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Introduction

Rational Self Maps

Let X be a projective Calabi-Yau (CY) manifold over C. Does X
admit a rational self map ¢ : X --» X of degree deg ¢ > 17
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Introduction

Fibrations of Abelian Varieties

Let 7 : X --» B be a dominant rational map, where X, = 7—1(b)
is an abelian variety for b € X general. There are rational maps
¢ : X --» X induced by End(Xp):

@ Fixing an ample divisor L on X, there is a multi-section
C C X/B cut out by general members of |L|.

@ Let n=deg(C/B). Thereis arationalmap ¢ : X --» X
sending a point p € X, = 7~ '(b) to C — (n— 1)p. Clearly,
deg ¢ = rP.

@ We can make n arbitrarily large by choosing L sufficiently
ample.

@ The same construction works for X}, birational to a finite
quotient of an abelian variety.
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Introduction

Potential Density of Rational Points on K3

@ There are rational self maps of arbitrarily high degrees for
an elliptic or Kummer K3 surface.
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Introduction

Potential Density of Rational Points on K3

@ There are rational self maps of arbitrarily high degrees for
an elliptic or Kummer K3 surface.

@ (Bogomolov-Tschinkel, Amerik-Campana) Let X be a K3
surface over a number field k. Suppose that there is a
nontrivial rational self map ¢ : X --» X over a finite
extension k/ — k of k. By iterating ¢, one can produce
many k’-rational points on X. Under suitable conditions,
these k’-rational points are Zariski dense in X.
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Introduction

Potential Density of Rational Points on K3

@ There are rational self maps of arbitrarily high degrees for
an elliptic or Kummer K3 surface.

@ (Bogomolov-Tschinkel, Amerik-Campana) Let X be a K3
surface over a number field k. Suppose that there is a
nontrivial rational self map ¢ : X --» X over a finite
extension k/ — k of k. By iterating ¢, one can produce
many k’-rational points on X. Under suitable conditions,
these k’-rational points are Zariski dense in X.

@ This works for elliptic and Kummer K3’s. For an elliptic K3
surface X/IP“, it suffices to find a suitable multi-section.
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Introduction

Density of Rational Curves on K3

@ Let ¢ : X --» X be a dominant rational self map of X. Then
¢(C) is rational for every rational curve C C X. For an
elliptic K3 surface X/P!,

Je¢"(©)
n
is dense on X in the analytic topology under suitable

conditions.
@ Elliptic K3’s are dense in the moduli space of K3 surfaces.
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Introduction

Theorem (Chen-Lewis)
On a very general projective K3 surface X,

U ®

CCX rational curve

is dense in the analytic topology.
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Introduction

Theorem (Chen-Lewis)

On a very general projective K3 surface X,

U ®

CCX rational curve

is dense in the analytic topology.

Bogomolov-Hassett-Tschinkel, Li-Liedtke
Rational curves are Zariski dense on almost “every” K3 surface.
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Introduction

The union of rational curves is dense in the analytic topology on
every K3 surface.
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Introduction

Complex Hyperbolicity

Does there exist a dominant meromorphic map f: C" --» X for
a CY manifold X of dimension n?
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Introduction

Complex Hyperbolicity

Does there exist a dominant meromorphic map f: C" --» X for
a CY manifold X of dimension n?

If there is a dominant rational self map ¢ : X --» X,
limm,_o ¢™: C" --s X is dominant under certain dilating
conditions.
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Introduction

Complex Hyperbolicity

Does there exist a dominant meromorphic map f: C" --» X for
a CY manifold X of dimension n?

If there is a dominant rational self map ¢ : X --» X,
limm,_o ¢™: C" --s X is dominant under certain dilating
conditions.

Buzzard-Lu

Elliptic and Kummer K3’s are holomorphically dominable by C?.
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Introduction

Every K3 surface is holomorphically dominable by C?.
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Every K3 surface is holomorphically dominable by C?.

Conjecture

The Kobayashi-Royden infinitesimal metric vanishes
everywhere on every K3 surface.

[|IV||kg = inf {:? : 3f : {|z| < R} — X holomorphic and

3}
f(0) = p, f*& = v} forve Txp
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Introduction

Theorem (Chen-Lewis)

On a very general K3 surface X,

||Vollkp =0

for a dense set of points (p, vp) € PTx in the analytic topology.

Xi Chen REVERSTEMIVETN



Our Results

Main Theorem

A very general projective K3 surface X does not admit rational
self maps ¢ : X --+ X of degree deg ¢ > 1.
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Our Results

Main Theorem

A very general projective K3 surface X does not admit rational
self maps ¢ : X --+ X of degree deg ¢ > 1.

A\

Theorem (Dedieu)

If there is a rational self map ¢ : X --» X ofdeg(¢) > 1 for a
generic K3 surface, then the Severi varieties Vy g x are
reducible for d >> g.
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Our Results

o Let

Aut(X) = {Automorphisms of X}
Bir(X) = {Birational self maps ofX}
Rat(X) = {Dominant rational self maps ofX}.

@ For a very general K3 surface X,

Rat(X) = Bir(X) = Aut(X).
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Our Results

Generalization

Rational Self Maps of CY Complete Intersections

For a very general complete intersection X C P" of type
(dy, do,...,dr) withdy + db + ... +d- > n+1and dim X > 2,

Rat(X) = Bir(X) = Aut(X).
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Our Results

Generalization

Rational Self Maps of CY Complete Intersections

For a very general complete intersection X C P" of type
(dy, do,...,dr) withdy + db + ... +d- > n+1and dim X > 2,

Rat(X) = Bir(X) = Aut(X).

A\

Corollary (Voisin?)

A very general CY complete intersection X C P" ofdim X > 2 is
not birational to a fibration of abelian varieties.

v
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Our Results

Birational Geometry

Let X C P" be a very general hypersurface of degree d and
dim X > 3:

@ When d > n, X is of CY or general type. Then
Rat(X) = Bir(X) = Aut(X).
@ (Iskovskih-Manin, Pukhlikov, ...) When d = n, —Kx is
ample and Pic(X) = ZKy, i.e., X is primitive Fano. Then X
is birationally super rigid and hence

Bir(X) = Aut(X).

@ When d < n, Bir(X) =7.
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Our Results

Some Trivial Remarks

@ Let ¢ € Rat(X) and let

be a resolution of ¢, where f : Y — X is a projective
birational morphism.
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Our Results

Some Trivial Remarks

@ Let ¢ € Rat(X) and let

be a resolution of ¢, where f : Y — X is a projective
birational morphism.

@ Suppose that Kx = Ox. Then
Ky = F"Kx + Y wiEi =Y pwiEi = o*Kx + Y i
where u; = a(E;, X) is the discrepancy of E; w.r.t. X.
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Our Results

@ a(E;, X) + 1 (log discrepancy of E;) is the ramification index
of E; under ¢ if p.E; # 0.
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Our Results

@ a(E;, X) + 1 (log discrepancy of E;) is the ramification index
of E; under ¢ if p.E; # 0.
@ If ¢ is regular, ¢ is unramified.
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@ a(E;, X) + 1 (log discrepancy of E;) is the ramification index
of E; under ¢ if p.E; # 0.

@ If ¢ is regular, ¢ is unramified.
@ If 71(X) =0 and ¢ is regular, then ¢ € Aut(X).
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@ a(E;, X) + 1 (log discrepancy of E;) is the ramification index
of E; under ¢ if p.E; # 0.

@ If ¢ is regular, ¢ is unramified.

@ If 71(X) =0 and ¢ is regular, then ¢ € Aut(X).

@ If X is an abelian variety, ¢.E; = 0 and hence ¢ is regular.
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Our Results

@ a(E;, X) + 1 (log discrepancy of E;) is the ramification index
of E; under ¢ if p.E; # 0.

If ¢ is regular, ¢ is unramified.

If 71(X) = 0 and ¢ is regular, then ¢ € Aut(X).

If X is an abelian variety, ¢.E; = 0 and hence ¢ is regular.

If X is a K3 surface and ¢ € Bir(X), ¢«E; = 0 and hence
Bir(X) = Aut(X).
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Our Results

@ a(E;, X) + 1 (log discrepancy of E;) is the ramification index
of E; under ¢ if p.E; # 0.

@ If ¢ is regular, ¢ is unramified.

@ If 71(X) =0 and ¢ is regular, then ¢ € Aut(X).

@ If X is an abelian variety, ¢.E; = 0 and hence ¢ is regular.

@ If X is a K3 surface and ¢ € Bir(X), ¢+E; = 0 and hence
Bir(X) = Aut(X).

® ¢ Hyig (X) = Hyg (X) and ¢ Hyzng(X) = Higans(X)-
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Our Results

@ a(E;, X) + 1 (log discrepancy of E;) is the ramification index
of E; under ¢ if p.E; # 0.

@ If ¢ is regular, ¢ is unramified.

@ If 71(X) =0 and ¢ is regular, then ¢ € Aut(X).

@ If X is an abelian variety, ¢.E; = 0 and hence ¢ is regular.

@ If X is a K3 surface and ¢ € Bir(X), ¢+E; = 0 and hence
Bir(X) = Aut(X).

® ¢ Hyjg (X) = Hg (X) and ¢ Hyzng(X) = Higans(X)-

@ (Dedieu) For X a general K3, deg ¢ is a perfect square.
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Our Results

Does there exist a rational self map ¢ : X --» X of deg¢ > 1 for
a K3 surface X which is neither elliptic nor Kummer?
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Basic Ideas for Proofs

Degeneration

Consider the hypersurfaces in P of degree n+ 1 (n > 3).

@ (Kulikov Type Il) Let W c P" x A be a pencil of
hypersurfaces of degree n+ 1 with Wy = S; U S, where
degS; =1anddeg S; = n.
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Degeneration

Consider the hypersurfaces in P of degree n+ 1 (n > 3).

@ (Kulikov Type Il) Let W c P" x A be a pencil of
hypersurfaces of degree n+ 1 with Wy = S; U S, where
degS; =1anddeg S; = n.

@ S; and S, meet transversely along D, where D is a
hypersurface in P"~' of degree n.
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Consider the hypersurfaces in P of degree n+ 1 (n > 3).

@ (Kulikov Type Il) Let W c P" x A be a pencil of
hypersurfaces of degree n+ 1 with Wy = S; U S, where
degS; =1anddeg S; = n.

@ S; and S, meet transversely along D, where D is a
hypersurface in P"~' of degree n.

@ W has rational double points (xy = tz) along A = DN W;.
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Basic Ideas for Proofs

Degeneration

Consider the hypersurfaces in P of degree n+ 1 (n > 3).

@ (Kulikov Type Il) Let W c P" x A be a pencil of
hypersurfaces of degree n+ 1 with Wy = S; U S, where
degS; =1anddeg S; = n.

@ S; and S, meet transversely along D, where D is a
hypersurface in P"~' of degree n.

@ W has rational double points (xy = tz) along A = DN W;.

@ When n = 3, A consists of 12 points. Note that
12 = 20 - h1’1(81) - h1’1(82).
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Basic Ideas for Proofs

Degeneration

Consider the hypersurfaces in P of degree n+ 1 (n > 3).

@ (Kulikov Type Il) Let W c P" x A be a pencil of
hypersurfaces of degree n+ 1 with Wy = S; U S, where
degS; =1anddeg S; = n.

@ S; and S, meet transversely along D, where D is a
hypersurface in P"~' of degree n.

@ W has rational double points (xy = tz) along A = DN W;.

@ When n = 3, A consists of 12 points. Note that
12 = 20 - h1’1(81) - h1’1(82).

@ A is the vanishing locus of the T' class of W in
T'(Wo) = Np/s, ® Npys,-
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Basic Ideas for Proofs

Degeneration

Consider the hypersurfaces in P of degree n+ 1 (n > 3).

@ (Kulikov Type Il) Let W c P" x A be a pencil of
hypersurfaces of degree n+ 1 with Wy = S; U S, where
degS; =1anddeg S; = n.

@ S; and S, meet transversely along D, where D is a
hypersurface in P"~' of degree n.

@ W has rational double points (xy = tz) along A = DN W;.

@ When n = 3, A consists of 12 points. Note that
12 = 20 - h1’1(81) - h1’1(82).

@ A is the vanishing locus of the T' class of W in
T'(Wo) = Npss, ® Np/s,-

@ We resolve the singularities of W by blowing up W along
S1. Let X be the resulting n-fold and Xy = Ry U Ro. Then
Ry is the blowup of Sy along A and R, = S.
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Basic Ideas for Proofs

@ We want to show that there are no rational maps

¢ XRC((t) --» XC((1))

of deg¢ > 1.

Xi Chen Rational Self Maps



Basic Ideas for Proofs

@ We want to show that there are no rational maps

¢ XRC((t) --» XC((1))

of deg¢ > 1.

@ Otherwise, we have a rational map ¢ : X/A --» X/A of
deg ¢ > 1 after a base change of degree m.
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Basic Ideas for Proofs

@ We want to show that there are no rational maps

¢ XRC((t) --» XC((1))

of deg¢ > 1.

@ Otherwise, we have a rational map ¢ : X/A --» X/A of
deg ¢ > 1 after a base change of degree m.

@ We have the family version of a resolution diagram

y s x

of ¢. Using stable reduction, Y can be made very “nice”: Y
is smooth and Yy has simple normal crossing.
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Basic Ideas for Proofs

@ Riemann-Hurwitz:

Ky = ¢"Kx + Y _ a(Ei, X)E;
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Basic Ideas for Proofs

@ Riemann-Hurwitz:
Ky = ¢"Kx + Y _ a(Ei, X)E;

@ Find all components E C Yy with ¢, E # 0O:
o.E#0=a(E,X)=0.
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Basic Ideas for Proofs

@ Riemann-Hurwitz:
Ky = ¢"Kx + Y _ a(Ei, X)E;

@ Find all components E C Yy with ¢, E # 0O:
o«E #0= a(E,X)=0.

@ Letn: X’ — X be the “standard” resolution of the
singularities xy = t™ of X along D:

y s x
7

7/
7 s
,///77 i//qb
X —X

@ Let X, = PyUP;U...UPpand Q = (f_1 OT])*PK.
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Basic Ideas for Proofs

@ p.E#0and E C Yy = E = Q for some k.
@ 0.(Q+ Q1+ ...+ Qn) = (deg¢)(Ro + R1).
@ Qx——>DxP! forO<k<m.
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Basic Ideas for Proofs

@ p.E#0and E C Yy = E = Q for some k.

@ ¢.(Qo+ Q1 + ... + Qm) = (deg ¢)(Ro + Ay).

@ Qx-—~>DxP! forO<k<m.

@ degop=1ifandonlyif o,Qx =0forall0 < k < m.
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Basic Ideas for Proofs

@ p.E#0and E C Yy = E = Q for some k.

@ ».(Qo+ Q1+ ... + Qm) = (deg ¢)(Ro + R1).

@ Qx-—~>DxP! forO<k<m.

@ degop=1ifandonlyif o,Qx =0forall0 < k < m.

@ Consider the case n = 4, i.e., X; ¢ P* a quintic 3-fold.

@ Dis a very general quartic K3 surface. Then
Rat(D) = Bir(D) = Aut(D) = {1} by induction.

@ Suppose that ¢ : Qx — Ry is dominant for some
O0<k<m
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Basic Ideas for Proofs

@ p.E#0and E C Yy = E = Q for some k.

@ ».(Qo+ Q1+ ... + Qm) = (deg ¢)(Ro + R1).

@ Qx-—~>DxP! forO<k<m.

@ degop=1ifandonlyif o,Qx =0forall0 < k < m.

@ Consider the case n = 4, i.e., X; ¢ P* a quintic 3-fold.

@ Dis a very general quartic K3 surface. Then
Rat(D) = Bir(D) = Aut(D) = {1} by induction.

@ Suppose that ¢ : Qx — Ry is dominant for some
O0<k<m

@ Then there exists i : C — D such thatdim C < 1 and
i : CHo(C) — CHo(D) is surjective.
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Basic Ideas for Proofs

Theorem (Mumford, Roitman, Bloch-Srinivas)

Let X be a smooth projective variety of dimension n. If there
exists i : Y — X such thatdim Y < n and

i, : CHo(Y) — CHo(X)

is surjective, then h™°(X) = 0.
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Basic Ideas for Proofs

Theorem (Mumford, Roitman, Bloch-Srinivas)

Let X be a smooth projective variety of dimension n. If there
exists i : Y — X such thatdim Y < n and

i, : CHo(Y) — CHo(X)

is surjective, then h™°(X) = 0.

Conclusion

deg ¢ = 1 = Rat(X) = Bir(X) for a very general quintic 3-fold
X c P,
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