z1,...,2,) on Q by < (f(«(z1),...,<(zn))).

THEOREM 37 (Bodirsky and Kéra [11]). Let (Q; <) be the order of the rationals,
and let C be a minimal closed clone above (Aut((Q;<))). Then C is generated by
Aut((Q; <)) together with one of the following operations:

e a constant operation;
the operation «;

the operation O;

the operation lex;
the operation pp;

the dual of pp.

6. Decidability of Definability

We turn to another application of the ideas of the last sections. Consider the
following computational problem for a structure I': Input are quantifier-free formu-
las ¢g, ..., ¢, in the language of I' defining relations Ry, ..., R, on the domain of
I', and the question is whether Ry can be defined from Ry, ..., R,. Asin Section 2,
“defined” can stand for “first-order defined” or syntactic restrictions of this notion.
We denote this computational problem by Expr,,(I') and Expr,,(T') if we consider
existential positive and primitive positive definability, respectively.

For finite structures I' the problem Expr, (') is in co-NEXPTIME (and in
particular decidable), and has recently shown to be co-NEXPTIME-hard [49]. For
infinite structures I', the decidability of Expr,,(T') is not obvious. An algorithm
for primitive positive definability has theoretical and practical consequences in the
study of the computational complexity of CPSs (which we will consider in Sec-
tion 8). It is motivated by the fundamental fact that expansions of structures I" by
primitive positive relations do not change the complexity of CSP(T"). On a practi-
cal side, it turns out that hardness of a CSP can usually be shown by presenting
primitive positive definitions of relations for which it is known that the CSP is
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hard. Therefore, a procedure that decides primitive positive definability of a given
relation might be a useful tool to determine the computational complexity of CSPs.

Using the methods of the last sections, one can show decidability of Expr,, (")
and Expr,, (') for certain infinite structures I'. The following uses the same termi-
nology as in [35].

DEFINITION 38. We say that a class C of finite 7-structures (or a 7-structure
with age C) is finitely bounded if there exists a finite set of finite T-structures F
such for all finite 7-structures A we have that A € C iff no structure from F embeds
into A.

THEOREM 39 (Bodirsky, Pinsker, Tsankov [16]). Let A be ordered, Ramsey,
homogeneous, and of finite language, and let T' be a finite language reduct of A.
Then Expr,,(I') and Expr,, (') are decidable.

Examples of structures A that satisfy the assumptions of Theorem 39 are
(Q; <), the Fraissé limit of ordered finite graphs (or tournaments [39]), the Fraissé
limit of finite partial orders with a linear extension [39], the homogeneous universal
‘naturally ordered’ C-relation [13], just to name a few. CSPs for structures that
are definable in such structures are abundant in particular for qualitative reasoning
calculi in Artificial Intelligence.

We want to point out that that decidability of primitive positive definability
is already non-trivial when I is trivial from a model-theoretic perspective: for the
case that I' is the structure (X;=) (where X is countably infinite), the decidability
of Expr,,(I') has been posed as an open problem in [8]. Theorem 39 solves this
problem, since (X;=) is isomorphic to a reduct of the structure (Q; <), which is
clearly finitely bounded, homogeneous, ordered, and Ramsey.

The proof of Theorem 39 goes along the following lines, and is based on the
results of the last sections. We outline the algorithm for Expr,,(I'); the proof
for Expr,,(I') is a subset. So the input are formulas ¢y, ..., #, defining relations
Ry, ..., R,, and we have to decide whether Ry has a primitive positive definition
from Ry,..., R,. Let © be the structure which has R1,..., R, as its relations. By
Theorem 9, Ry is not primitive positive definable from R;,..., R, if and only if
there is a finitary function f € Pol(©) which violates Ry. By the ideas of the last
section, such a polymorphism can be chosen to be canonical as a function from
(Ajcr,y ..., e6)™ to A, where ¢; € A. Such canonical functions are essentially finite
objects since they can be represented as functions on types. Therefore, the algo-
rithm can then check for a given canonical function whether it is a polymorphism
of ©® and whether it violates Ry. Also, k and m can be calculated from the input,
and so there are only finitely many complete behaviors to be checked. Finally, the
additional assumption that A be finitely bounded allows the algorithm to check
whether a function on types really comes from a function on A. We refer to [16]
for details.

7. Interpretability

Many w-categorical structures can be derived from other w-categorical struc-
tures via first-order interpretations. In this section we will discuss the fact already
mentioned in the introduction that bi-interpretations can be used to transfer the
Ramsey property from one structure to another. A special type of interpretations,
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called primitive positive interpretations, will become important in Section 8. The
definition of interpretability we use is standard, and follows [28].

When A is a structure with signature 7, and §(z1,...,zx) is a first-order 7-
formula with the k free variables z1, ..., s, we write 6(A¥) for the k-ary relation
that is defined by ¢ over A.

DEFINITION 40. A relational o-structure T" has a (first-order) interpretation
in a 7-structure A if there exists a natural number d, called the dimension of the
interpretation, and

e a 7-formula §(z1,...,z4) — called domain formula,

e for each k-ary relation symbol R in o a 7-formula ¢r(Z1,...,Tr) where
the T; denote disjoint d-tuples of distinct variables — called the defining
formulas,

e a 7-formula ¢—(z1,...,2Z4,Y1,-.-,Yd), and

e a surjective map h : 6(A%) — T' — called coordinate map,
such that for all relations R in I' and all tuples @; € 5(A?)
(h(@1),...,h(ar)) € R & A ¢gr(ar,...,a;), and
h(al) = h(ag) S A ): ¢:(61,62) .

If the formulas J, ¢, and ¢— are all primitive positive, we say that I has a
primitive positive interpretation in A; many primitive positive interpretations can
be found in Section 8. We say that I' is interpretable in A with finitely many
parameters if there are c¢1,..., ¢, € A such that I' is interpretable in the expansion
of A by the singleton relations {¢;} for all 1 <4 < n. First-order definitions are
a special case of interpretations: a structure I' is (first-order) definable in A if T'
has an interpretation in A of dimension one where the domain formula is logically
equivalent to true.

LEMMA 41 (see e.g. Theorem 7.3.8 in [28]). If A is an w-categorical struc-
ture, then every structure I that is first-order interpretable in A with finitely many
parameters is w-categorical as well.

The following nicely describes interpretability between structures in terms of
the (topological) automorphism groups of the structures.

THEOREM 42 (Ahlbrandt and Ziegler [3]; also see Theorem 5.3.5 and 7.3.7
in [28]). Let A be an w-categorical structure with at least two elements. Then a
structure I' has a first-order interpretation in A if and only if there is a continuous
group homomorphism f : Aut(A) — Aut(T") such that the image of f has finitely
many orbits in its action on T'.

Note that if I'; has a d-dimensional interpretation I in I'y, and I's has an
e-dimensional interpretation J in I's, then I's has a natural ed-dimensional inter-
pretation in I'y, which we denote by J o I. To formally describe J o I, suppose that
the signature of I'; is 7; for i = 1, 2,3, and that I = (d, 0, (¢r) Rery, =, h) where d is
the dimension, § the domain formula, ¢— and (¢r)ger, the interpreting relations,
and h the coordinate map. Similarly, let J = (e,7, (¥r)rers, ¥=,¢9). We use the
following.

LEMMA 43 (Theorem 5.3.2 in [28]). Let I'1,T'o, I as in the preceding paragraph.
Then for every first-order To-formula ¢(x1,...,xx) there is 7 -formula

I/..1 d 1 d
¢ (:L'la'"axlw"amka"ka)
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such that for all ay,...,ap € §((I'1)9)
Ty b g(h(ar), - h(ax)) & Ty o' (an,..ax)

We can now define the interpretation J o I as follows: the domain formula 7
is v/, and the defining formula for R € 73 is (¢)g)!. The coordinate map is from

n((T'1)¢?) — T'3, and defined by

(al,....af,... al,. .. a?) — g(h(al,...,al),... h(al,... a?)).

Two interpretations of I' in A with coordinate maps h; and ho are called
homotopic if the relation {(Z,§) | h1(Z) = h2(§)} is definable in A. The identity
interpretation of a structure I' is the 1-dimensional interpretation of I' in I' whose
coordinate map is the identity. Two structures I' and A are called bi-interpretable
if there is an interpretation I of I in A and an interpretation J of A in I" such that
both I o J and J o I are homotopic to the identity interpretation (of I' and of A,
respectively).

THEOREM 44 (Ahlbrandt and Ziegler [3]). Two w-categorical structures I' and
A are bi-interpretable if and only if Aut(T") and Aut(A) are isomorphic as topolog-
ical groups.

As a consequence of this result and Theorem 23 we obtain the following.

COROLLARY 45. For ordered bi-interpretable w-categorical homogeneous struc-
tures I' and A, one has the Ramsey property if and only if the other one has the
Ramsey property.

We give an example. This corollary can be used to deduce that an important
structure studied in temporal reasoning in artificial intelligence has the Ramsey
property. For the relevance of this fact in constraint satisfaction, see Section 8.

We have already mentioned that the age of (Q; <) has the Ramsey property.
Let T be the structure whose elements are pairs (x,y) € Q? with z < y, representing
intervals, and which contains all binary relations R over those intervals such that the
relation {(z,y,u,v) | ((x,y), (u,v)) € R} is first-order definable in (Q; <). Hence,
I has a 2-dimensional interpretation I in (Q; <), whose coordinate map h; is the
identity map on D := {(z,y) € Q* | z < y}.

The structure I' is known under the name Allen’s Interval Algebra in arti-
ficial intelligence. We claim that its age has the Ramsey property. Using the
homogeneity of (Q; <), it is easy to show that I' is homogeneous as well. By
Corollary 45, it suffices to show that I' and (Q; <) are bi-interpretable. We first
show that (Q; <) has an interpretation J in I'. The coordinate map ho of J maps
(x,y) € D to x. The formula ¢—_(a,b) is Ro(a,b) where Ry is the binary relation
{((z,y), (u,v)) | £ = u} from T'. The formula ¢ (a,b) is Ry(a,b) where R; is the
binary relation {((z,y), (u,v)) | z < u}.

We prove that J o I is homotopic to the identity interpretation of (Q;<) in
(Q;<). This holds since the relation {(x,y,u) € Q3 | ha(hi(z,y)) = u} has the
first-order definition = w in (Q; <). To show that IoJ is homotopic to the identity
interpretation, observe that the relation {(a,b,c) € D3 | hi(ha(a), h2(b)) = c} has
the first-order definition Rg(a,c) A R3(b,¢) in T, where Ry is the binary relation
from I as defined above, and R3 is the binary relation {((z,y), (u,v)) € I'? | x = v}
from I'. This shows that I' and (Q; <) are bi-interpretable.
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8. Complexity of Constraint Satisfaction

In recent years, a considerable amount of research concentrated on the com-
putational complexity of CSP(T") for finite structures I'. Feder and Vardi [22]
conjectured that for such T, the problem CSP(I) is either in P, or NP-complete®.
This conjecture has been fascinating researchers from various areas, for instance
from graph theory [40] and from finite model theory [4,22,33]. It has been dis-
covered that complexity classification questions translate to fundamental questions
in universal algebra [19,29], so that lately also many researchers in universal alge-
bra started to work on questions that directly correspond to questions about the
complexity of CSPs.

For arbitrary infinite structures I' it can be shown that there are problems
CSP(T") that are in NP, but neither in P nor NP-complete, unless P=NP. In fact, it
can be shown that for every computational problem P there is an infinite structure
I’ such that P and CSP(I") are equivalent under polynomial-time Turing reduc-
tions [9]. However, there are several classes of infinite structures I' for which the
complexity of CSP(T") can be classified completely.

In this section we will see three such classes of computational problems; they
all have the property that

e every problem in this class can be formulated as CSP(I") where T" has a
first-order definition in a base structure A;
e A is ordered homogeneous Ramsey with finite signature.

For all three classes, the classification result can be obtained by the same method,
which we describe in the following two subsections.

8.1. Climbing up the lattice. Clearly, if we add relations to a structure I'
with a finite relational signature, then the CSP of the structure thus obtained is
computationally at least as complex as the CSP of I'. On the other hand, when
we add a primitive positive definable relation to I', then the CSP of the resulting
structure has a polynomial-time reduction to CSP(T"). This is not hard to show,
and has been observed for finite domain structures in [30]; the same proof also
works for structures over an infinite domain.

LEMMA 46. Let T' = (D;Ry,...,R;) be a relational structure, and let R be a
relation that has a primitive positive definition in T'. Then the problems CSP(T)
and CSP(D; R, Ry, ..., R)) are equivalent under polynomial-time reductions.

When we study the CSPs of the reducts I of a structure A, we therefore consider
the lattice of reducts of A which are closed under primitive positive definitions (i.e.,
which contain all relations that are primitive positive definable from the reduct),
and describe the border between tractability and NP-completeness in this lattice.
We remark that the reducts of A have, since we expand them by all primitive
positive definable relations, infinitely many relations, and hence do not define a
CSP; however, we consider I' tractable if and only if all structures obtained from
I" by dropping all but finitely many relations have a tractable CSP. Similarly, we
consider I' hard if there exists a structure obtained from I' by dropping all but
finitely many relations that has a hard CSP. With this convention, it is interesting to
determine the maximal tractable reducts, i.e., those reducts closed under primitive

1By Ladner’s theorem [34], there are infinitely many complexity classes between P and NP,
unless P=NP.
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positive definitions which do not contain any hard relation and which cannot be
further extended without losing this property.

Recall the notion of a clone from Section 2. By Theorem 9, the lattice of
primitive positive closed reducts of A and the lattice of closed clones containing
Aut(A) are antiisomorphic via the mappings I" — Pol(T") (for reducts I') and C —
Inv(C) (for clones C). We refer to the introduction of [8] for a detailed exposition of
this well-known connection. Therefore, the maximal tractable reducts correspond
to minimal tractable clones, which are precisely the clones of the form Pol(T") for a
maximal tractable reduct.

The proof strategy of the classification results presented in Sections 8.3, 8.4,
and 8.5 is as follows. We start by proving that certain reducts I' have an NP-hard
CSP. How to show this, and how to find those ‘basic hard reducts’ will be the topic
of the next subsection. Let R be one of the relations from those hard reducts. If R
does not have a primitive positive definition in I', then Theorem 9 implies that I'
has a polymorphism f that does not preserve R. We are now in a similar situation
as in Section 5. Introducing constants, we can show that f generates an operation
g that still does not preserve R but is canonical with respect to the expansion of I"
by constants. There are only finitely many canonical behaviours that g might have,
and therefore we can start a combinatorial analysis. In the three classifications that
follow, this strategy always leads to polymorphisms that imply that CSP(I") can
be solved in polynomial time.

8.2. Primitive positive interpretations, and adding constants. Sur-
prisingly, in all the classification results that we present in Sections 8.3, 8.4, and
8.5, there is a single condition that implies that a CSP is NP-hard. Recall that an
interpretation is called primitive positive if all formulas involved in the interpre-
tation (the domain formula, the formulas ¢r and ¢_) are primitive positive. The
relevance of primitive positive interpretations in constraint satisfaction comes from
the following fact, which is known for finite domain constraint satisfaction, albeit
not using the terminology of primitive positive interpretations [19]. In the present
form, it appears first in [6].

THEOREM 47. Let I' and A be structures with finite relational signatures. If

there is a primitive positive interpretation of I' in A, then there is a polynomial-time
reduction from CSP(T") to CSP(A).

All hardness proofs presented later can be shown via primitive positive inter-
pretations of Boolean structures (i.e., structures with the domain {0,1}) with a
hard CSP. In fact, in all such Boolean structures the relation NAE defined as

NAE = {0,1}*\ {(0,0,0), (1,1,1)}

is primitive positive definable. This fact has not been stated in the original pub-
lications; however, it deserves to be mentioned as a unifying feature of all the
classification results presented here. It is often more convenient to interpret other
Boolean structures than ({0,1};NAE), and to then apply the following Lemma.
An operation f : D¥ — D is called essentially a permutation if there exists an i
and a bijection g : D — D so that f(x1,...,x1) = g(x;) for all (zy,...,z) € DF.

LEMMA 48. Let A be a structure that interprets a Boolean structure T' such
that all polymorphisms of I' are essentially a permutation. Then the structure
({0,1}; NAE) has a primitive positive interpretation in A, and CSP(A) is NP-hard.
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PRrROOF. Since the polymorphisms of " preserve the relation NAE, and by the
well-known finite analog of Theorem 9 (due to [25] and independently, [17]), NAE
is primitive positive definable in I". When ¢ is such a primitive positive definition,
by substituting all relations in ¢ by their defining relations in A we obtain an
interpretation of ({0,1}; NAE) in A. Hardness of CSP(A) follows from the NP-
hardness of CSP(({0,1};NAE)) (this problem is called NOT-ALL-3-EQUAL-3SAT
n [24]) and Theorem 47. O

Typical Boolean structures I' such that all polymorphisms of I" are essentially a
permutation are the structure ({0, 1}; {(¢1,t2,¢3,t4) € {0,1} | t1 +t2 +1t3+ ¢4 = 2},
the structure ({0,1}; 1IN3), or the structure ({0,1}; NAE) itself.

Sometimes it is not possible to give a primitive positive interpretation of the
structure ({0,1}; NAE) in T', but it is possible after expanding I" with constants.
Under an assumption about the endomorphism monoid of I', however, introducing
constants does not change the computational complexity of I". More precisely, we
have the following.

THEOREM 49 (Theorem 19 in [5]). Let T’ be an w-categorical structure with
a finite relational signature such that Aut(T') is dense in End(T"). Then for any
finite number of elements c1,...,c of I' there is a polynomial-time reduction from

CSP((T, {c1, }, ..., {ck})) to CSP(D).

8.3. Reducts of equality. One of the most fundamental classes of w-categorical
structures is the class of all reducts of (X;=), where X is an arbitrary countably
infinite set. Up to isomorphism, this is exactly the class of countable structures
that are preserved by all permutations of their domain. The other two classes of
w-categorical structures that we will study here both contain this class.

We go straight to the statement of the complexity classification in terms of
primitive positive interpretations. This is essentially a reformulation of a result
from [10] which has been formulated without primitive positive interpretations. It
turns out that when I is preserved by the operations from one of the minimal clones
above the clone generated by all the permutations of X, then CSP(T") can be solved
in polynomial time, and otherwise CSP(T") is NP-hard.

THEOREM 50 (essentially from [10]). Let I be a reduct of (X;=). Then ezactly
one of the following holds.

e I' has a constant endomorphism. In this case, CSP(I") is trivially in P.

e T' has a binary injective polymorphism. In this case, CSP(T') is in P.

o All relations with a first-order definition in (X;=) have a primitive posi-
tive definition in T'. Furthermore, the structure ({0,1};NAE) has a prim-
itive positive interpretation in I', and CSP(I") is NP-complete.

PROOF. It has been shown in [10] that CSP(T") is in P when I has a constant or
a binary injective polymorphism. Otherwise, by Theorem 36, every polymorphism
of I is generated by the permutations of X. Hence, every relation R with a first-
order definition in (X;=) is preserved by all polymorphisms of T, and it follows
from Theorem 9 that every relation is primitive positive definable in T'.
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This holds in particular for the relation Eg defined as follows.
Eg = {(x1,m2,y1,y2,21,22) € X° | (x1 =22 A1 # y2 A\ 21 # 22)
V(21 # T2 Ay1 = y2 A 21 # 22)
V(21 # 22 Ayt # Y2 A2 = 22)}
We now show that the structure ({0, 1}; 1IN3) has a primitive positive interpretation
in (X;Fg), which by Lemma 48 also shows that ({0,1};NAE) has a primitive
positive interpretation in (X; Eg) and that CSP(T") is NP-hard.

The dimension of the interpretation is 2, and the domain formula is ‘true’.
The formula ¢11ns (21, T2, Y1, Y2, 21, 22) 18 Eg(21, ¥2, Y1, Y2, 21, 22), and The formula
b=(1,72,Y1,Y2) is

3al) az,u1,Uz2,U3,Uq,21,22. A1 = A2 A E6(Cl1, az, Uy, U2, Uus, u4)
N Eg(u1,ug, 1,22, 21, 22) N Eg(us, ua, 21, 22, Y1, Y2)-

Note that the primitive positive formula ¢—(z1,z2,y1,¥y2) is equivalent to x; =
2o < y1 = yo. The map h maps (a1,a2) to 1 if a3 = ag, and to 0 otherwise. O

Note that both the constant and the binary injective operation are canonical
as functions over (X;=).

8.4. Reducts of the dense linear order. An extension of the result in the
previous subsection has been obtained in [11]; there, the complexity of the CSP for
all reducts of (Q; <) has been classified. By a theorem of Cameron, those reducts are
(again up to isomorphism) exactly the structures that are highly set-transitive [20],
i.e., structures I' such that for any two finite subsets A, B with |A| = |B| of the
domain there is an automorphism of I" that maps A to B.

The corresponding class of CSPs contains many computational problems that
have been studied in Artificial Intelligence, in particular in temporal reasoning [18,
37,48], but also in scheduling [36] or general theoretical computer science [23,43].
The following theorem is a consequence of results from [11]. Again, we show that
the hardness proofs in this class are captured by interpreting Boolean structures
with few polymorphisms via primitive positive interpretations with finitely many
parameters; this has not appeared in [11], so we provide the proof. The central
arguments in the classification follow the reduct classification technique based on
Ramsey theory that we present in this survey; see Figure 1 for an illustration of the
bottom of the lattice of reducts of (Q; <), and the border of tractability for such
reducts.

THEOREM 51 (essentially from [11]). Let I’ be a reduct of (Q; <). Then ezactly
one of the following holds.

e ' has one out of 9 binary polymorphisms (for a detailed description of
those see [11]), and CSP(T") is in P.

o Aut(T") is dense in End(T"), and the structure ({0, 1}; NAE) has a primitive
positive interpretation with finitely many parameters in I'. In this case,

CSP(T") is NP-complete.

Before we derive Theorem 51 from what has been shown in [11], we would like
to point to Figure 1 for an illustration of the clones that correspond to maximal
tractable reducts. The diagram also shows the constraint languages that just con-
tain one of the important relations Betw (introduced in the introduction), Cycl,
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<,

. mpete
FIGURE 1. An illustration of the classification result for temporal
constraint languages. Double-circles mean that the corresponding

operation has a dual generating a distinct clone which is not drawn
in the figure. For the definition of mi, min, mx, and 11, see [11].

Sep (Cycl and Sep already appeared in Section 2), Eg (which appeared earlier in
this section), T3, and —T3. Here, T3 stands for the relation

{(@,y,2) eQ | (x=y<2)V(@=2<y)},

and when R C QF, then —R denotes {(—ty,...,—t%) | (t1,...,tx) € R}.

The importance of those relations comes from the fact (shown in [11]) that
unless I' has one out of the 9 binary polymorphisms mentioned in Theorem 51 then
there is a primitive positive definition of at least one of the relations Betw, Cycl,
Sep, EG, Tg7 or —T3.

PRrROOF OF THEOREM 51. It has been shown in [11] that unless I has a con-
stant endomorphism, Aut(T") is dense in End(T"). We have already seen that there
is a primitive positive interpretation of ({0,1};NAE) in structures isomorphic to
(Q; Eg).

Now suppose that T3 is primitive positive definable in I'.  We give below a
primitive positive interpretation of the structure ({0,1};1IN3) in A = (Q;T5,0).
Hence, there is also a primitive positive definition of ({0, 1}; 1IN3) in the expansion
of T' by the constant 0. Expansions by constants do not change the computational
complexity of CSP(T") since Aut(T") is dense in End(T"). Thus, Lemma 48 shows NP-
hardness of CSP(T"), and that ({0,1}; NAE) has a primitive positive interpretation
in (T, 0).
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The interpretation of ({0,1};1IN3) in A

e has dimension 2;
e the domain formula 6(xz1, z2) is T3(0, z1, 22);
e the formula ¢iins(21, 22, Y1, Y2, 21, 22) 18

Ju. T3(u, x1,y1) AT3(0,u,21) ;

e the formula ¢—(z1, 2, y1,2) is T3(0, 71, y2);

e the coordinate map h : §(A%) — {0,1} is defined as follows. Let (by,bs)
be a pair of elements of A that satisfies 6. Then exactly one of by, by must
have value 0, and the other element is strictly greater than 0. We define
h(b1,b2) to be 1 if by = 0, and to be 0 otherwise.

To see that this is the intended interpretation, let (1, x2), (y1,y2), (21, 22) € §(A?),
and suppose that ¢t := (h(x1,x2), h(y1, y2), h(21, 22)) = (1,0,0) € 1IN3. We have to
verify that (x1,x2,y1,y2, 21, 22) satisfies ¢11ns in A. Since h(z1,z2) = 1, we have
x1 = 0, and similarly we get that y;,2; > 0. We can then set v to 0 and have
T3(u,21,y1) since 0 = u = x1 < y1, and we also have T5(0,u, z1) since 0 = u < 2;.
The case that t = (0,1,0) is analogous. Suppose now that ¢t = (0,0,1) € 1IN3.
Then z1,y; > 0, and z; = 0. We can then set v to min(z,y;), and therefore
have T3(u,x1,y1), and T3(0,u, 21) since 0 = z; < u. Conversely, suppose that
(z1,22,Y1,Y2, 21, 22) satisfies ¢11n3 in A. Since T5(0, u, z1), exactly one out of u, 21
equals 0. When u = 0, then because of T5(u,z1,y;) exactly one out of z1,y;
equals 0, and we get that (h(x1,z2),h(y1,y2),h(z21,22)) € {(0,1,0),(1,0,0)} C
1IN3. When u > 0, then 21 > 0 and y; > 0, and so (h(z1, z2), h(y1,y2), h(21,22)) =
(0,0,1) € 1IN3.

An interpretation of ({0, 1}; 1IN3) in (Q; —T5,0) can be obtained in a dual way.

Next, suppose that Betw is primitive positive definable in I'. We will give a
primitive positive interpretation of ({0,1}; NAE) in (Q; Betw, 0). Hence, when Betw
has a primitive positive definition in T', then by Theorem 49 (since Aut(T") is dense
in End(T")) and Lemma 48 we obtain NP-hardness of CSP(T").

The dimension of the interpretation is one, and the domain formula is x # 0,
which is clearly equivalent to a primitive positive formula over (Q; Betw,0). The
map h maps positive points to 1, and all other points from Q to 0. The formula
b=(z1,91) is

Jz. Betw(z1,0, z) A Betw(z,0,y1)

Note that the primitive positive formula ¢— is over (Q; Betw, 0) equivalent to (1 >
0 < y; > 0). Finally, onag(x1,y1,21) 18

Ju. Betw(xy,u,y1) A Betw(u, 0, z1) .

If Sep has a primitive positive definition in I', then the statement follows eas-
ily from the previous argument since Betw(z,y,z) has a 1-dimensional primitive
positive interpretation in (Q; Sep) (the formula ¢ pew(,y, z) is Ju.Sep(u, x, y, 2)).

Finally, if Cycl is primitive positive definable in I', we give a 3-dimensional
primitive positive interpretation of the structure ({0,1}; R, ) where R = {0,1}3\
{(0,0,0)} and = = {(0,1),(1,0)}. The idea of the interpretation is inspired by the
NP-hardness proof of [23] for the ‘Cyclic ordering problem’ (see [24]).

The dimension of our interpretation is three, and the domain formula 6(x1, x2, x3)
is &1 # x9 A g # x3 A x3 # x1, which clearly has a primitive positive definition in
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(Q; Cycl). The coordinate map h sends (z1,x2,z3) to 0 if Cycl(xy, 2, x3), and to
1 otherwise.
Let ¢(x1,x2,x3,Y1,Y2,y3) be the formula

Cycl(xy,y1,x2) A Cycl(yr, v2,92) A Cycl(xz, y2, 3)
CyCl(y27 xs3, yd) A CyCl(x?n Y3, xl) A CZ/Cl(y?n X1, yl) .

When (ay, ..., aq) satisfies ¢, we can imagine aq, . .., ag as points that appear clock-
wise in this order on the unit circle. In particular, we then have that Cycl(ay,as, as)
holds if and only if Cycl(as,ay,ag) holds. The formula ¢—(z1, z2, x3, Y1, Y2, y3) is

1 4 1.1 .1
Juy, ..., uz. (a1, 22, T3, Uy, Us, Uz)A

i ] ] i+1 , i+1 |, i+1 4 .4 4
¢(uz1’u22’u§’ull+ vul2+ au‘?_ )A¢(U17U2,U3,y17y2,y3)7

~.

i=1

which is equivalent to

(w1, 2, w3) A d(y1, Y2, y3) A (Cycl(wr, 2, w3) & Cyclyr, ya, y3)) ;
this is tedious, but straightforward to verify, and we omit the proof.
The formula ¢—(x1, 22, T3, Y1,Y2,Yy3) is ¢=(x1, T2, T3, 21, 23, 22)-
The formula ¢r(x1,x2, T3, Y1, Y2, Ys, 21, 22, 23) 1S
Ja,b,c,d,e, f,g,h, 1,5, k,1,m,n. Cycla,c,j) A Cycl(b, j, k) A Cycl(c, k,1)
A Cycl(d, f,7) N Cycl(e, j, 1) A Cycl(f,1,m)
A Cycl(g,i, k) N Cycl(h, k,m) A Cycl(i,m,n)
A Cycl(n,m,l) A\ ¢p—(x1,x2,23,a,b,¢)
N d=(y1,Y2, 3, d, €, ) N p=(21, 22, 23, 9, h, 7)
The proof that for all tuples ai, as,as € Q3

(h(@1), h(as), h(@s)) € R < (Q; Cycl) = ¢r(ar, a2, as)

follows directly the correctness proof of the reduction presented in [23]. |

8.5. Reducts of the random graph. The full power of the technique that
is developed in this paper can be used to obtain a full complexity classification for
all reducts of the random graph G = (V; E) [15]. Again, the result can be stated in
terms of primitive positive interpretations — this is not obvious from the statement
of the result in [15], therefore we provide the proofs.

THEOREM 52 (essentially from [15]). Let T' be a reduct of the countably infinite
random graph G. Then exactly one of the following holds.

e I' has one out of 17 at most ternary canonical polymorphisms (for a de-
tailed description of those see [15]), and CSP(T) is in P.

o T' admits a primitive positive interpretation of ({0,1}; 1IN3). In this case,
CSP(T') is NP-complete.

PRrROOF. It has been shown in [15] that I" has one out of 17 at most ternary
canonical polymorphisms, and CSP(T") is in P, or one of the following relations has
a primitive positive definition in T': the relation Fg, or the relation T, H, or P®),
which are defined as follows. The 4-ary relation 7" holds on x1,xs,z3,24 € V if
x1, T2, T3, x4 are pairwise distinct, and induce in G either
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a single edge and two isolated vertices,

a path with two edges and an isolated vertex,

a path with three edges, or

a complement of one of the structures stated above.

To define the relation H, we write N (u,v) as a shortcut for F(u,v) A v # v. Then
H(mlv Y1,T2,Y2,23, yS) holds on V' if

N(u,v)
1,5€{1,2,3},i#j,u€{zs,yi },ve€{w;,y;}
A ((B(z1,91) A N(z2,y2) A N(23,93))
V (N(z1,y1) A E(z2,y2) A N(23,93))
V (N(z1,y1) A N(x2,y2) A E(xg,y3))) .

The ternary relation P®) holds on x1, s, x5 if those three vertices are pairwise
distinct and do not induce a clique or an independent set in G.

Suppose first that 7' is primitive positive definable in I'. Let R be the rela-
tion {(t1,ta,t3,t4) € {0,1} | t1 + t2 + ¢35 + t4 = 2}. We have already mentioned
that all polymorphisms of ({0,1}; R) are essentially permutations. To show that
({0,1}; NAE) has a primitive positive interpretation in I', we can therefore use
Lemma 48 and it suffices to show that there is a primitive positive interpretation
of the structure ({0,1}; R) in (V;T). For a finite subset S of V', write #S for the
parity of edges between members of S. Now we define the relation L C V¢ as
follows.

L:= {a: eVs | the entries of x are pairwise distinct, and

#{w1, 20, w3} = #{w4, 75,76} }

It has been shown in [15] that the relation L is pp-definable in (V;T). We therefore
freely use the relation L (and similarly #, the disequality relation) in primitive
positive formulas over (V;T).

Our primitive positive interpretation of ({0,1}; R) has dimension three. The
domain formula §(z1,22,23) is 1 # 2 A 1 # x3 A 3 # x3. The formula

dr(xt, 2, xi ... 2}, 23 23) of the interpretation is

Fy1, 92, Y3, Ya. T(Y1,---,Ya)

($1»$2,$37y27y3,y4)
/\L(J?%, QamSay17y37y4)
AL(x3, 23, 23, 1, Y2, Ya)

( 4

1

>

L(x ’ Q’mS’y17y27y3)

The formula ¢— is L(z1, 2, x5, y1,Y2,y3). Finally, the coordinate map sends a tuple

(a1,as,a3) for pairwise distinct a1, az, as to 1 if P (a1, az,as), and to 0 otherwise.
Next, suppose that H is primitive positive definable in I'. We give a 2-

dimensional interpretation of ({0,1};1IN3) in I. The domain formula is ‘“rue’.

The formula ¢—(x1,x2,y1,y2) is

321, 22, U1, ug, v1, v2. H(x1, 22, u1, U2, 21, 22) A N (u1,u2)

N H(z1, 22,v1,v2,y1,92) A N(v1,02) .
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This formula is equivalent to a primitive positive formula over T" since N(z,y) is
primitive positive definable by H. The formula ¢1in3(z1, 22, y1, Y2, 21, 22) is

3o, @, Yy, .21, 20 H (2, @9, 41, Y, 21, 25)
A ¢:($17$27x/1733,2) A ¢:('T17x27$/17xl2) A (;5:(1'1,.%'27.%'/1,33/2) :

The coordinate map sends a tuple (x1,z2) to 1 if E(z1,x2) and to 0 otherwise.

Finally, suppose that P®) has a primitive positive definition in I'. We give
a 2-dimensional primitive positive interpretation of ({0,1}; NAE). For k > 3, let
Q™) be the k-ary relation that holds for a tuple (zy,...,zx) € VF iff zy,... x4
are pairwise distinct, and (x1,...,2,) ¢ P®. It has been shown in [15] that
the relation Q) is primitive positive definable by the relation P®). Now, the
formula ¢— (1, 2, y1,y2) is Iz1, 20.QP (z1, T2, 21, 22) AQW (21, 22, Y1, y2). The for-
mula ¢nar(21, T2, Y1, Y2, 21, 22) is

Ju, v, w. PO (u, v, w) A QW (z1,22,u,v)
A Q(4)(y17 Y2, v, 'U}) A Q(4) (Zla Z2,W, u) .

The coordinate map sends a tuple (x1,z2) to 1 if E(z1,x2) and to 0 otherwise. O

9. Concluding Remarks and Further Directions

We have outlined an approach to use Ramsey theory for the classification of
reducts of a structure, considered up to existential positive, or primitive positive in-
terdefinability. The central idea in this approach is to study functions that preserve
the reduct, and to apply structural Ramsey theory to show that those functions
must act regularly on large parts of the domain. This insight makes those functions
accessible to combinatoral arguments and classification.

Our approach has been illustrated for the reducts of (Q; <), and the reducts of
the random graph (V; E). One application of the results is complexity classification
of constraint satisfaction problems in theoretical computer science. Interestingly,
the hardness proofs in those classifications all follow a common pattern: they are
based on primitive positive interpretations. In particular, we proved complete com-
plexity classifications without the typical computer science hardness proofs — rather,
the hardness results follow from mathematical statements about primitive positive
interpretability in w-categorical structures.

There are many other natural and important w-categorical structures besides
(Q; <) and (V; E) where this approach seems promising. We have listed some of the
simplest and most basic examples in Figure 2. In this table, the first column spec-
ifies the ‘base structure’ A, and we will be interested in the class of all structures
definable in A. The second column lists what is known about this class, considered
up to first-order interdefinability. The third column describes the corresponding
Ramsey result, when A is equipped with an appropriate linear order. The fourth
column gives the status with respect to complexity classification of the correspond-
ing class of CSPs. The fifth class indicates in which areas in computer science those
CSPs find applications.
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